Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease
Abstract
1. Introduction
2. Proteoglycans (PGs)
3. Heparan Sulfate Proteoglycan: Biosynthesis and Structure
4. Heparan Sulfate Proteoglycan: Localization and Function
5. Basement Membrane-Associated HS-Proteoglycans
6. Cell Surface Proteoglycans
7. Serglycin
8. HSPG Post-Translational Modification
9. HSPGs and Their Enzymatic Degradation: Heparanase

Different Functions of HPSE: Enzymatic and Non-Enzymatic Activities
10. Heparanase in Physiology
11. HPSE in Pathology
11.1. HPSE in Fibrosis
11.2. HPSE in Inflammation
12. HPSE Influences the Hallmark of Cancer
12.1. HPSE Influences Oncogenic, Proliferative, and Growth Signals
12.2. HPSE in Cancer Angiogenesis
12.3. Invasion and Metastasis
12.4. HPSE in Cancer Inflammation
12.5. HPSE Role in Cell Death Evasion
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A Guide to the Composition and Functions of the Extracellular Matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef]
- Naba, A. Ten Years of Extracellular Matrix Proteomics: Accomplishments, Challenges, and Future Perspectives. Mol. Cell. Proteom. 2023, 22, 100528. [Google Scholar] [CrossRef] [PubMed]
- Mecham, R.P. Overview of Extracellular Matrix. Curr. Protoc. Cell Biol. 2012, 57, 10.1.1–10.1.16. [Google Scholar] [CrossRef]
- Hynes, R.O.; Naba, A. Overview of the Matrisome--An Inventory of Extracellular Matrix Constituents and Functions. Cold Spring Harb. Perspect. Biol. 2012, 4, a004903. [Google Scholar] [CrossRef]
- Karamanos, N.K.; Piperigkou, Z.; Theocharis, A.D.; Watanabe, H.; Franchi, M.; Baud, S.; Brézillon, S.; Götte, M.; Passi, A.; Vigetti, D.; et al. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem. Rev. 2018, 118, 9152–9232. [Google Scholar] [CrossRef]
- Iozzo, R.V.; Schaefer, L. Proteoglycan Form and Function: A Comprehensive Nomenclature of Proteoglycans. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan Sulfate Proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Barash, U.; Nguyen, H.M.; Yang, S.-M.; Ilan, N. Biology of the Heparanase–Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin. Thromb. Hemost. 2021, 47, 240–253. [Google Scholar] [CrossRef]
- Hassan, N.; Greve, B.; Espinoza-Sánchez, N.A.; Götte, M. Cell-Surface Heparan Sulfate Proteoglycans as Multifunctional Integrators of Signaling in Cancer. Cell. Signal. 2021, 77, 109822. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, M.; Smith, R.A.A.; Nurcombe, V.; Cool, S.M. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front. Cell Dev. Biol. 2020, 8, 581213. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Reis, C.A.; Vivès, R.R.; Magalhães, A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front. Oncol. 2021, 11, 778752. [Google Scholar] [CrossRef]
- Annaval, T.; Wild, R.; Crétinon, Y.; Sadir, R.; Vivès, R.R.; Lortat-Jacob, H. Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020, 25, 4215. [Google Scholar] [CrossRef]
- Multhaupt, H.A.B.; Couchman, J.R. Heparan Sulfate Biosynthesis: Methods for Investigation of the Heparanosome. J. Histochem. Cytochem. 2012, 60, 908–915. [Google Scholar] [CrossRef]
- Lamanna, W.C.; Kalus, I.; Padva, M.; Baldwin, R.J.; Merry, C.L.R.; Dierks, T. The Heparanome—The Enigma of Encoding and Decoding Heparan Sulfate Sulfation. J. Biotechnol. 2007, 129, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Ori, A.; Wilkinson, M.C.; Fernig, D.G. The Heparanome and Regulation of Cell Function: Structures, Functions and Challenges. Front. Biosci. 2008, 13, 4309–4338. [Google Scholar] [CrossRef] [PubMed]
- Farach-Carson, M.C.; Warren, C.R.; Harrington, D.A.; Carson, D.D. Border Patrol: Insights into the Unique Role of Perlecan/Heparan Sulfate Proteoglycan 2 at Cell and Tissue Borders. Matrix Biol. 2014, 34, 64–79. [Google Scholar] [CrossRef]
- Gubbiotti, M.A.; Neill, T.; Iozzo, R.V. A Current View of Perlecan in Physiology and Pathology: A Mosaic of Functions. Matrix Biol. 2017, 57–58, 285–298. [Google Scholar] [CrossRef]
- Daniels, M.P. The Role of Agrin in Synaptic Development, Plasticity and Signaling in the Central Nervous System. Neurochem. Int. 2012, 61, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Heljasvaara, R.; Aikio, M.; Ruotsalainen, H.; Pihlajaniemi, T. Collagen XVIII in Tissue Homeostasis and Dysregulation—Lessons Learned from Model Organisms and Human Patients. Matrix Biol. 2017, 57–58, 55–75. [Google Scholar] [CrossRef]
- Bishop, J.R.; Schuksz, M.; Esko, J.D. Heparan Sulphate Proteoglycans Fine-Tune Mammalian Physiology. Nature 2007, 446, 1030–1037. [Google Scholar] [CrossRef]
- Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans—Key Regulators of Cell Signaling and Biological Functions. FEBS J. 2017, 284, 27–41. [Google Scholar] [CrossRef]
- Mohammadi, M.; Olsen, S.K.; Ibrahimi, O.A. Structural Basis for Fibroblast Growth Factor Receptor Activation. Cytokine Growth Factor Rev. 2005, 16, 107–137. [Google Scholar] [CrossRef] [PubMed]
- Filmus, J. Glypicans, 35 Years Later. Proteoglycan Res. 2023, 1, e5. [Google Scholar] [CrossRef]
- Villarreal, M.M.; Kim, S.K.; Barron, L.; Kodali, R.; Baardsnes, J.; Hinck, C.S.; Krzysiak, T.C.; Henen, M.A.; Pakhomova, O.; Mendoza, V.; et al. Binding Properties of the Transforming Growth Factor-β Coreceptor Betaglycan: Proposed Mechanism for Potentiation of Receptor Complex Assembly and Signaling. Biochemistry 2016, 55, 6880–6896. [Google Scholar] [CrossRef]
- Jung, O.; Trapp-Stamborski, V.; Purushothaman, A.; Jin, H.; Wang, H.; Sanderson, R.D.; Rapraeger, A.C. Heparanase-Induced Shedding of Syndecan-1/CD138 in Myeloma and Endothelial Cells Activates VEGFR2 and an Invasive Phenotype: Prevention by Novel Synstatins. Oncogenesis 2016, 5, e202. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.D.; Ramani, V.C.; Sanderson, R.D. Shed Syndecan-1 Translocates to the Nucleus of Cells Delivering Growth Factors and Inhibiting Histone Acetylation. J. Biol. Chem. 2015, 290, 941–949. [Google Scholar] [CrossRef]
- Kolset, S.O.; Tveit, H. Serglycin—Structure and Biology. Cell. Mol. Life Sci. 2008, 65, 1073–1085. [Google Scholar] [CrossRef]
- Mulloy, B.; Lever, R.; Page, C.P. Mast cell glycosaminoglycans. Glycoconj. J. 2017, 34, 351–361. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Kayal, Y.; Hilwi, M.; Soboh, S.; Sanderson, R.D.; Ilan, N. Heparanase—A Single Protein with Multiple Enzymatic and Nonenzymatic Functions. Proteoglycan Res. 2023, 1, e6. [Google Scholar] [CrossRef]
- Hulett, M.D.; Freeman, C.; Hamdorf, B.J.; Baker, R.T.; Harris, M.J.; Parish, C.R. Cloning of Mammalian Heparanase, an Important Enzyme in Tumor Invasion and Metastasis. Nat. Med. 1999, 5, 803–809. [Google Scholar] [CrossRef]
- Kussie, P.H.; Hulmes, J.D.; Ludwig, D.L.; Patel, S.; Navarro, E.C.; Seddon, A.P.; Giorgio, N.A.; Bohlen, P. Cloning and Functional Expression of a Human Heparanase Gene. Biochem. Biophys. Res. Commun. 1999, 261, 183–187. [Google Scholar] [CrossRef]
- Toyoshima, M.; Nakajima, M. Human Heparanase. J. Biol. Chem. 1999, 274, 24153–24160. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Friedmann, Y.; Elkin, M.; Aingorn, H.; Atzmon, R.; Ishai-Michaeli, R.; Bitan, M.; Pappo, O.; Peretz, T.; Michal, I.; et al. Mammalian Heparanase: Gene Cloning, Expression and Function in Tumor Progression and Metastasis. Nat. Med. 1999, 5, 793–802. [Google Scholar] [CrossRef]
- Peterson, S.B.; Liu, J. Multi-Faceted Substrate Specificity of Heparanase. Matrix Biol. 2013, 32, 223–227. [Google Scholar] [CrossRef]
- McKenzie, E.; Tyson, K.; Stamps, A.; Smith, P.; Turner, P.; Barry, R.; Hircock, M.; Patel, S.; Barry, E.; Stubberfield, C.; et al. Cloning and Expression Profiling of Hpa2, a Novel Mammalian Heparanase Family Member. Biochem. Biophys. Res. Commun. 2000, 276, 1170–1177. [Google Scholar] [CrossRef]
- Simizu, S.; Ishida, K.; Wierzba, M.K.; Osada, H. Secretion of Heparanase Protein Is Regulated by Glycosylation in Human Tumor Cell Lines. J. Biol. Chem. 2004, 279, 2697–2703. [Google Scholar] [CrossRef]
- Levy-Adam, F.; Miao, H.-Q.; Heinrikson, R.L.; Vlodavsky, I.; Ilan, N. Heterodimer Formation Is Essential for Heparanase Enzymatic Activity. Biochem. Biophys. Res. Commun. 2003, 308, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zaken, O.; Shafat, I.; Gingis-Velitski, S.; Bangio, H.; Kelson, I.K.; Alergand, T.; Amor, Y.; Maya, R.B.-Y.; Vlodavsky, I.; Ilan, N. Low and High Affinity Receptors Mediate Cellular Uptake of Heparanase. Int. J. Biochem. Cell Biol. 2008, 40, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Abboud-Jarrous, G.; Atzmon, R.; Peretz, T.; Palermo, C.; Gadea, B.B.; Joyce, J.A.; Vlodavsky, I. Cathepsin L Is Responsible for Processing and Activation of Proheparanase through Multiple Cleavages of a Linker Segment. J. Biol. Chem. 2008, 283, 18167–18176. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Viola, C.M.; Brzozowski, A.M.; Davies, G.J. Structural Characterization of Human Heparanase Reveals Insights into Substrate Recognition. Nat. Struct. Mol. Biol. 2015, 22, 1016–1022. [Google Scholar] [CrossRef]
- Levy-Adam, F.; Abboud-Jarrous, G.; Guerrini, M.; Beccati, D.; Vlodavsky, I.; Ilan, N. Identification and Characterization of Heparin/Heparan Sulfate Binding Domains of the Endoglycosidase Heparanase. J. Biol. Chem. 2005, 280, 20457–20466. [Google Scholar] [CrossRef]
- Fux, L.; Feibish, N.; Cohen-Kaplan, V.; Gingis-Velitski, S.; Feld, S.; Geffen, C.; Vlodavsky, I.; Ilan, N. Structure-Function Approach Identifies a COOH-Terminal Domain That Mediates Heparanase Signaling. Cancer Res. 2009, 69, 1758–1767. [Google Scholar] [CrossRef]
- Shafat, I.; Vlodavsky, I.; Ilan, N. Characterization of Mechanisms Involved in Secretion of Active Heparanase. J. Biol. Chem. 2006, 281, 23804–23811. [Google Scholar] [CrossRef]
- Rivara, S.; Milazzo, F.M.; Giannini, G. Heparanase: A Rainbow Pharmacological Target Associated to Multiple Pathologies Including Rare Diseases. Future Med. Chem. 2016, 8, 647–680. [Google Scholar] [CrossRef]
- Goldshmidt, O.; Nadav, L.; Aingorn, H.; Irit, C.; Feinstein, N.; Ilan, N.; Zamir, E.; Geiger, B.; Vlodavsky, I.; Katz, B.Z. Human Heparanase Is Localized within Lysosomes in a Stable Form. Exp. Cell Res. 2002, 281, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Bellin, G.; Gambaro, G.; Onisto, M. Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events. Cells 2018, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Ilan, N.; Vlodavsky, I.; Li, J.-P.; Johansson, S. Characterization of Heparanase-Induced Phosphatidylinositol 3-Kinase-AKT Activation and Its Integrin Dependence. J. Biol. Chem. 2013, 288, 12366–12375. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zaken, O.; Gingis-Velitski, S.; Vlodavsky, I.; Ilan, N. Heparanase Induces Akt Phosphorylation via a Lipid Raft Receptor. Biochem. Biophys. Res. Commun. 2007, 361, 829–834. [Google Scholar] [CrossRef]
- Nobuhisa, T.; Naomoto, Y.; Okawa, T.; Takaoka, M.; Gunduz, M.; Motoki, T.; Nagatsuka, H.; Tsujigiwa, H.; Shirakawa, Y.; Yamatsuji, T.; et al. Translocation of Heparanase into Nucleus Results in Cell Differentiation. Cancer Sci. 2007, 98, 535–540. [Google Scholar] [CrossRef]
- Schubert, S.Y.; Ilan, N.; Shushy, M.; Ben-Izhak, O.; Vlodavsky, I.; Goldshmidt, O. Human Heparanase Nuclear Localization and Enzymatic Activity. Lab. Investig. 2004, 84, 535–544. [Google Scholar] [CrossRef]
- Purushothaman, A.; Hurst, D.R.; Pisano, C.; Mizumoto, S.; Sugahara, K.; Sanderson, R.D. Heparanase-Mediated Loss of Nuclear Syndecan-1 Enhances Histone Acetyltransferase (HAT) Activity to Promote Expression of Genes That Drive an Aggressive Tumor Phenotype. J. Biol. Chem. 2011, 286, 30377–30383. [Google Scholar] [CrossRef]
- Yang, Y.; Gorzelanny, C.; Bauer, A.T.; Halter, N.; Komljenovic, D.; Bäuerle, T.; Borsig, L.; Roblek, M.; Schneider, S.W. Nuclear Heparanase-1 Activity Suppresses Melanoma Progression via Its DNA-Binding Affinity. Oncogene 2015, 34, 5832–5842. [Google Scholar] [CrossRef]
- Shteper, P.J.; Zcharia, E.; Ashhab, Y.; Peretz, T.; Vlodavsky, I.; Ben-Yehuda, D. Role of Promoter Methylation in Regulation of the Mammalian Heparanase Gene. Oncogene 2003, 22, 7737–7749. [Google Scholar] [CrossRef] [PubMed]
- Baraz, L.; Haupt, Y.; Elkin, M.; Peretz, T.; Vlodavsky, I. Tumor Suppressor P53 Regulates Heparanase Gene Expression. Oncogene 2006, 25, 3939–3947. [Google Scholar] [CrossRef]
- Agelidis, A.M.; Hadigal, S.R.; Jaishankar, D.; Shukla, D. Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Rep. 2017, 20, 439–450. [Google Scholar] [CrossRef]
- Secchi, M.F.; Crescenzi, M.; Masola, V.; Russo, F.P.; Floreani, A.; Onisto, M. Heparanase and Macrophage Interplay in the Onset of Liver Fibrosis. Sci. Rep. 2017, 7, 14956. [Google Scholar] [CrossRef]
- Nagarajan, H.; Vetrivel, U. Demystifying the pH Dependent Conformational Changes of Human Heparanase Pertaining to Structure–Function Relationships: An in Silico Approach. J. Comput. Aided Mol. Des. 2018, 32, 821–840. [Google Scholar] [CrossRef] [PubMed]
- Nasser, N.J. Heparanase Involvement in Physiology and Disease. Cell. Mol. Life Sci. 2008, 65, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Zcharia, E.; Zilka, R.; Yaar, A.; Yacoby-Zeevi, O.; Zetser, A.; Metzger, S.; Sarid, R.; Naggi, A.; Casu, B.; Ilan, N.; et al. Heparanase Accelerates Wound Angiogenesis and Wound Healing in Mouse and Rat Models. FASEB J. 2005, 19, 211–221. [Google Scholar] [CrossRef]
- Nadir, Y. Heparanase and Coagulation–New Insights. Rambam Maimonides Med. J. 2014, 5, e0031. [Google Scholar] [CrossRef]
- Secchi, M.F.; Masola, V.; Zaza, G.; Lupo, A.; Gambaro, G.; Onisto, M. Recent Data Concerning Heparanase: Focus on Fibrosis, Inflammation and Cancer. Biomol. Concepts 2015, 6, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Mayfosh, A.J.; Nguyen, T.K.; Hulett, M.D. The Heparanase Regulatory Network in Health and Disease. Int. J. Mol. Sci. 2021, 22, 11096. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Gambaro, G.; Onisto, M. Impact of Heparanse on Organ Fibrosis. In Heparanase; Vlodavsky, I., Sanderson, R.D., Ilan, N., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1221, pp. 669–684. ISBN 978-3-030-34520-4. [Google Scholar]
- Masola, V.; Gambaro, G.; Tibaldi, E.; Onisto, M.; Abaterusso, C.; Lupo, A. Regulation of Heparanase by Albumin and Advanced Glycation End Products in Proximal Tubular Cells. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 1475–1482. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Gambaro, G.; Onisto, M.; Bellin, G.; Vischini, G.; Khamaysi, I.; Hassan, A.; Hamoud, S.; Nativ, O.; et al. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury. PLoS ONE 2016, 11, e0160074. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Secchi, M.F.; Gambaro, G.; Lupo, A.; Onisto, M. Heparanase Is a Key Player in Renal Fibrosis by Regulating TGF-β Expression and Activity. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2014, 1843, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Gambaro, G.; Tibaldi, E.; Brunati, A.M.; Gastaldello, A.; D’Angelo, A.; Onisto, M.; Lupo, A. Heparanase and Syndecan-1 Interplay Orchestrates Fibroblast Growth Factor-2-Induced Epithelial-Mesenchymal Transition in Renal Tubular Cells. J. Biol. Chem. 2012, 287, 1478–1488. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Onisto, M.; Lupo, A.; Gambaro, G. Impact of Heparanase on Renal Fibrosis. J. Transl. Med. 2015, 13, 181. [Google Scholar] [CrossRef]
- Abassi, Z.; Hamoud, S.; Hassan, A.; Khamaysi, I.; Nativ, O.; Heyman, S.N.; Muhammad, R.S.; Ilan, N.; Singh, P.; Hammond, E.; et al. Involvement of Heparanase in the Pathogenesis of Acute Kidney Injury: Nephroprotective Effect of PG545. Oncotarget 2017, 8, 34191–34204. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, C.-H.; Song, S.H.; Um, J.E.; Kim, H.S.; Yun, J.S.; Han, D.; Cho, E.S.; Nam, B.Y.; Yook, J.I.; et al. Micellized Protein Transduction Domain-Bone Morphogenetic Protein-7 Efficiently Blocks Renal Fibrosis Via Inhibition of Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition. Front. Pharmacol. 2020, 11, 591275. [Google Scholar] [CrossRef]
- Masola, V.; Bellin, G.; Vischini, G.; Dall’Olmo, L.; Granata, S.; Gambaro, G.; Lupo, A.; Onisto, M.; Zaza, G. Inhibition of Heparanase Protects against Chronic Kidney Dysfunction Following Ischemia/Reperfusion Injury. Oncotarget 2018, 9, 36185–36201. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Yuan, W.-G.; He, P.; Lei, J.-H.; Wang, C.-X. Liver Fibrosis and Hepatic Stellate Cells: Etiology, Pathological Hallmarks and Therapeutic Targets. World J. Gastroenterol. 2016, 22, 10512–10522. [Google Scholar] [CrossRef]
- He, L.; Lv, Q.; Luo, J.; Guo, Y.-D.; Sun, H.; Zong, M.; Fan, L.-Y. Heparanase Inhibition Mitigates Bleomycin-Induced Pulmonary Fibrosis in Mice by Reducing M2 Macrophage Polarization. Immunol. Lett. 2025, 274, 107006. [Google Scholar] [CrossRef]
- Xie, M.; Li, J. Heparan Sulfate Proteoglycan—A Common Receptor for Diverse Cytokines. Cell. Signal. 2019, 54, 115–121. [Google Scholar] [CrossRef]
- Higashi, N.; Irimura, T.; Nakajima, M. Heparanase Is Involved in Leukocyte Migration. In Heparanase; Vlodavsky, I., Sanderson, R.D., Ilan, N., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1221, pp. 435–444. ISBN 978-3-030-34520-4. [Google Scholar]
- Masola, V.; Greco, N.; Gambaro, G.; Franchi, M.; Onisto, M. Heparanase as Active Player in Endothelial Glycocalyx Remodeling. Matrix Biol. Plus 2022, 13, 100097. [Google Scholar] [CrossRef]
- Goodall, K.J.; Poon, I.K.H.; Phipps, S.; Hulett, M.D. Soluble Heparan Sulfate Fragments Generated by Heparanase Trigger the Release of Pro-Inflammatory Cytokines through TLR-4. PLoS ONE 2014, 9, e109596. [Google Scholar] [CrossRef]
- Elkin, M. Role of Heparanase in Macrophage Activation. In Heparanase; Vlodavsky, I., Sanderson, R.D., Ilan, N., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1221, pp. 445–460. ISBN 978-3-030-34520-4. [Google Scholar]
- Collins, L.E.; Troeberg, L. Heparan Sulfate as a Regulator of Inflammation and Immunity. J. Leukoc. Biol. 2018, 105, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Khamaysi, I.; Singh, P.; Nasser, S.; Awad, H.; Chowers, Y.; Sabo, E.; Hammond, E.; Gralnek, I.; Minkov, I.; Noseda, A.; et al. The Role of Heparanase in the Pathogenesis of Acute Pancreatitis: A Potential Therapeutic Target. Sci. Rep. 2017, 7, 715. [Google Scholar] [CrossRef] [PubMed]
- Hamo-Giladi, D.B.; Fokra, A.; Sabo, E.; Kabala, A.; Minkov, I.; Hamoud, S.; Hadad, S.; Abassi, Z.; Khamaysi, I. Involvement of Heparanase in the Pathogenesis of Acute Pancreatitis: Implication of Novel Therapeutic Approaches. J. Cell. Mol. Med. 2024, 28, e18512. [Google Scholar] [CrossRef]
- Goldberg, R.; Meirovitz, A.; Hirshoren, N.; Bulvik, R.; Binder, A.; Rubinstein, A.M.; Elkin, M. Versatile Role of Heparanase in Inflammation. Matrix Biol. 2013, 32, 234–240. [Google Scholar] [CrossRef]
- Schmidt, E.P.; Yang, Y.; Janssen, W.J.; Gandjeva, A.; Perez, M.J.; Barthel, L.; Zemans, R.L.; Bowman, J.C.; Koyanagi, D.E.; Yunt, Z.X.; et al. The Pulmonary Endothelial Glycocalyx Regulates Neutrophil Adhesion and Lung Injury during Experimental Sepsis. Nat. Med. 2012, 18, 1217–1223. [Google Scholar] [CrossRef]
- Goldberg, R.; Rubinstein, A.M.; Gil, N.; Hermano, E.; Li, J.-P.; van der Vlag, J.; Atzmon, R.; Meirovitz, A.; Elkin, M. Role of Heparanase-Driven Inflammatory Cascade in Pathogenesis of Diabetic Nephropathy. Diabetes 2014, 63, 4302–4313. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Bellin, G.; Dall’Olmo, L.; Granata, S.; Vischini, G.; Francesca Secchi, M.; Lupo, A.; Gambaro, G.; Onisto, M. Heparanase Regulates the M1 Polarization of Renal Macrophages and Their Crosstalk with Renal Epithelial Tubular Cells after Ischemia/Reperfusion Injury. FASEB J. 2018, 32, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Waterman, M.; Ben-Izhak, O.; Eliakim, R.; Groisman, G.; Vlodavsky, I.; Ilan, N. Heparanase Upregulation by Colonic Epithelium in Inflammatory Bowel Disease. Mod. Pathol. 2007, 20, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Jayatilleke, K.M.; Hulett, M.D. Heparanase and the Hallmarks of Cancer. J. Transl. Med. 2020, 18, 453. [Google Scholar] [CrossRef]
- Masola, V.; Greco, N.; Gambaro, G.; Franchi, M.; Onisto, M. Heparanase: A Paramount Enzyme for Cancer Initiation, Progression, and Metastasis. In The Extracellular Matrix and the Tumor Microenvironment; Kovalszky, I., Franchi, M., Alaniz, L.D., Eds.; Biology of Extracellular Matrix; Springer International Publishing: Cham, Switzerland, 2022; Volume 11, pp. 197–217. ISBN 978-3-030-99707-6. [Google Scholar]
- Rao, G.; Liu, D.; Xing, M.; Tauler, J.; Prinz, R.A.; Xu, X. Induction of Heparanase-1 Expression by Mutant B-Raf Kinase: Role of GA Binding Protein in Heparanase-1 Promoter Activation. Neoplasia 2010, 12, 946–956. [Google Scholar] [CrossRef]
- Boyango, I.; Barash, U.; Naroditsky, I.; Li, J.-P.; Hammond, E.; Ilan, N.; Vlodavsky, I. Heparanase Cooperates with Ras. to Drive Breast and Skin Tumorigenesis. Cancer Res. 2014, 74, 4504–4514. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Xie, R.; Qin, Y.; Xiao, Y.-F.; Yong, X.; Zheng, L.; Dong, H.; Yang, S.-M. Human Telomerase Reverse Transcriptase (hTERT) Promotes Gastric Cancer Invasion through Cooperating with c-Myc to Upregulate Heparanase Expression. Oncotarget 2016, 7, 11364–11379. [Google Scholar] [CrossRef]
- Ridgway, L.D.; Wetzel, M.D.; Marchetti, D. Heparanase Modulates Shh and Wnt3a Signaling in Human Medulloblastoma Cells. Exp. Ther. Med. 2011, 2, 229–237. [Google Scholar] [CrossRef]
- Gallagher, J. Fell–Muir Lecture: Heparan Sulphate and the Art of Cell Regulation: A Polymer Chain Conducts the Protein Orchestra. Int. J. Exp. Path 2015, 96, 203–231. [Google Scholar] [CrossRef]
- Vallet, S.D.; Berthollier, C.; Ricard-Blum, S. The Glycosaminoglycan Interactome 2.0. Am. J. Physiol. Cell Physiol. 2022, 322, C1271–C1278. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Gambaro, G.; Franchi, M.; Onisto, M. Role of Heparanase in Tumor Progression: Molecular Aspects and Therapeutic Options. Semin. Cancer Biol. 2020, 62, 86–98. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Singh, P.; Boyango, I.; Gutter-Kapon, L.; Elkin, M.; Sanderson, R.D.; Ilan, N. Heparanase: From Basic Research to Therapeutic Applications in Cancer and Inflammation. Drug Resist. Updates 2016, 29, 54–75. [Google Scholar] [CrossRef]
- Goetz, R.; Mohammadi, M. Exploring Mechanisms of FGF Signalling through the Lens of Structural Biology. Nat. Rev. Mol. Cell Biol. 2013, 14, 166–180. [Google Scholar] [CrossRef]
- Kato, M.; Wang, H.; Kainulainen, V.; Fitzgerald, M.L.; Ledbetter, S.; Ornitz, D.M.; Bernfield, M. Physiological Degradation Converts the Soluble Syndecan-1 Ectodomain from an Inhibitor to a Potent Activator of FGF-2. Nat. Med. 1998, 4, 691–697. [Google Scholar] [CrossRef]
- Alexandrakis, M.G.; Passam, F.H.; Sfiridaki, A.; Kandidaki, E.; Roussou, P.; Kyriakou, D.S. Elevated Serum Concentration of Hepatocyte Growth Factor in Patients with Multiple Myeloma: Correlation with Markers of Disease Activity. Am. J. Hematol. 2003, 72, 229–233. [Google Scholar] [CrossRef]
- Ramani, V.C.; Yang, Y.; Ren, Y.; Nan, L.; Sanderson, R.D. Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Expression and Activity. J. Biol. Chem. 2011, 286, 6490–6499. [Google Scholar] [CrossRef]
- Hao, N.-B.; Tang, B.; Wang, G.-Z.; Xie, R.; Hu, C.-J.; Wang, S.-M.; Wu, Y.-Y.; Liu, E.; Xie, X.; Yang, S.-M. Hepatocyte Growth Factor (HGF) Upregulates Heparanase Expression via the PI3K/Akt/NF-κB Signaling Pathway for Gastric Cancer Metastasis. Cancer Lett. 2015, 361, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Zetser, A.; Bashenko, Y.; Edovitsky, E.; Levy-Adam, F.; Vlodavsky, I.; Ilan, N. Heparanase Induces Vascular Endothelial Growth Factor Expression: Correlation with P38 Phosphorylation Levels and Src Activation. Cancer Res. 2006, 66, 1455–1463. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal Growth Factor Receptor (EGFR) Signaling in Cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.-C.; Mori, R.; Vallbohmer, D.; Brabender, J.; Drebber, U.; Baldus, S.E.; Klein, E.; Azuma, M.; Metzger, R.; Hoffmann, C.; et al. High Expression of Heparanase Is Significantly Associated with Dedifferentiation and Lymph Node Metastasis in Patients with Pancreatic Ductal Adenocarcinomas and Correlated to PDGFA and Via HIF1a to HB-EGF and bFGF. J. Gastrointest. Surg. 2008, 12, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zuo, D.; Chen, Y.; Li, W.; Liu, R.; He, Y.; Ren, L.; Zhou, L.; Deng, T.; Wang, X.; et al. Shed Syndecan-1 Is Involved in Chemotherapy Resistance via the EGFR Pathway in Colorectal Cancer. Br. J. Cancer 2014, 111, 1965–1976. [Google Scholar] [CrossRef]
- Zhang, L.; Sullivan, P.; Suyama, J.; Marchetti, D. Epidermal Growth Factor–Induced Heparanase Nucleolar Localization Augments DNA Topoisomerase I Activity in Brain Metastatic Breast Cancer. Mol. Cancer Res. 2010, 8, 278–290. [Google Scholar] [CrossRef]
- Principe, D.R.; Doll, J.A.; Bauer, J.; Jung, B.; Munshi, H.G.; Bartholin, L.; Pasche, B.; Lee, C.; Grippo, P.J. TGF-: Duality of Function Between Tumor Prevention and Carcinogenesis. JNCI J. Natl. Cancer Inst. 2014, 106, djt369. [Google Scholar] [CrossRef]
- Troilo, H.; Steer, R.; Collins, R.F.; Kielty, C.M.; Baldock, C. Independent Multimerization of Latent TGFβ Binding Protein-1 Stabilized by Cross-Linking and Enhanced by Heparan Sulfate. Sci. Rep. 2016, 6, 34347. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in Cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [PubMed]
- Marchetti, D.; Reiland, J.; Kempf, D.; Roy, M.; Denkins, Y. FGF2 Binding, Signaling and Angiogenesis Are Modulated by Heparanase in Metastatic Melanoma Cells. Melanoma Res. 2006, 16, S67. [Google Scholar]
- Liu, G.; Chen, T.; Ding, Z.; Wang, Y.; Wei, Y.; Wei, X. Inhibition of FGF-FGFR and VEGF-VEGFR Signalling in Cancer Treatment. Cell Prolif. 2021, 54, e13009. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Pappo, O.; Elkin, M.; San, T.; Bar-Shavit, R.; Hazan, R.; Peretz, T.; Vlodavsky, I.; Abramovitch, R. Heparanase Promotes Growth, Angiogenesis and Survival of Primary Breast Tumors. Int. J. Cancer 2006, 118, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamaguchi, A.; Goi, T.; Hirono, Y.; Takeuchi, K.; Katayama, K.; Matsukawa, S. Heparanase Expression in Human Colorectal Cancer and Its Relationship to Tumor Angiogenesis, Hematogenous Metastasis, and Prognosis. J. Surg. Oncol. 2004, 87, 174–181. [Google Scholar] [CrossRef]
- Jayatilleke, K.M.; Duivenvoorden, H.M.; Ryan, G.F.; Parker, B.S.; Hulett, M.D. Investigating the Role of Heparanase in Breast Cancer Development Utilising the MMTV-PyMT Murine Model of Mammary Carcinoma. Cancers 2023, 15, 3062. [Google Scholar] [CrossRef]
- Naomoto, Y.; Gunduz, M.; Takaoka, M.; Okawa, T.; Gunduz, E.; Nobuhisa, T.; Kobayashi, M.; Shirakawa, Y.; Yamatsuji, T.; Sonoda, R.; et al. Heparanase Promotes Angiogenesis through Cox-2 and HIF1α. Med. Hypotheses 2007, 68, 162–165. [Google Scholar] [CrossRef]
- Li, J.; Meng, X.; Hu, J.; Zhang, Y.; Dang, Y.; Wei, L.; Shi, M. Heparanase Promotes Radiation Resistance of Cervical Cancer by Upregulating Hypoxia Inducible Factor. Am. J. Cancer Res. 2017, 7, 234. [Google Scholar]
- Steeg, P.S. Tumor Metastasis: Mechanistic Insights and Clinical Challenges. Nat. Med. 2006, 12, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and Definitions for Research on Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Piperigkou, Z.; Kyriakopoulou, K.; Koutsakis, C.; Mastronikolis, S.; Karamanos, N.K. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers 2021, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Maxhimer, J.B.; Quiros, R.M.; Stewart, R.; Dowlatshahi, K.; Gattuso, P.; Fan, M.; Prinz, R.A.; Xu, X. Heparanase-1 Expression Is Associated with the Metastatic Potential of Breast Cancer. Surgery 2002, 132, 326–333. [Google Scholar] [CrossRef]
- Tang, D.; Piao, Y.; Zhao, S.; Mu, X.; Li, S.; Ma, W.; Song, Y.; Wang, J.; Zhao, W.; Zhang, Q. Expression and Correlation of Matrix Metalloproteinase-9 and Heparanase in Patients with Breast Cancer. Med. Oncol. 2014, 31, 26. [Google Scholar] [CrossRef]
- Zhang, L.; Sullivan, P.S.; Goodman, J.C.; Gunaratne, P.H.; Marchetti, D. MicroRNA-1258 Suppresses Breast Cancer Brain Metastasis by Targeting Heparanase. Cancer Res. 2011, 71, 645–654. [Google Scholar] [CrossRef]
- Zeng, C.; Ke, Z.-F.; Luo, W.-R.; Yao, Y.-H.; Hu, X.-R.; Jie, W.; Yin, J.-B.; Sun, S.-J. Heparanase Overexpression Participates in Tumor Growth of Cervical Cancer in Vitro and in Vivo. Med. Oncol. 2013, 30, 403. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Li, W.; Zhang, S.; Li, J.; Zhou, M.-J.; Song, J.-W. Heparanase Promotes Tumor Growth and Liver Metastasis of Colorectal Cancer Cells by Activating the P38/MMP1 Axis. Front. Oncol. 2019, 9, 216. [Google Scholar] [CrossRef]
- Tang, W.; Nakamura, Y.; Tsujimoto, M.; Sato, M.; Wang, X.; Kurozumi, K.; Nakahara, M.; Nakao, K.; Nakamura, M.; Mori, I.; et al. Heparanase: A Key Enzyme in Invasion and Metastasis of Gastric Carcinoma. Mod. Pathol. 2002, 15, 593–598. [Google Scholar] [CrossRef]
- Shi, J.; Chen, P.; Sun, J.; Song, Y.; Ma, B.; Gao, P.; Chen, X.; Wang, Z. MicroRNA-1258: An Invasion and Metastasis Regulator That Targets Heparanase in Gastric Cancer. Oncol. Lett. 2017, 13, 3739–3745. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, M.; Ge, Z. Tumor-suppressive miR-299-3p Inhibits Gastric Cancer Cell Invasion by Targeting Heparanase. Mol. Med. Rep. 2019, 20, 2151–2158. [Google Scholar] [CrossRef]
- Beckhove, P.; Helmke, B.M.; Ziouta, Y.; Bucur, M.; Dörner, W.; Mogler, C.; Dyckhoff, G.; Herold-Mende, C. Heparanase Expression at the Invasion Front of Human Head and Neck Cancers and Correlation with Poor Prognosis. Clin. Cancer Res. 2005, 11, 2899–2906. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, B.; Dai, D.; Wu, Y.; Feng, Z.; Tong, C.; Wang, X.; Zhao, J. Heparanase Induces Necroptosis of Microvascular Endothelial Cells to Promote the Metastasis of Hepatocellular Carcinoma. Cell Death Discov. 2021, 7, 33. [Google Scholar] [CrossRef]
- Vornicova, O.; Boyango, I.; Feld, S.; Naroditsky, I.; Kazarin, O.; Zohar, Y.; Tiram, Y.; Ilan, N.; Ben-Izhak, O.; Vlodavsky, I.; et al. The Prognostic Significance of Heparanase Expression in Metastatic Melanoma. Oncotarget 2016, 7, 74678–74685. [Google Scholar] [CrossRef]
- Li, J.; Pan, Q.; Rowan, P.D.; Trotter, T.N.; Peker, D.; Regal, K.M.; Javed, A.; Suva, L.J.; Yang, Y. Heparanase Promotes Myeloma Progression by Inducing Mesenchymal Features and Motility of Myeloma Cells. Oncotarget 2016, 7, 11299–11309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, H.-C.; Wang, Q.; Yang, Z.-J.; Chen, H.; Wang, S.-M.; Pan, Z.-M.; Tang, B.-J.; Li, Q.Q.; Li, L. Clinical Value of Combined Detection of Serum Matrix Metalloproteinase-9, Heparanase, and Cathepsin for Determining Ovarian Cancer Invasion and Metastasis. Anticancer Res. 2011, 31, 3423–3428. [Google Scholar] [PubMed]
- Kim, A.W.; Xu, X.; Hollinger, E.F.; Gattuso, P.; Godellas, C.V.; A Prinz, R. Human Heparanase-1 Gene Expression in Pancreatic Adenocarcinoma. J. Gastrointest. Surg. 2002, 6, 167–172. [Google Scholar] [CrossRef]
- Stadlmann, S.; Moser, P.L.; Pollheimer, J.; Steiner, P.; Krugmann, J.; Dirnhofer, S.; Mikuz, G.; Margreiter, R.; Amberger, A. Heparanase-1 Gene Expression in Normal, Hyperplastic and Neoplastic Prostatic Tissue. Eur. J. Cancer 2003, 39, 2229–2233. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Franchi, M.; Zaza, G.; Atsina, F.M.; Gambaro, G.; Onisto, M. Heparanase Regulates EMT and Cancer Stem Cell Properties in Prostate Tumors. Front. Oncol. 2022, 12, 918419. [Google Scholar] [CrossRef]
- Singel, K.L.; Segal, B.H. Neutrophils in the Tumor Microenvironment: Trying to Heal the Wound That Cannot Heal. Immunol. Rev. 2016, 273, 329–343. [Google Scholar] [CrossRef]
- Dehne, N.; Mora, J.; Namgaladze, D.; Weigert, A.; Brüne, B. Cancer Cell and Macrophage Cross-Talk in the Tumor Microenvironment. Curr. Opin. Pharmacol. 2017, 35, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Marzagalli, M.; Ebelt, N.D.; Manuel, E.R. Unraveling the Crosstalk between Melanoma and Immune Cells in the Tumor Microenvironment. Semin. Cancer Biol. 2019, 59, 236–250. [Google Scholar] [CrossRef]
- Medrek, C.; Pontén, F.; Jirström, K.; Leandersson, K. The Presence of Tumor Associated Macrophages in Tumor Stroma as a Prognostic Marker for Breast Cancer Patients. BMC Cancer 2012, 12, 306. [Google Scholar] [CrossRef]
- Brun, R.; Naroditsky, I.; Waterman, M.; Ben-Izhak, O.; Groisman, G.; Ilan, N.; Vlodavsky, I. Heparanase Expression by Barrett’s Epithelium and during Esophageal Carcinoma Progression. Mod. Pathol. 2009, 22, 1548–1554. [Google Scholar] [CrossRef]
- Menzel, K.; Hausmann, M.; Obermeier, F.; Schreiter, K.; Dunger, N.; Bataille, F.; Falk, W.; Scholmerich, J.; Herfarth, H.; Rogler, G. Cathepsins B, L and D in Inflammatory Bowel Disease Macrophages and Potential Therapeutic Effects of Cathepsin Inhibition in Vivo. Clin. Exp. Immunol. 2006, 146, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Lerner, I.; Hermano, E.; Zcharia, E.; Rodkin, D.; Bulvik, R.; Doviner, V.; Rubinstein, A.M.; Ishai-Michaeli, R.; Atzmon, R.; Sherman, Y.; et al. Heparanase Powers a Chronic Inflammatory Circuit That Promotes Colitis-Associated Tumorigenesis in Mice. J. Clin. Investig. 2011, 121, 1709–1721. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Tang, B.; Lei, Y.; Yang, M.; Wang, S.; Hu, S.; Xie, Z.; Liu, Y.; Vlodavsky, I.; Yang, S. Helicobacter Pylori-Induced Heparanase Promotes H. Pylori Colonization and Gastritis. Front. Immunol. 2021, 12, 675747. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as Tools and Targets in Cancer Therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef]
- Caruana, I.; Savoldo, B.; Hoyos, V.; Weber, G.; Liu, H.; Kim, E.S.; Ittmann, M.M.; Marchetti, D.; Dotti, G. Heparanase Promotes Tumor Infiltration and Antitumor Activity of CAR-Redirected T Lymphocytes. Nat. Med. 2015, 21, 524–529. [Google Scholar] [CrossRef]
- Fernald, K.; Kurokawa, M. Evading Apoptosis in Cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef]
- Zahavi, T.; Salmon-Divon, M.; Salgado, R.; Elkin, M.; Hermano, E.; Rubinstein, A.M.; Francis, P.A.; Di Leo, A.; Viale, G.; de Azambuja, E.; et al. Heparanase: A Potential Marker of Worse Prognosis in Estrogen Receptor-Positive Breast Cancer. npj Breast Cancer 2021, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting Autophagy in Cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef]
- Mulcahy Levy, J.M.; Thorburn, A. Autophagy in Cancer: Moving from Understanding Mechanism to Improving Therapy Responses in Patients. Cell Death Differ. 2020, 27, 843–857. [Google Scholar] [CrossRef]
- Shteingauz, A.; Boyango, I.; Naroditsky, I.; Hammond, E.; Gruber, M.; Doweck, I.; Ilan, N.; Vlodavsky, I. Heparanase Enhances Tumor Growth and Chemoresistance by Promoting Autophagy. Cancer Res. 2015, 75, 3946–3957. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Tang, B.; Wang, S.; Tang, L.; Wen, D.; Vlodavsky, I.; Yang, S.-M. Non-Enzymatic Heparanase Enhances Gastric Tumor Proliferation via TFEB-Dependent Autophagy. Oncogenesis 2022, 11, 49. [Google Scholar] [CrossRef] [PubMed]



| Tumor Type | Observation | Reference |
|---|---|---|
| Breast cancer | Analyses of fifty-one primary breast tumors showed that HPSE expression is significantly correlated with sentinel node metastasis. HPSE-positive tumors (90%) showed a reduced level of HS deposition. | [121] |
| Breast cancer | Serum levels of MMP-9 and HPSE are elevated in breast cancer patients and show a positive correlation with histological grade, lymph node status, and lymphovascular invasion. | [122] |
| Breast cancer | miR-1258 has been shown to suppress breast cancer brain metastasis in vitro by targeting the 3′-untranslated region of HPSE, thereby inhibiting its expression and activity. | [123] |
| Cervical cancer | HPSE expression in cervical cancer patients correlates with tumor size and clinical stage via immunohistochemistry analyses. HPSE-overexpressing cervical cancer cells increased proliferation in vitro and tumor growth in vivo. | [124] |
| Colorectal cancer | Knockdown of HPSE in different colorectal cancer cell lines inhibited invasion and liver metastasis in vitro and in vivo. RNA-seq showed alteration in invasion and metastasis-related genes. | [125] |
| Gastric cancer | HPSE mRNA expression significantly correlates with late-stage, large-size, lymph nodal metastasis via in situ hybridization of primary gastric carcinomas. | [126] |
| Gastric cancer | miR-299-3p targets the 3′-UTR of HPSE mRNA, regulating its expression. Similarly, miR-1258 demonstrated a reduction in HPSE protein and gene expression, reducing invasion and metastasis in gastric cancer cells in vitro. | [127,128] |
| Head and neck squamous cell carcinomas (HNSCCs) | In situ hybridization analyses have demonstrated that HPSE expression is associated with lymph node metastasis in HNSCC biopsies. Furthermore, both in vitro and in vivo studies confirmed a correlation between HPSE expression and reduced disease-free and overall survival. | [129] |
| Hepatocellular cancer | Highly expressed HPSE induces necroptosis of the adjacent microvascular endothelial cells (MVECs), activating the HPSE/SDC-1/TNF-α axis and p38 MAPK pathway that promote intrahepatic metastasis. | [130] |
| Melanoma | Immunohistochemistry analyses demonstrated that high levels of HPSE were associated with late-stage melanoma patients. | [131] |
| Multiple myeloma | HPSE drives multiple myeloma metastasis and progression, enhancing Fibronectin and Vimentin partially due to the activation of the ERK pathway in vitro and in vivo. | [132] |
| Ovarian cancer | Elevated serum Cathepsin L, HPSE, and MMP-9 levels are correlated with malignant invasion and progression in ovarian cancer. | [133] |
| Pancreatic cancer | Pancreatic cancer cells transfected with a full-length HPSE construct exhibited increased invasiveness in invasion chamber assays. In situ hybridization further showed that HPSE expression in pancreatic cancer correlates with clinicopathologic parameters. Kaplan–Meier survival analysis using the log-rank test revealed that HPSE expression in early-stage tumors was associated with reduced patient survival. | [134] |
| Prostate cancer | In situ hybridization demonstrated that HPSE mRNA expression in prostate carcinomas was significantly correlated with tumor differentiation and tumor stage. | [135] |
| Prostate cancer | In vitro experiments showed that HPSE expression influences EMT and stemness marker expression in two different prostate cancer cell lines. | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, N.; Masola, V.; Onisto, M. Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease. Biomolecules 2025, 15, 1597. https://doi.org/10.3390/biom15111597
Greco N, Masola V, Onisto M. Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease. Biomolecules. 2025; 15(11):1597. https://doi.org/10.3390/biom15111597
Chicago/Turabian StyleGreco, Nicola, Valentina Masola, and Maurizio Onisto. 2025. "Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease" Biomolecules 15, no. 11: 1597. https://doi.org/10.3390/biom15111597
APA StyleGreco, N., Masola, V., & Onisto, M. (2025). Heparan Sulfate Proteoglycans (HSPGs) and Their Degradation in Health and Disease. Biomolecules, 15(11), 1597. https://doi.org/10.3390/biom15111597

