Rewriting the Fate of Cancer: Epigenetic and Epitranscriptomic Regulators in the Metastatic Cascade
Abstract
1. Introduction
2. DNA Methylation in Metastasis
3. RNA Epigenetic Modifications in Metastasis
3.1. m6A RNA Methylation and Metastasis
3.2. m5C RNA Methylation and Metastasis
4. Noncoding RNAs in Metastasis
4.1. microRNAs and Metastasis
4.1.1. RNA Modification of miRNAs
4.1.2. Epigenetics of miRNAs
4.2. Long Noncoding RNAs and Metastasis
4.2.1. RNA Modification of lncRNAs
4.2.2. Epigenetics of lncRNAs
4.3. circRNAs and Metastasis
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ncRNA circRNA | noncoding RNA circular RNA |
| lncRNA | long noncoding RNA |
| miRNA | microRNA |
| m6A | N6-methyladenosine; RNA |
| m5C | 5-methylcytidine; RNA |
| hm5C | 5-hydroxymethylcytidine; RNA |
| 5mC | 5-methylcytosine; DNA |
| 5hmC | 5-hydroxymethylcytosine; DNA |
| TNBC | Triple-negative breast cancer |
| HCC | Hepatocellular carcinoma |
| BC | breast cancer |
| PDC | Pancreatic ductal adenocarcinoma |
| MM | Malignant Melanoma |
| CRC | Colorectal cancer |
| NSCLC | Non-small cell lung cancer |
References
- Valastyan, S.; Weinberg, R.A. Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef]
- Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of Deaths from Cancer Caused by Metastases? Cancer Med. 2019, 8, 5574–5576. [Google Scholar] [CrossRef]
- Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging Biological Principles of Metastasis. Cell 2017, 168, 670–691. [Google Scholar] [CrossRef]
- Luzzi, K.J.; MacDonald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, V.L.; Chambers, A.F.; Groom, A.C. Multistep Nature of Metastatic Inefficiency: Dormancy of Solitary Cells after Successful Extravasation and Limited Survival of Early Micrometastases. Am. J. Pathol. 1998, 153, 865–873. [Google Scholar] [CrossRef]
- Fidler, I.J. The Pathogenesis of Cancer Metastasis: The “seed and Soil” Hypothesis Revisited. Nat. Rev. Cancer 2003, 3, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Baylin, S.B. The Fundamental Role of Epigenetic Events in Cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef]
- Nombela, P.; Miguel-López, B.; Blanco, S. The Role of M6A, M5C and Ψ RNA Modifications in Cancer: Novel Therapeutic Opportunities. Mol. Cancer 2021, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The Emerging Role of LncRNAs in Cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Garcia-Recio, S.; Hinoue, T.; Wheeler, G.L.; Kelly, B.J.; Garrido-Castro, A.C.; Pascual, T.; De Cubas, A.A.; Xia, Y.; Felsheim, B.M.; McClure, M.B.; et al. Multiomics in Primary and Metastatic Breast Tumors from the AURORA US Network Finds Microenvironment and Epigenetic Drivers of Metastasis. Nat. Cancer 2023, 4, 128–147. [Google Scholar] [CrossRef]
- Robertson, K.D. DNA Methylation, Methyltransferases, and Cancer. Oncogene 2001, 20, 3139–3155. [Google Scholar] [CrossRef]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Wang, W.; Zhang, B.; Yu, X.; Shi, S. Epigenetic Regulation in the Tumor Microenvironment: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 210. [Google Scholar] [CrossRef]
- Caldeira, J.R.F.; Prando, E.C.; Quevedo, F.C.; Neto, F.A.M.; Rainho, C.A.; Rogatto, S.R. CDH1 Promoter Hypermethylation and E-Cadherin Protein Expression in Infiltrating Breast Cancer. BMC Cancer 2006, 6, 48. [Google Scholar] [CrossRef]
- Jahangiri, R.; Jamialahmadi, K.; Gharib, M.; Emami Razavi, A.; Mosaffa, F. Expression and Clinicopathological Significance of DNA Methyltransferase 1, 3A and 3B in Tamoxifen-Treated Breast Cancer Patients. Gene 2019, 685, 24–31. [Google Scholar] [CrossRef]
- Graff, J.R.; Herman, J.G.; Lapidus, R.G.; Chopra, H.; Xu, R.; Jarrard, D.F.; Isaacs, W.B.; Pitha, P.M.; Davidson, N.E.; Baylin, S.B. E-Cadherin Expression Is Silenced by DNA Hypermethylation in Human Breast and Prostate Carcinomas. Cancer Res. 1995, 55, 5195–5199. [Google Scholar]
- Tzelepi, V.; Logotheti, S.; Efstathiou, E.; Troncoso, P.; Aparicio, A.; Sakellakis, M.; Hoang, A.; Perimenis, P.; Melachrinou, M.; Logothetis, C.; et al. Epigenetics and Prostate Cancer: Defining the Timing of DNA Methyltransferase Deregulation during Prostate Cancer Progression. Pathology 2020, 52, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Oh, B.-K.; Kim, H.; Park, H.-J.; Shim, Y.-H.; Choi, J.; Park, C.; Park, Y.N. DNA Methyltransferase Expression and DNA Methylation in Human Hepatocellular Carcinoma and Their Clinicopathological Correlation. Int. J. Mol. Med. 2007, 20, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yin, D.; Zhang, Y.; Yu, L.; Li, X.-D.; Zhou, Z.-J.; Zhou, S.-L.; Gao, D.-M.; Hu, J.; Jin, C.; et al. MicroRNA-29a Induces Loss of 5-Hydroxymethylcytosine and Promotes Metastasis of Hepatocellular Carcinoma through a TET-SOCS1-MMP9 Signaling Axis. Cell Death Dis. 2017, 8, e2906. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Zhang, J.; Song, S.; Dai, D. Promoter Methylation and Expression of TIMP3 Gene in Gastric Cancer. Diagn. Pathol. 2013, 8, 110. [Google Scholar] [CrossRef]
- Cui, H.; Wang, L.; Gong, P.; Zhao, C.; Zhang, S.; Zhang, K.; Zhou, R.; Zhao, Z.; Fan, H. Deregulation between MiR-29b/c and DNMT3A Is Associated with Epigenetic Silencing of the CDH1 Gene, Affecting Cell Migration and Invasion in Gastric Cancer. PLoS ONE 2015, 10, e0123926. [Google Scholar] [CrossRef]
- Yang, J.; Shen, Y.; Liu, B.; Tong, Y. Promoter Methylation of BRMS1 Correlates with Smoking History and Poor Survival in Non-Small Cell Lung Cancer Patients. Lung Cancer 2011, 74, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Maitra, A.; Fukushima, N.; van Heek, N.T.; Matsubayashi, H.; Iacobuzio-Donahue, C.A.; Rosty, C.; Goggins, M. Frequent Hypomethylation of Multiple Genes Overexpressed in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2003, 63, 4158–4166. [Google Scholar]
- Zhan, Q.; Fang, Y.; Deng, X.; Chen, H.; Jin, J.; Lu, X.; Peng, C.; Li, H.; Shen, B. The Interplay Between MiR-148a and DNMT1 Might Be Exploited for Pancreatic Cancer Therapy. Cancer Investig. 2015, 33, 267–275. [Google Scholar] [CrossRef]
- Hong, L.; Sun, G.; Peng, L.; Tu, Y.; Wan, Z.; Xiong, H.; Li, Y.; Xiao, W. The Interaction between MiR 148a and DNMT1 Suppresses Cell Migration and Invasion by Reactivating Tumor Suppressor Genes in Pancreatic Cancer. Oncol. Rep. 2018, 40, 2916–2925. [Google Scholar] [CrossRef]
- Bai, X.; Song, Z.; Fu, Y.; Yu, Z.; Zhao, L.; Zhao, H.; Yao, W.; Huang, D.; Mi, X.; Wang, E.; et al. Clinicopathological Significance and Prognostic Value of DNA Methyltransferase 1, 3a, and 3b Expressions in Sporadic Epithelial Ovarian Cancer. PLoS ONE 2012, 7, e40024. [Google Scholar] [CrossRef]
- Graff, J.R.; Gabrielson, E.; Fujii, H.; Baylin, S.B.; Herman, J.G. Methylation Patterns of the E-Cadherin 5′ CpG Island Are Unstable and Reflect the Dynamic, Heterogeneous Loss of E-Cadherin Expression during Metastatic Progression. J. Biol. Chem. 2000, 275, 2727–2732. [Google Scholar] [CrossRef]
- Kanai, Y.; Ushijima, S.; Hui, A.M.; Ochiai, A.; Tsuda, H.; Sakamoto, M.; Hirohashi, S. The E-Cadherin Gene Is Silenced by CpG Methylation in Human Hepatocellular Carcinomas. Int. J. Cancer 1997, 71, 355–359. [Google Scholar] [CrossRef]
- Mensah, I.K.; Norvil, A.B.; AlAbdi, L.; McGovern, S.; Petell, C.J.; He, M.; Gowher, H. Misregulation of the Expression and Activity of DNA Methyltransferases in Cancer. NAR Cancer 2021, 3, zcab045. [Google Scholar] [CrossRef]
- Jang, H.S.; Shah, N.M.; Du, A.Y.; Dailey, Z.Z.; Pehrsson, E.C.; Godoy, P.M.; Zhang, D.; Li, D.; Xing, X.; Kim, S.; et al. Transposable Elements Drive Widespread Expression of Oncogenes in Human Cancers. Nat. Genet. 2019, 51, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Field, M.G.; Durante, M.A.; Decatur, C.L.; Tarlan, B.; Oelschlager, K.M.; Stone, J.F.; Kuznetsov, J.; Bowcock, A.M.; Kurtenbach, S.; Harbour, J.W. Epigenetic Reprogramming and Aberrant Expression of PRAME Are Associated with Increased Metastatic Risk in Class 1 and Class 2 Uveal Melanomas. Oncotarget 2016, 7, 59209–59219. [Google Scholar] [CrossRef]
- Nakamura, N.; Takenaga, K. Hypomethylation of the Metastasis-Associated S100A4 Gene Correlates with Gene Activation in Human Colon Adenocarcinoma Cell Lines. Clin. Exp. Metastasis 1998, 16, 471–479. [Google Scholar] [CrossRef]
- Kim, J.; Bretz, C.L.; Lee, S. Epigenetic Instability of Imprinted Genes in Human Cancers. Nucleic Acids Res. 2015, 43, 10689–10699. [Google Scholar] [CrossRef] [PubMed]
- Lodygin, D.; Tarasov, V.; Epanchintsev, A.; Berking, C.; Knyazeva, T.; Körner, H.; Knyazev, P.; Diebold, J.; Hermeking, H. Inactivation of MiR-34a by Aberrant CpG Methylation in Multiple Types of Cancer. Cell Cycle 2008, 7, 2591–2600. [Google Scholar] [CrossRef]
- He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; et al. A MicroRNA Component of the P53 Tumour Suppressor Network. Nature 2007, 447, 1130–1134. [Google Scholar] [CrossRef]
- Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sánchez-Céspedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A MicroRNA DNA Methylation Signature for Human Cancer Metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef]
- Kohli, R.M.; Zhang, Y. TET Enzymes, TDG and the Dynamics of DNA Demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef]
- An, J.; González-Avalos, E.; Chawla, A.; Jeong, M.; López-Moyado, I.F.; Li, W.; Goodell, M.A.; Chavez, L.; Ko, M.; Rao, A. Acute Loss of TET Function Results in Aggressive Myeloid Cancer in Mice. Nat. Commun. 2015, 6, 10071. [Google Scholar] [CrossRef] [PubMed]
- Pastor, W.A.; Aravind, L.; Rao, A. TETonic Shift: Biological Roles of TET Proteins in DNA Demethylation and Transcription. Nat. Rev. Mol. Cell Biol. 2013, 14, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Fackler, M.J.; Lopez Bujanda, Z.; Umbricht, C.; Teo, W.W.; Cho, S.; Zhang, Z.; Visvanathan, K.; Jeter, S.; Argani, P.; Wang, C.; et al. Novel Methylated Biomarkers and a Robust Assay to Detect Circulating Tumor DNA in Metastatic Breast Cancer. Cancer Res. 2014, 74, 2160–2170. [Google Scholar] [CrossRef]
- Li, L.; Sun, Y. Circulating Tumor DNA Methylation Detection as Biomarker and Its Application in Tumor Liquid Biopsy: Advances and Challenges. MedComm 2024, 5, e766. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Rong, H.; Xu, J.; Cao, R.; Li, S.; Gao, Y.; Cheng, B.; Zhou, T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front. Genet. 2022, 13, 823905. [Google Scholar] [CrossRef]
- Zuccato, J.A.; Mamatjan, Y.; Nassiri, F.; Ajisebutu, A.; Liu, J.C.; Muazzam, A.; Singh, O.; Zhang, W.; Voisin, M.; Mirhadi, S.; et al. Prediction of Brain Metastasis Development with DNA Methylation Signatures. Nat. Med. 2025, 31, 116–125. [Google Scholar] [CrossRef]
- Pfeifer, G.P.; Kadam, S.; Jin, S.-G. 5-Hydroxymethylcytosine and Its Potential Roles in Development and Cancer. Epigenet. Chromatin 2013, 6, 10. [Google Scholar] [CrossRef]
- Cheishvili, D.; Boureau, L.; Szyf, M. DNA Demethylation and Invasive Cancer: Implications for Therapeutics. Br. J. Pharmacol. 2015, 172, 2705–2715. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Issa, J.-P.J.; Kropf, P. DNA Hypomethylating Drugs in Cancer Therapy. Cold Spring Harb. Perspect. Med. 2017, 7, a026948. [Google Scholar] [CrossRef]
- Dong, B.; Qiu, Z.; Wu, Y. Tackle Epithelial-Mesenchymal Transition with Epigenetic Drugs in Cancer. Front. Pharmacol. 2020, 11, 596239. [Google Scholar] [CrossRef]
- Hu, C.; Liu, X.; Zeng, Y.; Liu, J.; Wu, F. DNA Methyltransferase Inhibitors Combination Therapy for the Treatment of Solid Tumor: Mechanism and Clinical Application. Clin. Epigenet. 2021, 13, 166. [Google Scholar] [CrossRef]
- Morita, S.; Noguchi, H.; Horii, T.; Nakabayashi, K.; Kimura, M.; Okamura, K.; Sakai, A.; Nakashima, H.; Hata, K.; Nakashima, K.; et al. Targeted DNA Demethylation in Vivo Using DCas9-Peptide Repeat and ScFv-TET1 Catalytic Domain Fusions. Nat. Biotechnol. 2016, 34, 1060–1065. [Google Scholar] [CrossRef]
- Vojta, A.; Dobrinić, P.; Tadić, V.; Bočkor, L.; Korać, P.; Julg, B.; Klasić, M.; Zoldoš, V. Repurposing the CRISPR-Cas9 System for Targeted DNA Methylation. Nucleic Acids Res. 2016, 44, 5615–5628. [Google Scholar] [CrossRef] [PubMed]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, L.; Wang, Y.; Wu, P.; Hou, X.; Ouyang, J.; Fan, C.; Li, Z.; Wang, F.; Guo, C.; et al. RNA Modifications in Cancer. Br. J. Cancer 2023, 129, 204–221. [Google Scholar] [CrossRef]
- Dang, Q.; Shao, B.; Zhou, Q.; Chen, C.; Guo, Y.; Wang, G.; Liu, J.; Kan, Q.; Yuan, W.; Sun, Z. RNA N 6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Front. Oncol. 2021, 11, 681781. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, F.; Chen, W.; Miao, H.; Liang, H.; Liao, Z.; Zhang, Z.; Zhang, B. The Role of RNA M5C Modification in Cancer Metastasis. Int. J. Biol. Sci. 2021, 17, 3369–3380. [Google Scholar] [CrossRef] [PubMed]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; et al. Topology of the Human and Mouse M6A RNA Methylomes Revealed by M6A-Seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef]
- Ćorović, M.; Hoch-Kraft, P.; Zhou, Y.; Hallstein, S.; König, J.; Zarnack, K. M6A in the Coding Sequence: Linking Deposition, Translation, and Decay. Trends Genet. 2025, 41, 963–973. [Google Scholar] [CrossRef]
- Fang, Z.; Mei, W.; Qu, C.; Lu, J.; Shang, L.; Cao, F.; Li, F. Role of M6A Writers, Erasers and Readers in Cancer. Exp. Hematol. Oncol. 2022, 11, 45. [Google Scholar] [CrossRef]
- Huang, H.; Weng, H.; Sun, W.; Qin, X.; Shi, H.; Wu, H.; Zhao, B.S.; Mesquita, A.; Liu, C.; Yuan, C.L.; et al. Recognition of RNA N6-Methyladenosine by IGF2BP Proteins Enhances MRNA Stability and Translation. Nat. Cell Biol. 2018, 20, 285–295. [Google Scholar] [CrossRef]
- Deng, X.; Qing, Y.; Horne, D.; Huang, H.; Chen, J. The Roles and Implications of RNA M6A Modification in Cancer. Nat. Rev. Clin. Oncol. 2023, 20, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Choe, J.; Du, P.; Triboulet, R.; Gregory, R.I. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol. Cell 2016, 62, 335–345. [Google Scholar] [CrossRef]
- Chen, M.; Wei, L.; Law, C.-T.; Tsang, F.H.-C.; Shen, J.; Cheng, C.L.-H.; Tsang, L.-H.; Ho, D.W.-H.; Chiu, D.K.-C.; Lee, J.M.-F.; et al. RNA N6-Methyladenosine Methyltransferase-like 3 Promotes Liver Cancer Progression through YTHDF2-Dependent Posttranscriptional Silencing of SOCS2. Hepatology 2018, 67, 2254–2270. [Google Scholar] [CrossRef]
- Taketo, K.; Konno, M.; Asai, A.; Koseki, J.; Toratani, M.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Ogawa, K. The Epitranscriptome M6A Writer METTL3 Promotes Chemo- and Radioresistance in Pancreatic Cancer Cells. Int. J. Oncol. 2018, 52, 621–629. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, Z.; Yin, K.; Wang, S. Review of METTL3 in Colorectal Cancer: From Mechanisms to the Therapeutic Potential. Int. J. Biol. Macromol. 2024, 277, 134212. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, J.; Chen, R.; Gu, Q.; Yang, P.; Qian, W.; Ji, D.; Wang, Q.; Zhang, Z.; Tang, J.; et al. Upregulated METTL3 Promotes Metastasis of Colorectal Cancer via MiR-1246/SPRED2/MAPK Signaling Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 393. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, P.; Imamura, Y.; Morikawa, T.; Kuchiba, A.; Yamauchi, M.; Liao, X.; Qian, Z.R.; Nishihara, R.; Wu, K.; Meyerhardt, J.A.; et al. Insulin-like Growth Factor 2 Messenger RNA Binding Protein 3 (IGF2BP3) Is a Marker of Unfavourable Prognosis in Colorectal Cancer. Eur. J. Cancer 2012, 48, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, M.; Xu, X.; Zeng, K.; Liu, X.; Pan, B.; Li, C.; Sun, L.; Qin, J.; Xu, T.; et al. METTL14-Mediated N6-Methyladenosine Modification of SOX4 MRNA Inhibits Tumor Metastasis in Colorectal Cancer. Mol. Cancer 2020, 19, 106. [Google Scholar] [CrossRef]
- Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.-F.; Wei, B.; et al. RNA N6-Methyladenosine Demethylase FTO Promotes Breast Tumor Progression through Inhibiting BNIP3. Mol. Cancer 2019, 18, 46. [Google Scholar] [CrossRef]
- Chang, G.; Shi, L.; Ye, Y.; Shi, H.; Zeng, L.; Tiwary, S.; Huse, J.T.; Huo, L.; Ma, L.; Ma, Y.; et al. YTHDF3 Induces the Translation of M6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell 2020, 38, 857–871.e7. [Google Scholar] [CrossRef]
- Woodcock, C.L.; Alsaleem, M.; Toss, M.S.; Lothion-Roy, J.; Harris, A.E.; Jeyapalan, J.N.; Blatt, N.; Rizvanov, A.A.; Miftakhova, R.R.; Kariri, Y.A.; et al. The Role of the ALKBH5 RNA Demethylase in Invasive Breast Cancer. Discov. Oncol. 2024, 15, 343. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, C.; Jin, Y.; Bao, B.; Wang, D.; Hou, K.; Feng, J.; Tang, S.; Qu, X.; Liu, Y.; et al. Reduced Expression of METTL3 Promotes Metastasis of Triple-Negative Breast Cancer by M6A Methylation-Mediated COL3A1 Up-Regulation. Front. Oncol. 2020, 10, 1126. [Google Scholar] [CrossRef]
- Ma, J.-Z.; Yang, F.; Zhou, C.-C.; Liu, F.; Yuan, J.-H.; Wang, F.; Wang, T.-T.; Xu, Q.-G.; Zhou, W.-P.; Sun, S.-H. METTL14 Suppresses the Metastatic Potential of Hepatocellular Carcinoma by Modulating N6 -Methyladenosine-Dependent Primary MicroRNA Processing. Hepatology 2017, 65, 529–543. [Google Scholar] [CrossRef]
- Pi, J.; Wang, W.; Ji, M.; Wang, X.; Wei, X.; Jin, J.; Liu, T.; Qiang, J.; Qi, Z.; Li, F.; et al. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7. Cancer Res. 2021, 81, 2651–2665. [Google Scholar] [CrossRef]
- Du, M.; Peng, Y.; Li, Y.; Sun, W.; Zhu, H.; Wu, J.; Zong, D.; Wu, L.; He, X. MYC-Activated RNA N6-Methyladenosine Reader IGF2BP3 Promotes Cell Proliferation and Metastasis in Nasopharyngeal Carcinoma. Cell Death Discov. 2022, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, R.; Xia, T.; Wang, C.; Xiao, X.; Lu, S.; Chen, X.; Ouyang, Y.; Deng, X.; Miao, J.; et al. The M6A Reader IGF2BP3 Preserves NOTCH3 MRNA Stability to Sustain Notch3 Signaling and Promote Tumor Metastasis in Nasopharyngeal Carcinoma. Oncogene 2023, 42, 3564–3574. [Google Scholar] [CrossRef]
- Li, K.; Guo, J.; Ming, Y.; Chen, S.; Zhang, T.; Ma, H.; Fu, X.; Wang, J.; Liu, W.; Peng, Y. A Circular RNA Activated by TGFβ Promotes Tumor Metastasis through Enhancing IGF2BP3-Mediated PDPN MRNA Stability. Nat. Commun. 2023, 14, 6876. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Gao, G.; Xia, W.-W.; Wang, J.-B. METTL3 Promotes the Growth and Metastasis of Pancreatic Cancer by Regulating the M6A Modification and Stability of E2F5. Cell. Signal. 2022, 99, 110440. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, J.; Zhao, Y.; He, R.; Xu, X.; Guo, X.; Li, X.; Xu, S.; Miao, J.; Guo, J.; et al. Upregulation of METTL14 Mediates the Elevation of PERP MRNA N6 Adenosine Methylation Promoting the Growth and Metastasis of Pancreatic Cancer. Mol. Cancer 2020, 19, 130. [Google Scholar] [CrossRef]
- Schaeffer, D.F.; Owen, D.R.; Lim, H.J.; Buczkowski, A.K.; Chung, S.W.; Scudamore, C.H.; Huntsman, D.G.; Ng, S.S.W.; Owen, D.A. Insulin-like Growth Factor 2 MRNA Binding Protein 3 (IGF2BP3) Overexpression in Pancreatic Ductal Adenocarcinoma Correlates with Poor Survival. BMC Cancer 2010, 10, 59. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Li, Q.; Liang, J.; He, Q.; Zhao, L.; Chen, J.; Cheng, M.; Huang, Z.; Ren, H.; et al. METTL3 Promotes Tumorigenesis and Metastasis through BMI1 M6A Methylation in Oral Squamous Cell Carcinoma. Mol. Ther. 2020, 28, 2177–2190. [Google Scholar] [CrossRef]
- Yang, S.; Wei, J.; Cui, Y.-H.; Park, G.; Shah, P.; Deng, Y.; Aplin, A.E.; Lu, Z.; Hwang, S.; He, C.; et al. M6A MRNA Demethylase FTO Regulates Melanoma Tumorigenicity and Response to Anti-PD-1 Blockade. Nat. Commun. 2019, 10, 2782. [Google Scholar] [CrossRef]
- Li, J.; Xie, H.; Ying, Y.; Chen, H.; Yan, H.; He, L.; Xu, M.; Xu, X.; Liang, Z.; Liu, B.; et al. YTHDF2 Mediates the MRNA Degradation of the Tumor Suppressors to Induce AKT Phosphorylation in N6-Methyladenosine-Dependent Way in Prostate Cancer. Mol. Cancer 2020, 19, 152. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; He, C.; Xue, P.; Zhang, L.; He, Z.; Zang, L.; Feng, B.; Sun, J.; Zheng, M. METTL14 Suppresses Proliferation and Metastasis of Colorectal Cancer by Down-Regulating Oncogenic Long Non-Coding RNA XIST. Mol. Cancer 2020, 19, 46. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N(6)-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015, 161, 1388–1399. [Google Scholar] [CrossRef]
- Hu, J.; Qiu, D.; Yu, A.; Hu, J.; Deng, H.; Li, H.; Yi, Z.; Chen, J.; Zu, X. YTHDF1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immunotherapy. Front. Oncol. 2021, 11, 607224. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, H.; Liu, J.; Zhao, Z.; Wang, J.; Lu, Z.; Hu, B.; Zhou, J.; Zhao, Z.; Feng, M.; et al. YTHDF2 Reduction Fuels Inflammation and Vascular Abnormalization in Hepatocellular Carcinoma. Mol. Cancer 2019, 18, 163. [Google Scholar] [CrossRef] [PubMed]
- Squires, J.E.; Patel, H.R.; Nousch, M.; Sibbritt, T.; Humphreys, D.T.; Parker, B.J.; Suter, C.M.; Preiss, T. Widespread Occurrence of 5-Methylcytosine in Human Coding and Non-Coding RNA. Nucleic Acids Res. 2012, 40, 5023–5033. [Google Scholar] [CrossRef]
- Edelheit, S.; Schwartz, S.; Mumbach, M.R.; Wurtzel, O.; Sorek, R. Transcriptome-Wide Mapping of 5-Methylcytidine RNA Modifications in Bacteria, Archaea, and Yeast Reveals M5C within Archaeal MRNAs. PLoS Genet. 2013, 9, e1003602. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, V.; Cairns, B.R. Identification of Direct Targets and Modified Bases of RNA Cytosine Methyltransferases. Nat. Biotechnol. 2013, 31, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, Y.; Zhou, F.; Huang, X.; Li, L.; Pu, J.; Zeng, Y.; Jiang, X. RNA M5C Modification: From Physiology to Pathology and Its Biological Significance. Front. Immunol. 2025, 16, 1599305. [Google Scholar] [CrossRef]
- Tuorto, F.; Liebers, R.; Musch, T.; Schaefer, M.; Hofmann, S.; Kellner, S.; Frye, M.; Helm, M.; Stoecklin, G.; Lyko, F. RNA Cytosine Methylation by Dnmt2 and NSun2 Promotes TRNA Stability and Protein Synthesis. Nat. Struct. Mol. Biol. 2012, 19, 900–905. [Google Scholar] [CrossRef]
- Fu, L.; Guerrero, C.R.; Zhong, N.; Amato, N.J.; Liu, Y.; Liu, S.; Cai, Q.; Ji, D.; Jin, S.-G.; Niedernhofer, L.J.; et al. Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 2014, 136, 11582–11585. [Google Scholar] [CrossRef]
- Kawarada, L.; Suzuki, T.; Ohira, T.; Hirata, S.; Miyauchi, K.; Suzuki, T. ALKBH1 Is an RNA Dioxygenase Responsible for Cytoplasmic and Mitochondrial TRNA Modifications. Nucleic Acids Res. 2017, 45, 7401–7415. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, Y.; Sun, B.-F.; Chen, Y.-S.; Xu, J.-W.; Lai, W.-Y.; Li, A.; Wang, X.; Bhattarai, D.P.; Xiao, W.; et al. 5-Methylcytosine Promotes MRNA Export—NSUN2 as the Methyltransferase and ALYREF as an M5C Reader. Cell Res. 2017, 27, 606–625. [Google Scholar] [CrossRef]
- Chen, X.; Li, A.; Sun, B.-F.; Yang, Y.; Han, Y.-N.; Yuan, X.; Chen, R.-X.; Wei, W.-S.; Liu, Y.; Gao, C.-C.; et al. 5-Methylcytosine Promotes Pathogenesis of Bladder Cancer through Stabilizing MRNAs. Nat. Cell Biol. 2019, 21, 978–990. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Chen, Z.; Xu, G.; Wang, Y.; Wang, F. Biological Functions of 5-Methylcytosine RNA-Binding Proteins and Their Potential Mechanisms in Human Cancers. Front. Oncol. 2025, 15, 1534948. [Google Scholar] [CrossRef]
- Hussain, S.; Sajini, A.A.; Blanco, S.; Dietmann, S.; Lombard, P.; Sugimoto, Y.; Paramor, M.; Gleeson, J.G.; Odom, D.T.; Ule, J.; et al. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs. Cell Rep. 2013, 4, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, R.-X.; Deng, M.-H.; Wei, W.-S.; Zhou, Z.-H.; Ning, K.; Li, Y.-H.; Li, X.-D.; Ye, Y.-L.; Wen, J.-H.; et al. M5C-Dependent Cross-Regulation between Nuclear Reader ALYREF and Writer NSUN2 Promotes Urothelial Bladder Cancer Malignancy through Facilitating RABL6/TK1 MRNAs Splicing and Stabilization. Cell Death Dis. 2023, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wu, G.; Ye, Y.; Zhang, J.; Zeng, L.; Huang, X.; Zheng, Y.; Bai, R.; Zhuang, L.; Li, M.; et al. NSUN2-Mediated RNA 5-Methylcytosine Promotes Esophageal Squamous Cell Carcinoma Progression via LIN28B-Dependent GRB2 MRNA Stabilization. Oncogene 2021, 40, 5814–5828. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Luo, M.; Zhou, C.; Shi, X.; Yang, W.; Lu, Z.; Chen, Z.; Sun, N.; He, J. Novel Long Noncoding RNA NMR Promotes Tumor Progression via NSUN2 and BPTF in Esophageal Squamous Cell Carcinoma. Cancer Lett. (Lond) 2018, 430, 57–66. [Google Scholar] [CrossRef]
- Su, M.; Xiao, Y.; Ma, J.; Cao, D.; Zhou, Y.; Wang, H.; Liao, Q.; Wang, W. Long Non-Coding RNAs in Esophageal Cancer: Molecular Mechanisms, Functions, and Potential Applications. J. Hematol. Oncol. 2018, 11, 118. [Google Scholar] [CrossRef]
- Zou, S.; Huang, Y.; Yang, Z.; Zhang, J.; Meng, M.; Zhang, Y.; Feng, J.; Sun, R.; Li, W.; Wang, W.; et al. NSUN2 Promotes Colorectal Cancer Progression by Enhancing SKIL MRNA Stabilization. Clin. Transl. Med. 2024, 14, e1621. [Google Scholar] [CrossRef]
- Zhu, W.; Wan, F.; Xu, W.; Liu, Z.; Wang, J.; Zhang, H.; Huang, S.; Ye, D. Positive Epigenetic Regulation Loop between AR and NSUN2 Promotes Prostate Cancer Progression. Clin. Transl. Med. 2022, 12, e1028. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, L.; Li, J.; Chen, Y.; Wang, Y.; Zhang, Y.; Dong, Z.; Xue, W.; Sun, R.; Cui, G. NSUN2 Stimulates Tumor Progression via Enhancing TIAM2 MRNA Stability in Pancreatic Cancer. Cell Death Discov. 2023, 9, 219. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Huang, Z.; Huang, W.; Lv, J. FOXC2-AS1 Stabilizes FOXC2 MRNA via Association with NSUN2 in Gastric Cancer Cells. Hum. Cell 2021, 34, 1755–1764. [Google Scholar] [CrossRef]
- Fang, L.; Huang, H.; Lv, J.; Chen, Z.; Lu, C.; Jiang, T.; Xu, P.; Li, Y.; Wang, S.; Li, B.; et al. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis. 2023, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, P.; Lv, J.; Ge, H.; Yan, Z.; Huang, S.; Li, B.; Xu, H.; Yang, L.; Xu, Z.; et al. Peritoneal High-Fat Environment Promotes Peritoneal Metastasis of Gastric Cancer Cells through Activation of NSUN2-Mediated ORAI2 M5C Modification. Oncogene 2023, 42, 1980–1993. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, H.; Liu, X.; Nguyen, H.C.B.; Zhang, S.; Fish, L.; Tavazoie, S.F. Endogenous TRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell 2015, 161, 790–802. [Google Scholar] [CrossRef]
- Yi, J.; Gao, R.; Chen, Y.; Yang, Z.; Han, P.; Zhang, H.; Dou, Y.; Liu, W.; Wang, W.; Du, G.; et al. Overexpression of NSUN2 by DNA Hypomethylation Is Associated with Metastatic Progression in Human Breast Cancer. Oncotarget 2017, 8, 20751–20765. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Zhang, J.; Zhang, X. NSun2 Promotes Cell Migration through Methylating Autotaxin MRNA. J. Biol. Chem. 2020, 295, 18134–18147. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Li, C.-T.; Zhou, Y.-J.; Li, H.; Li, J.; Xiong, Q.-P.; Zhou, W.; Huang, W.; Zhang, Q.C.; Xiang, Y.; et al. A Cohort of MRNAs Undergo High-Stoichiometry NSUN6-Mediated Site-Specific M5C Modification. Nat. Commun. 2025, 16, 6119. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Xing, Z.; Lin, A.; Liang, K.; Song, J.; Hu, Q.; Yao, J.; Chen, Z.; Park, P.K.; et al. A ROR1-HER3-LncRNA Signalling Axis Modulates the Hippo-YAP Pathway to Regulate Bone Metastasis. Nat. Cell Biol. 2017, 19, 106–119. [Google Scholar] [CrossRef]
- Selmi, T.; Hussain, S.; Dietmann, S.; Heiß, M.; Borland, K.; Flad, S.; Carter, J.-M.; Dennison, R.; Huang, Y.-L.; Kellner, S.; et al. Sequence- and Structure-Specific Cytosine-5 MRNA Methylation by NSUN6. Nucleic Acids Res. 2021, 49, 1006–1022. [Google Scholar] [CrossRef]
- Xue, M.; Shi, Q.; Zheng, L.; Li, Q.; Yang, L.; Zhang, Y. Gene Signatures of M5C Regulators May Predict Prognoses of Patients with Head and Neck Squamous Cell Carcinoma. Am. J. Transl. Res. 2020, 12, 6841–6852. [Google Scholar] [PubMed]
- Zhou, J.; Kong, Y.S.; Vincent, K.M.; Dieters-Castator, D.; Bukhari, A.B.; Glubrecht, D.; Liu, R.-Z.; Quilty, D.; Findlay, S.D.; Huang, X.; et al. RNA Cytosine Methyltransferase NSUN5 Promotes Protein Synthesis and Tumorigenic Phenotypes in Glioblastoma. Mol. Oncol. 2023, 17, 1763–1783. [Google Scholar] [CrossRef] [PubMed]
- Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C.-L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of TRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science 2006, 311, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Pollex, T.; Hanna, K.; Tuorto, F.; Meusburger, M.; Helm, M.; Lyko, F. RNA Methylation by Dnmt2 Protects Transfer RNAs against Stress-Induced Cleavage. Genes Dev. 2010, 24, 1590–1595. [Google Scholar] [CrossRef]
- Huang, S.; Shi, D.; Dai, S.; Jiang, X.; Wang, R.; Yang, M.; Chen, B.; Chen, X.; Kong, L.; He, L.; et al. RNF31 Induces Paclitaxel Resistance by Sustaining ALYREF Cytoplasmic-Nuclear Shuttling in Human Triple-Negative Breast Cancer. Clin. Transl. Med. 2025, 15, e70203. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Zhu, W.; Han, J.; Yang, X.; Zhou, R.; Lu, H.-C.; Yu, H.; Yuan, W.-B.; Li, P.-C.; Tao, J.; et al. The Role of the HIF-1α/ALYREF/PKM2 Axis in Glycolysis and Tumorigenesis of Bladder Cancer. Cancer Commun. (Lond) 2021, 41, 560–575. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Han, X.; Yang, W.-L.; Zhang, M.; Ma, H.-L.; Sun, B.-F.; Li, A.; Xia, J.; Chen, J.; et al. RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal MRNA Decay. Mol. Cell 2019, 75, 1188–1202.e11. [Google Scholar] [CrossRef]
- Meng, H.; Miao, H.; Zhang, Y.; Chen, T.; Yuan, L.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. YBX1 Promotes Homologous Recombination and Resistance to Platinum-Induced Stress in Ovarian Cancer by Recognizing M5C Modification. Cancer Lett. 2024, 597, 217064. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, M.; Li, W.; Zhou, Z.; Wan, X. M5 C and M6 A Modification of Long Noncoding NKILA Accelerates Cholangiocarcinoma Progression via the MiR-582-3p-YAP1 Axis. Liver Int. 2022, 42, 1144–1157. [Google Scholar] [CrossRef]
- Liu, B.; Sun, L.; Liu, Q.; Gong, C.; Yao, Y.; Lv, X.; Lin, L.; Yao, H.; Su, F.; Li, D.; et al. A Cytoplasmic NF-ΚB Interacting Long Noncoding RNA Blocks IκB Phosphorylation and Suppresses Breast Cancer Metastasis. Cancer Cell 2015, 27, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yao, J.; Fu, J.; Huang, Q.; Luo, Y.; You, Y.; Zhang, W.; Zhong, Q.; Xia, T.; Xia, L. ALYREF Promotes the Metastasis of Nasopharyngeal Carcinoma by Increasing the Stability of NOTCH1 MRNA. Cell Death Dis. 2024, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Gu, X.; Liu, Y.; Xu, L.; He, Y.; Xue, C. NSUN2 Regulates Wnt Signaling Pathway Depending on the M5C RNA Modification to Promote the Progression of Hepatocellular Carcinoma. Oncogene 2024, 43, 3469–3482. [Google Scholar] [CrossRef]
- El Hage, K.; Babault, N.; Maciejak, O.; Desforges, B.; Craveur, P.; Steiner, E.; Rengifo-Gonzalez, J.C.; Henrie, H.; Clement, M.-J.; Joshi, V.; et al. Targeting RNA:Protein Interactions with an Integrative Approach Leads to the Identification of Potent YBX1 Inhibitors. Elife 2023, 12, e80387. [Google Scholar] [CrossRef]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian MicroRNAs Predominantly Act to Decrease Target MRNA Levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Gregory, R.I. MicroRNA Biogenesis Pathways in Cancer. Nat. Rev. Cancer 2015, 15, 321–333. [Google Scholar] [CrossRef]
- Alarcón, C.R.; Lee, H.; Goodarzi, H.; Halberg, N.; Tavazoie, S.F. N6-Methyladenosine Marks Primary MicroRNAs for Processing. Nature 2015, 519, 482–485. [Google Scholar] [CrossRef]
- Alarcón, C.R.; Goodarzi, H.; Lee, H.; Liu, X.; Tavazoie, S.; Tavazoie, S.F. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell 2015, 162, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhuang, Y.; Zhang, J.; Chen, M.; Wu, S. METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an M6A-Dependent Manner. Cancer Manag. Res. 2020, 12, 13173–13184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Yang, F.; Shang, J.; Yang, Q. METTL3-Mediated M6A Modification of Pri-MiR-93 Promotes Hepatocellular Carcinoma Progression via CDKN1A Suppression. Cancer Genet. 2025, 296–297, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, B.; Jin, N.; Lv, J.; Zhou, H. MiRNA-1293 Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion by METTL3-Mediated M6 A Modification of Pri-MiRNA-1293. Appl. Biochem. Biotechnol. 2025, 197, 4409–4422. [Google Scholar] [CrossRef] [PubMed]
- Pandolfini, L.; Barbieri, I.; Bannister, A.J.; Hendrick, A.; Andrews, B.; Webster, N.; Murat, P.; Mach, P.; Brandi, R.; Robson, S.C.; et al. METTL1 Promotes Let-7 MicroRNA Processing via M7G Methylation. Mol. Cell 2019, 74, 1278–1290.e9. [Google Scholar] [CrossRef]
- Nam, Y.; Chen, C.; Gregory, R.I.; Chou, J.J.; Sliz, P. Molecular Basis for Interaction of Let-7 MicroRNAs with Lin28. Cell 2011, 147, 1080–1091. [Google Scholar] [CrossRef]
- Heo, I.; Joo, C.; Kim, Y.-K.; Ha, M.; Yoon, M.-J.; Cho, J.; Yeom, K.-H.; Han, J.; Kim, V.N. TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell 2009, 138, 696–708. [Google Scholar] [CrossRef]
- King, C.E.; Wang, L.; Winograd, R.; Madison, B.B.; Mongroo, P.S.; Johnstone, C.N.; Rustgi, A.K. LIN28B Fosters Colon Cancer Migration, Invasion and Transformation through Let-7-Dependent and -Independent Mechanisms. Oncogene 2011, 30, 4185–4193. [Google Scholar] [CrossRef]
- Kawahara, Y.; Zinshteyn, B.; Sethupathy, P.; Iizasa, H.; Hatzigeorgiou, A.G.; Nishikura, K. Redirection of Silencing Targets by Adenosine-to-Inosine Editing of MiRNAs. Science 2007, 315, 1137–1140. [Google Scholar] [CrossRef]
- Shoshan, E.; Mobley, A.K.; Braeuer, R.R.; Kamiya, T.; Huang, L.; Vasquez, M.E.; Salameh, A.; Lee, H.J.; Kim, S.J.; Ivan, C.; et al. Reduced Adenosine-to-Inosine MiR-455-5p Editing Promotes Melanoma Growth and Metastasis. Nat. Cell Biol. 2015, 17, 311–321. [Google Scholar] [CrossRef]
- Nemlich, Y.; Greenberg, E.; Ortenberg, R.; Besser, M.J.; Barshack, I.; Jacob-Hirsch, J.; Jacoby, E.; Eyal, E.; Rivkin, L.; Prieto, V.G.; et al. MicroRNA-Mediated Loss of ADAR1 in Metastatic Melanoma Promotes Tumor Growth. J. Clin. Investig. 2013, 123, 2703–2718. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, Y.; Tay, F.C.; Lam, D.H.; Sandanaraj, E.; Tang, C.; Ang, B.-T.; Wang, S. Attenuated Adenosine-to-Inosine Editing of MicroRNA-376a* Promotes Invasiveness of Glioblastoma Cells. J. Clin. Investig. 2012, 122, 4059–4076. [Google Scholar] [CrossRef]
- Varambally, S.; Cao, Q.; Mani, R.-S.; Shankar, S.; Wang, X.; Ateeq, B.; Laxman, B.; Cao, X.; Jing, X.; Ramnarayanan, K.; et al. Genomic Loss of MicroRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science 2008, 322, 1695–1699. [Google Scholar] [CrossRef]
- Li, J.-T.; Jia, L.-T.; Liu, N.-N.; Zhu, X.-S.; Liu, Q.-Q.; Wang, X.-L.; Yu, F.; Liu, Y.-L.; Yang, A.-G.; Gao, C.-F. MiRNA-101 Inhibits Breast Cancer Growth and Metastasis by Targeting CX Chemokine Receptor 7. Oncotarget 2015, 6, 30818–30830. [Google Scholar] [CrossRef]
- Chen, H.; Tu, S.; Hsieh, J.-T. Down-Regulation of Human DAB2IP Gene Expression Mediated by Polycomb Ezh2 Complex and Histone Deacetylase in Prostate Cancer. J. Biol. Chem. 2005, 280, 22437–22444. [Google Scholar] [CrossRef]
- Cao, P.; Deng, Z.; Wan, M.; Huang, W.; Cramer, S.D.; Xu, J.; Lei, M.; Sui, G. MicroRNA-101 Negatively Regulates Ezh2 and Its Expression Is Modulated by Androgen Receptor and HIF-1alpha/HIF-1beta. Mol. Cancer 2010, 9, 108. [Google Scholar] [CrossRef]
- Friedman, J.M.; Liang, G.; Liu, C.-C.; Wolff, E.M.; Tsai, Y.C.; Ye, W.; Zhou, X.; Jones, P.A. The Putative Tumor Suppressor MicroRNA-101 Modulates the Cancer Epigenome by Repressing the Polycomb Group Protein EZH2. Cancer Res. 2009, 69, 2623–2629. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long Non-Coding RNA HOTAIR Reprograms Chromatin State to Promote Cancer Metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs. Cell 2007, 129, 1311–1323. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science 2010, 329, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-T.; He, J.; Liang, Q.; Ren, L.-L.; Yan, T.-T.; Yu, T.-C.; Tang, J.-Y.; Bao, Y.-J.; Hu, Y.; Lin, Y.; et al. LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. Cancer Discov. 2016, 6, 784–801. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Weng, M.; Hu, Y.; Xuan, Y.; Hu, Y.; Lv, K. LncRNA GCAWKR Promotes Gastric Cancer Development by Scaffolding the Chromatin Modification Factors WDR5 and KAT2A. Mol. Ther. 2018, 26, 2658–2668. [Google Scholar] [CrossRef]
- Mehra, R.; Shi, Y.; Udager, A.M.; Prensner, J.R.; Sahu, A.; Iyer, M.K.; Siddiqui, J.; Cao, X.; Wei, J.; Jiang, H.; et al. A Novel RNA in Situ Hybridization Assay for the Long Noncoding RNA SChLAP1 Predicts Poor Clinical Outcome after Radical Prostatectomy in Clinically Localized Prostate Cancer. Neoplasia 2014, 16, 1121–1127. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, S.; Piao, H.-Y.; Wang, Y.; Wu, Y.; Meng, X.-Y.; Yang, D.; Zheng, Z.-C.; Zhao, Y. ALKBH5 Promotes Invasion and Metastasis of Gastric Cancer by Decreasing Methylation of the LncRNA NEAT1. J. Physiol. Biochem. 2019, 75, 379–389. [Google Scholar] [CrossRef]
- Fu, J.-W.; Kong, Y.; Sun, X. Long Noncoding RNA NEAT1 Is an Unfavorable Prognostic Factor and Regulates Migration and Invasion in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2016, 142, 1571–1579. [Google Scholar] [CrossRef]
- Chakravarty, D.; Sboner, A.; Nair, S.S.; Giannopoulou, E.; Li, R.; Hennig, S.; Mosquera, J.M.; Pauwels, J.; Park, K.; Kossai, M.; et al. The Oestrogen Receptor Alpha-Regulated LncRNA NEAT1 Is a Critical Modulator of Prostate Cancer. Nat. Commun. 2014, 5, 5383. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Wei, Y.; Zen, C.; Xiong, W.; Niu, Y.; Zhao, Y. Long Non-Coding RNA NEAT1 Promotes Bone Metastasis of Prostate Cancer through N6-Methyladenosine. Mol. Cancer 2020, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA Nuclear-Enriched Abundant Transcript 1 Shuttled by Prostate Cancer Cells-Secreted Exosomes Initiates Osteoblastic Phenotypes in the Bone Metastatic Microenvironment via MiR-205-5p/Runt-Related Transcription Factor 2/Splicing Factor Proline- and Glutamine-Rich/Polypyrimidine Tract-Binding Protein 2 Axis. Clin. Transl. Med. 2021, 11, e493. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.T.R..; Karthik, D.; Mahendran, T.; Jaganathan, M.K.; Hemdev, S.P. Long noncoding RNAs: Role and contribution in pancreatic cancer. Transcription 2018, 12, 12–27. [Google Scholar] [CrossRef]
- He, Y.; Yue, H.; Cheng, Y.; Ding, Z.; Xu, Z.; Lv, C.; Wang, Z.; Wang, J.; Yin, C.; Hao, H.; et al. ALKBH5-Mediated M6A Demethylation of KCNK15-AS1 Inhibits Pancreatic Cancer Progression via Regulating KCNK15 and PTEN/AKT Signaling. Cell Death Dis. 2021, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, X.; Liu, Q.; Li, C.; Graves-Deal, R.; Cao, Z.; Singh, B.; Franklin, J.L.; Wang, J.; Hu, H.; et al. LncRNA MIR100HG-Derived MiR-100 and MiR-125b Mediate Cetuximab Resistance via Wnt/β-Catenin Signaling. Nat. Med. 2017, 23, 1331–1341. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Sun, L.; Qin, H.; Fan, A.; Meng, L.; Graves-Deal, R.; Glass, S.E.; Franklin, J.L.; Liu, Q.; et al. Interaction of LncRNA MIR100HG with HnRNPA2B1 Facilitates M6A-Dependent Stabilization of TCF7L2 MRNA and Colorectal Cancer Progression. Mol. Cancer 2022, 21, 74. [Google Scholar] [CrossRef]
- Chen, S.; Li, T.; Liu, D.; Liu, Y.; Long, Z.; Wu, Y.; Zhong, Y.; Zhao, J.; Wu, T.; He, W.; et al. Interaction of PHGDH with IGF2BP1 Facilitates M6A-Dependent Stabilization of TCF7L2 MRNA to Confer Multidrug Resistance in Gastric Cancer. Oncogene 2025, 44, 2064–2077. [Google Scholar] [CrossRef]
- Patil, D.P.; Chen, C.-K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. M(6)A RNA Methylation Promotes XIST-Mediated Transcriptional Repression. Nature 2016, 537, 369–373. [Google Scholar] [CrossRef]
- Chen, D.-L.; Chen, L.-Z.; Lu, Y.-X.; Zhang, D.-S.; Zeng, Z.-L.; Pan, Z.-Z.; Huang, P.; Wang, F.-H.; Li, Y.-H.; Ju, H.-Q.; et al. Long Noncoding RNA XIST Expedites Metastasis and Modulates Epithelial-Mesenchymal Transition in Colorectal Cancer. Cell Death Dis. 2017, 8, e3011. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Wang, J.; Che, Y.; Sun, S.; Huang, J.; Chen, Z.; He, J. Long Non-Coding RNA NKILA Inhibits Migration and Invasion of Non-Small Cell Lung Cancer via NF-ΚB/Snail Pathway. J. Exp. Clin. Cancer Res. 2017, 36, 54. [Google Scholar] [CrossRef] [PubMed]
- Kogo, R.; Shimamura, T.; Mimori, K.; Kawahara, K.; Imoto, S.; Sudo, T.; Tanaka, F.; Shibata, K.; Suzuki, A.; Komune, S.; et al. Long Noncoding RNA HOTAIR Regulates Polycomb-Dependent Chromatin Modification and Is Associated with Poor Prognosis in Colorectal Cancers. Cancer Res. 2011, 71, 6320–6326. [Google Scholar] [CrossRef] [PubMed]
- Porman, A.M.; Roberts, J.T.; Duncan, E.D.; Chrupcala, M.L.; Levine, A.A.; Kennedy, M.A.; Williams, M.M.; Richer, J.K.; Johnson, A.M. A Single N6-Methyladenosine Site Regulates LncRNA HOTAIR Function in Breast Cancer Cells. PLoS Biol. 2022, 20, e3001885. [Google Scholar] [CrossRef]
- Gökmen-Polar, Y.; Vladislav, I.T.; Neelamraju, Y.; Janga, S.C.; Badve, S. Prognostic Impact of HOTAIR Expression Is Restricted to ER-Negative Breast Cancers. Sci. Rep. 2015, 5, 8765. [Google Scholar] [CrossRef]
- Lu, X.; Chen, L.; Liu, S.; Cao, Y.; Huang, Z. m6A-mediated upregulation of lncRNA RMRP boosts the progression of bladder cancer via epigenetically suppressing SCARA5. Epigenomics 2023, 15, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fu, Z.; Dong, C.; Song, Y. Methyltransferase 3, N6-Adenosine-Methyltransferase Complex Catalytic Subunit-Induced Long Intergenic Non-Protein Coding RNA 1833 N6-Methyladenosine Methylation Promotes the Non-Small Cell Lung Cancer Progression via Regulating Heterogeneous Nuclear Ribonucleoprotein A2/B1 Expression. Bioengineered 2022, 13, 10493–10503. [Google Scholar] [CrossRef]
- Liu, W.; Wan, Q.; Zhou, E.; He, P.; Tang, L. LncRNA LINC01833 Is a Prognostic Biomarker and Correlates with Immune Infiltrates in Patients with Lung Adenocarcinoma by Integrated Bioinformatics Analysis. J. Oncol. 2023, 2023, 3965198. [Google Scholar] [CrossRef]
- Ni, W.; Yao, S.; Zhou, Y.; Liu, Y.; Huang, P.; Zhou, A.; Liu, J.; Che, L.; Li, J. Long Noncoding RNA GAS5 Inhibits Progression of Colorectal Cancer by Interacting with and Triggering YAP Phosphorylation and Degradation and Is Negatively Regulated by the M6A Reader YTHDF3. Mol. Cancer 2019, 18, 143. [Google Scholar] [CrossRef]
- Zhao, B.; Li, L.; Tumaneng, K.; Wang, C.-Y.; Guan, K.-L. A Coordinated Phosphorylation by Lats and CK1 Regulates YAP Stability through SCF(Beta-TRCP). Genes Dev. 2010, 24, 72–85. [Google Scholar] [CrossRef]
- Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; et al. The Long Noncoding RNA SChLAP1 Promotes Aggressive Prostate Cancer and Antagonizes the SWI/SNF Complex. Nat. Genet. 2013, 45, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Prensner, J.R.; Zhao, S.; Erho, N.; Schipper, M.; Iyer, M.K.; Dhanasekaran, S.M.; Magi-Galluzzi, C.; Mehra, R.; Sahu, A.; Siddiqui, J.; et al. RNA Biomarkers Associated with Metastatic Progression in Prostate Cancer: A Multi-Institutional High-Throughput Analysis of SChLAP1. Lancet Oncol. 2014, 15, 1469–1480. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef]
- Chen, R.-X.; Chen, X.; Xia, L.-P.; Zhang, J.-X.; Pan, Z.-Z.; Ma, X.-D.; Han, K.; Chen, J.-W.; Judde, J.-G.; Deas, O.; et al. N6-Methyladenosine Modification of CircNSUN2 Facilitates Cytoplasmic Export and Stabilizes HMGA2 to Promote Colorectal Liver Metastasis. Nat. Commun. 2019, 10, 4695. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Peng, J.; Xing, Y.; Zhang, L.; Zeng, P.; Li, W.; Zhang, W.; Pan, Z.; Zhou, C.; Lin, J. A Positive Feedback Circuit Driven by M6A-Modified Circular RNA Facilitates Colorectal Cancer Liver Metastasis. Mol. Cancer 2023, 22, 202. [Google Scholar] [CrossRef]
- Park, O.H.; Ha, H.; Lee, Y.; Boo, S.H.; Kwon, D.H.; Song, H.K.; Kim, Y.K. Endoribonucleolytic Cleavage of M6A-Containing RNAs by RNase P/MRP Complex. Mol. Cell 2019, 74, 494–507.e8. [Google Scholar] [CrossRef]
- Rong, D.; Wu, F.; Lu, C.; Sun, G.; Shi, X.; Chen, X.; Dai, Y.; Zhong, W.; Hao, X.; Zhou, J.; et al. M6A Modification of CircHPS5 and Hepatocellular Carcinoma Progression through HMGA2 Expression. Mol. Ther. Nucleic Acids 2021, 26, 637–648. [Google Scholar] [CrossRef]
- Yankova, E.; Blackaby, W.; Albertella, M.; Rak, J.; De Braekeleer, E.; Tsagkogeorga, G.; Pilka, E.S.; Aspris, D.; Leggate, D.; Hendrick, A.G.; et al. Small-Molecule Inhibition of METTL3 as a Strategy against Myeloid Leukaemia. Nature 2021, 593, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, H.; Gao, P. Metabolic Reprogramming and Epigenetic Modifications on the Path to Cancer. Protein Cell 2022, 13, 877–919. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Z.; Chen, Y.; Tian, H.; Chai, P.; Shen, Y.; Yao, Y.; Xu, S.; Ge, S.; Jia, R. Lactate and Lactylation in Cancer. Signal Transduct. Target. Ther. 2025, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Mateos, P.A.; Sethi, A.J.; Ravindran, A.; Srivastava, A.; Woodward, K.; Mahmud, S.; Kanchi, M.; Guarnacci, M.; Xu, J.; Yuen, Z.W.S.; et al. Prediction of M6A and M5C at Single-Molecule Resolution Reveals a Transcriptome-Wide Co-Occurrence of RNA Modifications. Nat. Commun. 2024, 15, 3899. [Google Scholar] [CrossRef]


| Cancer Types | Direction | Target Genes and Molecules | Evidence Type # | References |
|---|---|---|---|---|
| Breast cancer | Promoting | CDH1 promoter hypermethylation (silencing) | C, F | [14] |
| DNMT1/3A/3B overexpression (worse outcome; metastasis risk) | C, F | [15] | ||
| Prostate carcinoma | Promoting | CDH1 promoter hypermethylation (silencing) | C, F | [16] |
| DNMT1/3A/3B overexpression (high-risk of lymph node metastasis) | C | [17] | ||
| Hepatocellular carcinoma | Promoting | DNMT1-mediated CDH1 promoter hypermethylation (silencing) | F | [18] |
| miR-29a-TET–SOCS1–MMP9 axis (Down of 5hmC, Up of MMP9) | C, F, A | [19] | ||
| Gastric cancer | Promoting | TIMP3 promoter methylation | C | [20] |
| CDH1 hypermethylation caused by miR-29b/c-DNMT3A circuit | F, A | [21] | ||
| Non-small cell lung cancer | Promoting | BRMS1 promoter methylation | C | [22] |
| Pancreatic ductal adenocarcinoma | Promoting | Genome-wide hypomethylation of overexpressed genes | C | [23] |
| Suppressive | miR-148a (targets DNMT1; reactivates suppressors) | F | [24,25] | |
| Ovarian carcinoma | Promoting | DNMT1/3A/3B overexpression (worse outcome; metastasis risk) | C | [26] |
| Class | Role | Genes |
|---|---|---|
| m6A | Writers | METTL3, METTL14, WTAP, VIRMA (KIAA1429), RBM15, RBM15B |
| Erasers | FTO, ALKBH5 | |
| Readers | YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPA2B1 | |
| m5C | Writers | NSUN2, NSUN5, NSUN6, DNMT2/TRDMT1 |
| Erasers | Not established yet | |
| Readers | ALYREF, YBX1 |
| Cancer Types | Direction | Target Genes and Molecules | Evidence Type # | References |
|---|---|---|---|---|
| Colorectal carcinoma | Promoting | METTL3-mediated m6A marks on pri-miR-1246, downregulating SPRED2 to activate MAPK | C, F, A | [64] |
| A m6A reader IGF2BP3 stabilizes pro-metastatic mRNAs and is a risk marker for poor outcome/metastasis | C | [65] | ||
| Suppressive | METTL14-mediated m6A modification on SOX4 mRNA | C, F, A | [66] | |
| Breast cancer | Promoting | Removal of m6A on oncogenic mRNA by FTO to enhance their stability | C, F, A | [67] |
| Amplification of m6A-enriched pro-metastatic mRNA by YTHDF3 | C, F, A | [68] | ||
| Suppressive | Removal of m6A on metastasis-suppressive mRNA by ALKBH5 | C, F, A | [69] | |
| Restoring m6A modification on COL3A1 by METTL3, reducing COL3A1 expression | C, F | [70] | ||
| Hepatocellular carcinoma | Suppressive | METTL14-mediated m6A marks on pri-miR-126 for an effective processing | C, F, A | [71] |
| Gastric cancer | Promoting | YTHDF1-mediated enhancement of FZD7 translation | C, F, A | [72] |
| Nasopharyngeal carcinoma | Promoting | Binding of IGF2BP3 to m6A-marked NOTCH3, stabilizing PDPN | C, F, A | [73,74,75] |
| Pancreatic ductal adenocarcinoma | Promoting | METTL3-mediated m6A modification of E2F5 mRNA | C, F, A | [76] |
| METTL14-mediated m6A modification of PERP mRNA | C, F, A | [77] | ||
| Overexpression of IGF2BP3, correlated with poor survival | C | [78] | ||
| Oral squamous cell carcinoma | Promoting | METTL3-mediated enhancement of BMI1 stability | C, F, A | [79] |
| Melanoma | Promoting | Demethylation of pro-metastatic mRNA by FTO, stabilizing them | C, F, A | [80] |
| Prostate cancer | Promoting | RNA decay of tumor suppressive mRNA by YTHDF2, activating AKT signaling | C, F, A | [81] |
| Cancer Types | Direction | Target Genes and Molecules | Evidence Type # | References |
|---|---|---|---|---|
| Bladder cancer | Promoting | NSUN2-mediated m5C marks on the HDGF 3′-UTR, stabilizing HDGF mRNA to enhance growth, invasion, and metastasis | C, F, A | [94,97] |
| m5C-dependent cross-regulation between NSUN2 and ALYREF, facilitating splicing and stabilization of RABL6/TK1 mRNA to reinforce carcinoma aggressiveness | C, F, A | [97] | ||
| Esophageal squamous cell carcinoma | Promoting | NSUN2-mediated m5C stabilization of GRB2 mRNA in a LIN28B-dependent manner | C, F, A | [98] |
| NSUN2-mediated m5C on a metastasis-linked lncRNA NMR, enabling BPTF association to raise MMPs | C, F | [99,100] | ||
| Colorectal carcinoma | Promoting | NSUN2-mediated m5C marks on the SKIL mRNA, amplifying pro-invasive transcriptional programs | C, F, A | [101] |
| Prostate cancer | Promoting | A positive epigenetic feedback loop between AR and NSUN2 sustains pro-metastatic signaling and progression. | C, F, A | [102] |
| Pancreatic ductal adenocarcinoma | Promoting | NSUN2-mediated stability of TIAM2 mRNA through m5C marks, stimulating migratory and invasive programs | C, F, A | [103] |
| Gastric cancer | Promoting | Stabilization of FOXC2 by NSUN2-associated FOXC2-AS1, enhancing EMT-like program | C, F | [104] |
| NSUN2 mediated m5C on lncRNA NR_033928 causes stabilization of GLS mRNA, promoting gastric cancer progression | C, F, A | [105] | ||
| NSUN2-mediated m5C marks on the ORAI2 mRNA by a peritoneal high-fat diet, fostering peritoneal dissemination | C, F, A | [106] |
| Class | Role | Genes |
|---|---|---|
| miRNA | Biogenesis | DROSHA, DGCR8, DICER1 |
| Effector | AGO2, LIN28A/B | |
| Modulators | ZCCHC11 (TUT4), ZCCHC6 (TUT7)), ADAR, ADARB1 |
| lncRNA | Direction | Mechanism | Cancer Types | References |
|---|---|---|---|---|
| HOTAIR | Promoting | HOTAIR scaffolds PRC2 and LSD1/CoREST to raise H3K27me3 and reduce H3K4 methylation at anti-metastatic loci, reprogramming chromatin toward invasion and EMT. | Breast cancer, Colorectal carcinoma, Gastric cancer, Hepatocellular carcinoma | [148,149,150] |
| GClnc1 | Promoting | Scaffolding of recruiting WDR5 (H3K4me3) and KAT2A/GCN5 (acetylation) at target promoters, boosting EMT/migration/invasion | Gastric cancer | [151] |
| GCAWKR | Promoting | Scaffolding of chromatin-modification factors to activate oncogenic transcription programs that support progression. | Gastric cancer | [152] |
| SChLAP1 | Promoting | Antagonizes SWI/SNF occupancy genome-wide, shifting chromatin toward pro-metastatic transcriptional states; high expression tracks aggressive disease. | Prostate cancer | [153] |
| NEAT1 | Promoting | m6A and ALKBH5-mediated demethylation increase NEAT1 activity to modulate EZH2/EMT programs; m6A on NEAT1 also enhances bone colonization in prostate models. | Gastric cancer, Prostate cancer | [154,155,156,157,158] |
| KCNK15-AS1 | Suppressive | ALKBH5-dependent demethylation stabilizes metastasis-restraining KCNK15-AS1, curbing migration/invasion via PTEN–AKT tuning. | Pancreatic ductal adenocarcinoma | [159,160] |
| MIR100HG (miR-100 host) | Promoting | Binding of HNRNPA2B1 to stabilize m6A-modified TCF7L2 mRNA, amplifying Wnt signaling and invasion; disrupting METTL3-installed m6A or this interaction suppresses malignancy. | Colorectal carcinoma | [131,161,162,163] |
| XIST | Context- dependent | m6A promotes XIST-mediated transcriptional repression; in CRC #, XIST drives EMT/metastasis, while METTL14 can suppress by down-regulating oncogenic XIST. | Colorectal carcinoma | [82,164,165] |
| NKILA | Context- dependent | In cholangiocarcinoma, m5C/m6A-modified NKILA is stabilized by YBX1 and promotes migration via the miR-582-3p–YAP1 axis; in NSCLC #, NKILA antagonizes NF-κB/SNAIL to inhibit migration/invasion. | Cholangiocarcinoma, NSCLC, Breast cancer, Tongue/oral squamous cell carcinoma | [121,122,166] |
| FOXC2-AS1 | Promoting | Associates with NSUN2 to stabilize FOXC2 mRNA, enhancing EMT-like programs and invasiveness. | Gastric cancer | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, T.; Subramanian, M. Rewriting the Fate of Cancer: Epigenetic and Epitranscriptomic Regulators in the Metastatic Cascade. Biomolecules 2025, 15, 1573. https://doi.org/10.3390/biom15111573
Hara T, Subramanian M. Rewriting the Fate of Cancer: Epigenetic and Epitranscriptomic Regulators in the Metastatic Cascade. Biomolecules. 2025; 15(11):1573. https://doi.org/10.3390/biom15111573
Chicago/Turabian StyleHara, Toshifumi, and Murugan Subramanian. 2025. "Rewriting the Fate of Cancer: Epigenetic and Epitranscriptomic Regulators in the Metastatic Cascade" Biomolecules 15, no. 11: 1573. https://doi.org/10.3390/biom15111573
APA StyleHara, T., & Subramanian, M. (2025). Rewriting the Fate of Cancer: Epigenetic and Epitranscriptomic Regulators in the Metastatic Cascade. Biomolecules, 15(11), 1573. https://doi.org/10.3390/biom15111573

