Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. CTA Using Bhas 42 Cells in the Stationary Phase (Bhas 42 CTA Promotion Test)
2.3. Statistical Analysis and Criteria of Judgment
2.4. Isolation of Total RNA
2.5. CAGE Analysis
2.6. Venn Diagram Analysis
2.7. GO Analysis
2.8. Functional Analysis and Pathway Analysis
3. Results
3.1. Focus Formation in the CTA of Bhas 42 Cells in the Stationary Phase (Bhas 42 CTA Promotion Test)
3.2. Detection of Differentially Expressed Genes in Cap Analysis of Gene Expression (CAGE) Analysis
3.2.1. Venn Diagram of the Number of Upregulated or Downregulated Genes
3.2.2. Gene Ontology (GO) Terms
3.2.3. Collation of the Pathways of Cell Transformation and the Hallmarks of Cancer
Xenobiotic Metabolism (Table 1)
- Phase 1 Functionalization of Compounds
- Aryl Hydrocarbon Receptor Signaling
- Xenobiotic Metabolism Signaling
Evading Anti-Growth Signaling (Table 2)
- Gap Junction
- Hippo Signaling
Resisting Programmed Cell Death (Table 2)
- Apoptosis Signaling
- Autophagy
- Microautophagy Signaling Pathway
Avoiding Immune Destruction (Table 3)
- Immunogenic Cell Death Signaling
- Interferon Signaling
- Programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PDL-1) Cancer Immunotherapy Pathway
Tumor-Promoting Inflammation (Table 3)
- IL-1 Signaling
- Activin–Inhibin Signaling Pathway
- IL-4 Signaling
- Role of Janus Kinase (JAK) Family Kinases in IL-6-Type Cytokine Signaling
- Tumor necrosis factor receptor 2 (TNFR2) Signaling
Tumor Environment (Table 4)
- Tumor Microenvironment Pathway
- JAK/Signal transducer and activator transcription (STAT) Signaling
- Cancer-Associated Fibroblasts (CAFs)
Tissue Invasion and Metastasis (Table 4)
- Glioma Invasiveness Signaling
- Focal Adhesion Kinase (FAK) Signaling
- Cold-shock-domain-containing E1 (CSDE1) Signaling Pathway
Sustained Growth Signaling (Table 5)
- Cyclins and Cell Cycle Regulation
- p21-Activated Protein Kinase (PAK) Signaling
- Hox transcript antisense intergenic RNA (HOTAIR) Regulatory Pathway
Genetic Instability (Table 6)
- Cell Cycle: G2/M DNA Damage Checkpoint Regulation
- DNA Methylation and Transcriptional Repression
Enabled Replication Immortality (Table 7)
- Senescence-Associated Secretory Phenotype (SASP)
- Telomerase Signaling
- Telomere Extension by Telomerase
- Wnt/β-Catenin Signaling
Inducing New Blood Flow (Table 7)
- Angiopoietin Signaling
- VEGF Signaling
Deregulated Cellular Metabolism (Table 8)
- Fatty Acid Beta-Oxidation I
- Mitochondrial Fatty Acid Beta-Oxidation
- PPAR Signaling
- Adenosine Monophosphate-Activated Protein Kinase (AMPK) Signaling
- Superpathway of Cholesterol Biosynthesis
- Folate Signaling Pathway
Transcription, Invasion, and Malignant Transformation of Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). IARC Monogr. Identif. Carcinog. Hazards Hum. 2025, 135, 1–754. Available online: https://publications.iarc.who.int/636 (accessed on 29 September 2025). [PubMed]
- Zahm, S.; Bonde, J.P.; Chiu, W.A.; Hoppin, J.; Kanno, J.; Abdallah, M.; Blystone, C.R.; Calkins, M.M.; Dong, G.; Dorman, D.C.; et al. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol. 2024, 25, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Perfluoroalkyls Released May 2021; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA; The Environmental Protection Agency (EPA): Washington, DC, USA, 2021. [Google Scholar] [PubMed]
- Jacobs, M.N.; Colacci, A.; Corvi, R.; Vaccari, M.; Aguila, M.C.; Corvaro, M.; Delrue, N.; Desaulniers, D.; Ertych, N.; Jacobs, A.; et al. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 2020, 94, 2899–2923. [Google Scholar] [CrossRef] [PubMed]
- Colacci, A.; Corvi, R.; Ohmori, K.; Paparella, M.; Serra, S. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int. J. Mol. Sci. 2023, 24, 5659. [Google Scholar] [CrossRef]
- Louekari, K.; Jacobs, M.N. A modular strategy for the testing and assessment of non-genotoxic carcinogens. Arch. Toxicol. 2024, 98, 2463–2485. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, K.; Sasaki, K.; Asada, S.; Tanaka, N.; Umeda, M. An assay method for the prediction of tumor promoting potential of chemicals by the use of Bhas 42 cells. Mutat. Res. 2004, 557, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, K.; Umeda, M.; Tanaka, N.; Takagi, T.; Yoshimura, I.; Sasaki, K.; Asada, S.; Sakai, A.; Araki, H.; Asakura, M.; et al. An inter-laboratory collaborative study by the Non-Genotoxic Carcinogen Study Group in Japan, on a cell transformation assay for tumour promoters using Bhas 42 cells. Altern. Lab. Anim. 2005, 33, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Guidance Document on the In Vitro Bhas 42 Cell Transformation Assay; Series on Testing & Assessment No. 231; OECD Environment Directorate, Environment; Health and Safety Division: Paris, France, 2016. [Google Scholar]
- Ohmiya, H.; Morana Vitezic, M.; Frith, M.C.; Itoh, M.; Carninci, P.; Forrest, A.; Hayashizaki, Y.; Timo Lassmann, T.; FANTOM Consortium. RECLU: A pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genom. 2014, 15, 269. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.; Han, Y.; He, Q. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Osanai, M.; Takasawa, A.; Takasawa, K.; Kyuno, D.; Ono, Y.; Magara, K. Retinoic acid metabolism in cancer: Potential feasibility of retinoic acid metabolism blocking therapy. Med. Mol. Morphol. 2023, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yan Li, Y.; Chen, Y.; Liu, P.; Huang, S.; Zhang, Y.; Sun, Y.; Wu, Z.; Hu, M.; Wu, Q.; et al. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front. Oncol. 2022, 12, 1026278. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Hu, Z.; Hu, R.; Guo, Z.; Zheng, Y.; Wang, Y.; Zhou, Y. ALDH1A1 in cancers: Bidirectional function, drug resistance, and regulatory mechanism. Front. Oncol. 2022, 12, 918778. [Google Scholar] [CrossRef]
- Chaiswing, L.; Zhong, W.; Cullen, J.J.; Oberley, L.W.; Oberley, T.D. Extracellular redox state regulates features associated with prostate cancer cell invasion. Cancer Res. 2008, 68, 5820–5826. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Bhat, H.K. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen induced breast cancer. Carcinogenesis 2012, 33, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Teoh-Fitzgerald, M.L.; Fitzgerald, M.P.; Jensen, T.J.; Futscher, B.W.; Domann, F.E. Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Mol. Cancer Res. 2012, 10, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Teoh-Fitzgerald, M.L.; Fitzgerald, M.P.; Zhong, W.; Askeland, R.W.; Domann, F.E. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis. Oncogene 2014, 33, 358–368. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, B.R.; Fath, M.A.; Bellizzi, A.M.; Hrabe, J.E.; Button, A.M.; Allen, B.G.; Case, A.J.; Altekruse, S.; Wagner, B.A.; Buettner, G.R.; et al. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2015, 21, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Meng, Q.; Zheng, Q.; Wu, J.; Wang, C.; Jia, W.; Figeys, D.; Chang, Y.; Zhou, H. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling. Biochem. Biophys. Res. Commun. 2016, 476, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, N.; Wakatsuki, T.; Ryo, A.; Hada, A.; Aihara, T.; Horiuchi, S.; Goseki, N.; Matsubara, O.; Takenaka, K.; Shichita, M.; et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 1999, 59, 4990–4996. [Google Scholar] [PubMed]
- Tsunedomi, R.; Iizuka, N.; Hamamoto, Y.; Uchimura, S.; Miyamoto, T.; Tamesa, T.; Okada, T.; Takemoto, N.; Takashima, M.; Sakamoto, K.; et al. Patterns of expression of cytochrome P450 genes in progression of hepatitis C virus-associated hepatocellular carcinoma. Int. J. Oncol. 2005, 27, 661–667. [Google Scholar] [PubMed]
- Huh, H.D.; Kim, D.H.; Jeong, H.-S.; Park, H.W. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.F.; Shepherd, C.J.; Rizzo, S.; Brewer, D.; Jhavar, S.; Dodson, A.R.; Cooper, C.S.; Eeles, R.; Falconer, A.; Kovacs, G.; et al. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br. J. Cancer 2008, 99, 1849–1858. [Google Scholar] [CrossRef]
- Liang, K.; Zhou, G.X.; Zhang, Q.; Li, J.; Zhang, C.P. Expression of Hippo pathway in colorectal cancer. Saudi J. Gastroenterol. 2014, 20, 188–194. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Yang, Y.; Mei, Z.; Liang, Z.; Cui, A.; Wu, T.; Liu, C.Y.; Cui, L. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 2016, 35, 2789–2800. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, T.; Zhang, J.; Wong, C.C.; Zhang, B.; Dong, Y.; Wu, F.; Tong, J.H.M.; Wu, W.K.K.; Cheng, A.S.L.; et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene 2017, 36, 6518–6530. [Google Scholar] [CrossRef]
- Zhou, G.X.; Li, X.Y.; Zhang, Q.; Zhao, K.; Zhang, C.P.; Xue, C.H.; Yang, K.; Tian, Z.B. Effects of the Hippo Signaling Pathway in Human Gastric Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 5199–5205. [Google Scholar] [CrossRef]
- Han, W.; Jung, E.M.; Cho, J.; Lee, J.W.; Hwang, K.T.; Yang, S.J.; Kang, J.J.; Bae, J.Y.; Jeon, Y.K.; Park, I.A.; et al. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Gene Chromosome Cancer 2008, 47, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Nie, Z.; Zhou, Z.M.; Zhang, H.L.; Liu, R.; Wu, J.; Qin, J.Y.; Ma, Y.; Chen, L.; Li, S.M.; et al. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27(Kip1). Oncotarget 2015, 6, 17685–17697. [Google Scholar] [CrossRef] [PubMed]
- Korkola, J.E.; Houldsworth, J.; Chadalavada, R.S.V.; Olshen, A.B.; Dobrzynski, D.; Reuter, V.E.; Bosl, G.J.; Chaganti, R.S.K. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 2006, 66, 820–827. [Google Scholar] [CrossRef]
- Skotheim, R.I.; Autio, R.; Lind, G.E.; Kraggerud, S.M.; Andrews, P.W.; Monni, O.; Kallioniemi, O.; Lothe, R.A. Novel genomic aberrations in testicular germ cell tumors by array-CGH, and associated gene expression changes. Cell Oncol. 2006, 28, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, J.; Wu, Y.P.; Ge, H.; Song, Y.; Wang, D.M.; Yuan, H.; Jiang, H.B.; Wang, Y.L.; Cheng, J. TEAD4 overexpression promotes epithelial-mesenchymal transition and associates with aggressiveness and adverse prognosis in head neck squamous cell carcinoma. Cancer Cell Int. 2018, 18, 178. [Google Scholar] [CrossRef]
- Schutte, U.; Bisht, S.; Heukamp, L.C.; Kebschull, M.; Florin, A.; Haarmann, J.; Hoffmann, P.; Bendas, G.; Buettner, R.; Brossart, P.; et al. Hippo signaling mediates proliferation, invasiveness, and metastatic potential of clear cell renal cell carcinoma. Transl. Oncol. 2014, 7, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.; Northcott, P.A.; Dalton, J.; Fraga, C.; Ellison, D.; Angers, S.; Taylor, M.D.; Kenney, A.M. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Gene Dev. 2009, 23, 2729–2741. [Google Scholar] [CrossRef]
- Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017, 14, 611–629. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.Y.; Zha, Z.Y.; Zhao, B.; Yao, J.; Zhao, S.M.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. J. Biol. Chem. 2009, 284, 13355–13362. [Google Scholar] [CrossRef]
- Zhao, B.; Ye, X.; Yu, J.D.; Li, L.; Li, W.Q.; Li, S.M.; Yu, J.J.; Lin, J.D.; Wang, C.Y.; Chinnaiyan, A.M.; et al. TEAD mediates YAP-dependent gene induction and growth control. Gene Dev. 2008, 22, 1962–1971. [Google Scholar] [CrossRef]
- Overholtzer, M.; Zhang, J.; Smolen, G.A.; Muir, B.; Li, W.; Sgroi, D.C.; Deng, C.X.; Brugge, J.S.; Haber, D.A. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl. Acad. Sci. USA 2006, 103, 12405–12410. [Google Scholar] [CrossRef]
- Lei, Q.Y.; Zhang, H.; Zhao, B.; Zha, Z.Y.; Bai, F.; Pei, X.H.; Zhao, S.; Xiong, Y.; Guan, K.L. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol. Cell Biol. 2008, 28, 2426–2436. [Google Scholar] [CrossRef]
- Lamar, J.M.; Stern, P.; Liu, H.; Schindler, J.W.; Jiang, Z.G.; Hynes, R.O. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 2012, 109, E2441–E2450. [Google Scholar] [CrossRef] [PubMed]
- Bertran-Alamillo, J.; Giménez-Capitán, A.; Román, R.; Talbot, S.; Whiteley, R.; Floc’h, N.; Martínez-Pérez, E.; Martin, M.J.; Smith, P.D.; Sullivan, I.; et al. BID expression determines the apoptotic fate of cancer cells after abrogation of the spindle assembly checkpoint by AURKB or TTK inhibitors. Mol. Cancer 2023, 22, 110. [Google Scholar] [CrossRef]
- Zhong, Y.; Long, T.; Gu, C.; Tang, J.; Gao, L.; Zhu, J.; Hu, Z.; Wang, X.; Ma, Y.; Ding, Y.; et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 2021, 28, 3251–3269. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, A.; Choi, K.; Joung, S.; Yoon, J.; Sungjoo Kim, S. TOMM20 as a potential therapeutic target of colorectal cancer. BMB Rep. 2019, 52, 712–717. [Google Scholar] [CrossRef]
- Albakova, Z.; Mangasarova, Y.; Albakov, A.; Gorenkova, L. HSP70 and HSP90 in cancer: Cytosolic, endoplasmic reticulum and mitochondrial chaperones of tumorigenesis. Front. Oncol. 2022, 13, 1210051. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; McDonald, M.C.L.; Kaufmann, C.; Frank, D.A. The complementary roles of STAT3 and STAT1 in cancer biology: Insights into tumor pathogenesis and therapeutic strategies. Front Immunol. 2023, 14, 1265818. [Google Scholar] [CrossRef] [PubMed]
- Soofiyani, S.R.; Hejazi, M.S.; Baradaran, B. The role of CIP2A in cancer: A review and update. Biomed. Pharmacother. 2017, 96, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Puustinen, P.; Jäättelä, M. KIAA1524/CIP2A promotes cancer growth by coordinating the activities of MTORC1 and MYC. Autophagy 2014, 10, 101352–101354. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, G.; Torres, C.; Krett, N.; Bauer, J.; Castellanos, K.; McKinney, R.; Dawson, D.; Guzman, G.; Hwang, R.; Grimaldo, S.; et al. Role of stromal activin A in human pancreatic cancer and metastasis in mice. Sci. Rep. 2021, 11, 7986. [Google Scholar] [CrossRef]
- Staudacher, J.J.; Bauer, J.; Jana, A.; Tian, J.; Carroll, T.; Mancinelli, G.; Özden, Ö.; Krett, N.; Guzman, G.; Kerr, D.; et al. Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer. Sci. Rep. 2017, 7, 5569. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Bauer, J.; Ozden, O.; Akagi, N.; Carroll, T.; Principe, D.R.; Staudacher, J.J.; Spehlmann, M.E.; Eckmann, L.; Grippo, L.P.; et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol. Cancer 2015, 14, 182. [Google Scholar] [CrossRef]
- Bauer, J.; Sporn, J.C.; Cabral, J.; Gomez, J.; Jung, B. Effects of activin and TGFbeta on p21 in colon cancer. PLoS ONE 2012, 7, e39381. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, K.A.; Schneyer, A.L.; Hagen, M.J.; Jerry, D.J. The role of activin in mammary gland development and oncogenesis. J. Mammary Gland. Biol. Neoplasia 2011, 16, 117–126. [Google Scholar] [CrossRef]
- Wamsley, J.J.; Kumar, M.; Allison, D.F.; Clift, S.H.; Holzknecht, C.M.; Szymura, S.J.; Hoang, S.A.; Xu, X.; Moskaluk, C.A.; Jones, D.R.; et al. Activin upregulation by NF-kappaB is required to maintain mesenchymal features of cancer stem-like cells in non-small cell lung cancer. Cancer Res. 2015, 75, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Loomans, H.A.; Bras, G.F.L.; Koumangoye, R.B.; Romero-Morales, A.I.; Quast, L.L.; Zaika, A.I.; El-Rifai, W.; Andl, T.; Andl, C.D. Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma. Oncotarget 2015, 6, 34228–34244. [Google Scholar] [CrossRef] [PubMed]
- Togashi, Y.; Kogita, A.; Sakamoto, H.; Hayashi, H.; Terashima, M.; Velasco, M.A.D.; Sakai, K.; Fujita, Y.; Tomida, S.; Kitano, M.; et al. Activin signal promotes cancer progression and is involved in cachexia in a subset of pancreatic cancer. Cancer Lett. 2015, 356, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Emon, M.A.B.; Staudacher, J.J.; Thomas, A.L.; Zessner-Spitzenberg, J.; Mancinelli, G.; Krett, N.; Saif, M.T.; Jung, B. Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated promet-astatic activin A signaling. Sci. Rep. 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Staege, M.S.; Hesse, M.; Max, D. Lipases and Related Molecules in Cancer. Cancer Growth Metastasis 2010, 3, 11–20. [Google Scholar] [CrossRef]
- Locke, J.A.; Guns, E.S.; Lehman, M.L.; Ettinger, S.; Zoubeidi, A.; Lubik, A.; Margiotti, K.; Fazli, L.; Adomat, H.; Wasan, K.M.; et al. Arachidonic acid activation of intra-tumoral steroid synthesis during prostate cancer progression to castration resistance. Prostate 2010, 70, 239–251. [Google Scholar] [CrossRef]
- Tisdale, M.J. Cancer cachexia. Langenbecks Arch. Surg. 2004, 389, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Agustsson, T.; Ryden, M.; Hoffstedt, J.; Harmelen, V.; Dicker, A.; Laurencikiene, J.; Isaksson, B.; Permert, J.; Arner, P. Mechanism of increased lipolysis in cancer cachexia. Cancer Res. 2007, 67, 5531–5537. [Google Scholar] [CrossRef] [PubMed]
- Gercel-Taylor, C.; Doering, D.L.; Kraemer, F.B.; Taylor, D.D. Aberrations in normal systemic lipid metabolism in ovarian cancer patients. Gynecol. Oncol. 1996, 60, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Leland, P.; Joshi, B.H.; Puri, R.K. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015, 75, 79–88. [Google Scholar] [CrossRef] [PubMed]
- LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.; Colf, L.A.; Qi, X.; Heller, N.M.; Keegan, A.D.; Garcia, K.C. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 2008, 132, 259–272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wills-Karp, M.; Finkelman, F.D. Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci. Signal. 2008, 1, pe55. [Google Scholar] [CrossRef] [PubMed]
- Francipane, M.G.; Alea, M.P.; Lombardo, Y.; Todaro, M.; Medema, J.P.; Stassi, G. Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res. 2008, 68, 4022–4025. [Google Scholar] [CrossRef] [PubMed]
- Todaro, M.; Alea, M.P.; Di Stefano, A.B.; Cammareri, P.; Vermeulen, L.; Iovino, F.; Tripodo, C.; Russo, A.; Gulotta, G.; Medema, J.P.; et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007, 1, 389. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.H.; Leland, P.; Lababidi, S.; Varrichio, F.; Puri, R.K. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease. Cancer Med. 2014, 3, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Maroni, P.; Bendinelli, P.; Ferraretto, A.; Lombardi, G. Interleukin 11 (IL-11): Role(s) in Breast Cancer Bone Metastases. Biomedicines 2021, 9, 659. [Google Scholar] [CrossRef] [PubMed]
- Trontzas, P.; KamperR, E.F.; Potamianou, A.; Kyriazis, N.C.; Kritikos, H.; Stavridis, J. Comparative study of serum and synovial fluid interleukin-11 levels in patients with various arthritides. Clin. Biochem. 1998, 31, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Wang, S.S.; Lu, R.H.; Chang, F.Y.; Lee, S.D. Serum interleukin 10 and interleukin 11 in patients with acute pancreatitis. Gut 1999, 45, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Chen, Y.; Han, C.; Fu, D.; Chen, H. Plasma interleukin-11 (IL-11) levels have diagnostic and prognostic roles in patients with pancreatic cancer. Tumor Biol. 2014, 35, 11467–11472. [Google Scholar] [CrossRef]
- Wolf, S.C.; Deuel, J.W.; Hollmén, M.; Felmerer, G.; Kim, B.S.; Vasella, M.; Grünherz, L.; Giovanoli, P.; Lindenblatt, N.; Gousopoulos, E. A distinct cytokine profile and stromal vascular fraction metabolic status without significant changes in the lipid composition characterizes lipedema. Int. J. Mol. Sci. 2021, 22, 3313. [Google Scholar] [CrossRef]
- Jain, A.; Deo, P.; Sachdeva, M.U.S.; Bose, P.; Lad, D.; Prakash, G.; Khadwal, A.; Varma, N.; Varma, S.; Malhotra, P. Aberrant expression of cytokines in polycythemia vera correlate with the risk of thrombosis. Blood Cells Mol. Dis. 2021, 89, 102565. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, G.; Ren, Q.; Wu, J.; Gu, B.; Su, D.; Shen, M. Increased interleukin-11 associated with disease activity and development of interstitial lung disease in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 2021, 40, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, Z.; Ye, D.; Wang, Y.; Wang, M.; Ji, Q.; Huang, Y.; Liu, L.; Shi, Y.; Shi, L.; et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediat. Inflamm. 2019, 2019, 1575410. [Google Scholar] [CrossRef] [PubMed]
- Putoczki, T.; Thiem, S.; Loving, A.; Busuttil, R.; Wilson, N.; Ziegler, P.; Nguyen, P.M.; Preaudet, A.; Farid, R.; Edwards, K.M.; et al. Interleukin-11 is the dominant Il-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013, 24, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Nandurkar, H.H.; Robb, L.; Tarlinton, D.; Barnett, L.; Köntgen, F.; Begley, C.G. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood 1997, 90, 2148–2159. [Google Scholar] [CrossRef]
- Bilinski, P.; Roopenian, D.; Gossler, A. Maternal IL-11Ralpha function is required for normal decidua and fetoplacental development in mice. Genes. Dev. 1998, 12, 2234–2243. [Google Scholar] [CrossRef]
- Putoczki, T.L.; Ernst, M. IL-11 signaling as a therapeutic target for cancer. Immunotherapy 2015, 7, 441–453. [Google Scholar] [CrossRef]
- Winship, A.L.; Van Sinderen, M.; Donoghue, J.; Rainczuk, K.; Dimitriadis, E. Targeting Interleu-kin-11 receptor-α impairs human endometrial cancer cell proliferation and invasion in vitro and reduces tumor growth and metastasis. In Vivo Mol. Cancer Ther. 2016, 15, 720–730. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; Yang, M.; Feng, W.; Lin, Y.; He, T. TNFAIP3 mediates FGFR1 activation-induced breast cancer angiogenesis by promoting VEGFA expression and secretion. Clin. Transl. Oncol. 2022, 24, 2453–2465. [Google Scholar] [CrossRef]
- Feng, W.; Gao, M.; Yang, M.; Li, X.; Gan, Z.; Wu, T.; Lin, Y.; He, T. TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. Med. Oncol. 2022, 39, 230. [Google Scholar] [CrossRef]
- Fleetwood, A.J.; Cook, A.D.; Hamilton, J.A. Functions of granulocyte-macrophage colony-stimulating factor. Crit. Rev. Immunol. 2005, 25, 405–428. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 2016, 48, e242. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Ma, H.; Chen, Y.; Zhang, D.; Ma, S.; Wang, H.; Liu, D.; Yuan, Y.; Cai, H. GM-CSF-miRNA-Jak2/Stat3 Signaling Mediates Chemotherapy-Induced Cancer Cell Stemness in Gastric Cancer. Front. Pharmacol. 2022, 13, 855351. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.; Lee, H.; Steele, N.; Zhang, L.; Sajjakulnukit, P.; Andren, A.; Ward, M.H.; Singh, R.; Basrur, V.; Zhang, Y.; et al. Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF-PI3K pathway. eLife 2022, 11, e73796. [Google Scholar] [CrossRef] [PubMed]
- de Groot, D.J.; de Vries, E.G.; Groen, H.J.; de Jong, S. Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: From lab to clinic. Crit. Rev. Oncol. Hematol. 2007, 61, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dubois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2009, 29, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mann, J.R.; DuBois, R.N. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 2005, 128, 1445–1461. [Google Scholar] [CrossRef] [PubMed]
- Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J. 1998, 12, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Huang, Y.; Yuan, X.; Cao, Z.; Zhao, Z. PTPN6-EGFR Protein Complex: A Novel Target for Colon Cancer Metastasis. J. Oncol. 2022, 2022, 7391069. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.; Ly, T.; Kriet, M.; Czirok, A.; Thomas, S.M. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers 2023, 15, 1899. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, T.; Yuan, Y.; Zhu, Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun. Signal. 2023, 21, 96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hardwick, C.; Hoare, K.; Owens, R.; Hohn, H.; Hook, M.; Moore, D.; Cripps, V.; Austen, L.; Nance, D.; Turley, E. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J. Cell Biol. 1992, 117, 1343–1350. [Google Scholar] [CrossRef]
- Schwertfeger, K.L.; Cowman, M.K.; Telmer, P.G.; Turley, E.A.; McCarthy, J.B. Hyaluronan, inflammation, and breast cancer progression. Front. Immunol. 2015, 6, 236. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ma, Y.; Zhao, P.; Ma, J.; He, C. Hmmr is a downstream target of foxm1 in enhancing proliferation and partial epi-thelial-tomesenchymal transition of bladder cancer cells. Exp. Cell Res. 2021, 408, 112860. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, Z.; Song, K. Ar-mtor-srf axis regulates hmmr expression in human prostate cancer cells. Biomol. Ther. 2021, 29, 667–677. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X.; Lu, Y.; Wang, H.; Wang, X.; Wang, Y.; Liang, C.; Jia, Z.; Ma, W. Clinical significance, molecular characterization, and immune microenvironment analysis of coagulation-related genes in clear cell renal cell carcinoma. Cancer Innov. 2024, 3, e105. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, E.B. Eph receptors and ephrins in cancer progression. Nat. Rev. Cancer 2024, 24, 5–27. [Google Scholar] [CrossRef]
- Dumortier, M.; Ladam, F.; Damour, I.; Vacher, S.; Bièche, I.; Marchand, N.; Launoit, Y.; Tulasne, D.; Chotteau-Lelièvre, A. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis. Breast Cancer Res. 2018, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, X.; Liu, B.; Li, M.; Chang, Y.; Shen, H.; Xie, S.M.; Xing, L.; Li, Y. ETV4 overexpression promotes progression of non-small cell lung cancer by upregulating PXN and MMP1 transcriptionally. Mol. Carcinog. 2020, 59, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.C.; Vahrenkamp, J.M.; Berrett, K.C.; Clark, K.A.; Guillen, K.P.; Scherer, S.D.; Yang, C.; Welm, B.E.; Janát-Amsbury, M.M.; Graves, B.J. ETV4 is necessary for estrogen signaling and growth in endometrial cancer cells. Cancer Res. 2020, 80, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Hu, H.; Zheng, L.; Wang, M.; Mei, Y.; Peng, L.; Qiang, Y.; Li, C.; Meng, D.; Wang, M.; et al. ETV4 is a theranostic target in clear cell renal cell carcinoma that promotes metastasis by activating the pro-metastatic gene FOSL1 in a PI3K-AKT dependent manner. Cancer Lett. 2020, 482, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Cosi, I.; Pellecchia, A.; Lorenzo, E.D.; Torre, E.; Sica, M.; Nesi, G.; Notaro, R.; Angioletti, M.D. ETV4 promotes late development of prostatic intraepithelial neoplasia and cell proliferation through direct and p53-mediated downregulation of p21. J. Hematol. Oncol. 2020, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sumardika, W.; Tomonobu, N.; Kinoshita, R.; Inoue, Y.; Iioka, H.; Mitsui, Y.; Saito, K.; Ruma, I.M.W.; Sato, H.; et al. Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness. Neoplasia 2019, 21, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Yuen, H.; Chan, Y.; Grills, C.; McCrudden, C.M.; Gunasekharan, V.; Shi, Z.; Wong, A.S.; Lappin, T.R.; Chan, K.; Fennell, D.A.; et al. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition. J. Pathol. 2011, 224, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liao, L.; Redmond, A.; Young, L.; Yuan, Y.; Chen, H.; O’Malley, B.W.; Xu, J. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol. Cell Biol. 2008, 28, 5937–5950. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Yang, Y.; Ma, Q.; Wang, H.; Zhao, S.; Qi, Y.; Li, Y. HNRNPC, a predictor of prognosis and immunotherapy response based on bioinformatics analysis, is related to proliferation and invasion of NSCLC cells. Respir. Res. 2022, 23, 362. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Meng, L.; Huang, Z.; Yi, L.; Yang, N.; Li, G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark. Res. 2022, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, W.; Liu, Y.; Tan, X.; Li, X.; Zou, Q.; Xiao, Z.; Xu, H.; Wang, Y.; Yang, X. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J. 2018, 37, e99017. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.C.; Chen, S.H.; Shen, X.L.; Li, D.C.; Liu, H.Y.; Ji, Y.L.; Li, M.; Yu, K.; Yang, H.; Chen, J.; et al. M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in glioblastoma Multiforme. Front. Oncol. 2020, 10, 536875. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Han, Y.; Zhang, C.; Wu, J.; Feng, J.; Qu, L.; Shou, C. HNRNPC as a candidate biomarker for chemoresistance in gastric cancer. Tumor Biol. 2016, 37, 3527–3534. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, D.; Samuels, Y.; O’Neil, N.J.; Trigiante, G.; Crook, T.; Hsieh, J.K.; O’Connor, D.J.; Zhong, S.; Campargue, I.; Tomlinson, M.L.; et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat. Genet. 2003, 33, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, S.; Fan, J.; Jin, Y.; Tian, B.; Zheng, X.; Fu, H. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep. 2017, 18, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Almalki, S.G. The pathophysiology of the cell cycle in cancer and treatment strategies using various cell cycle checkpoint inhibitors. Pathol. Res. Pract. 2023, 251, 4854. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bode, A.M.; Zhang, T. Targeting CDK1 in cancer: Mechanisms and implications. NPJ Precis. Oncol. 2023, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, W.; Caldon, C.E.; Wang, S. Targeting CDK2 in cancer: Challenges and opportunities for therapy. Drug Discov. Today 2020, 25, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. Pak Signaling in the Development and Progression of Cancer. Nat. Rev. Cancer 2014, 14, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Sun, Y.; Ji, P.; Kopetz, S.; Zhang, W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2015, 34, 4019–4031. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, F.; Wang, J.; Lu, S.; Que, Y.; Song, M.; Chen, H.; Xiong, X.; Xie, W.; Zhu, J.; et al. SUV39H1 epigenetically modulates the MCPIP1-AURKA signaling axis to enhance neuroblastoma tumorigenesis. Oncogene 2024, 43, 3306–3320. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, e301. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.; Appenheimer, M.M.; Evans, S.S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 2014, 26, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Waugh, D.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Liu, L.; Huang, J. Interleukin-6-induced epithelial–mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int. J. Oncol. 2014, 45, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Goulet, C.R.; Champagne, A.; Bernard, G.; Vandal, D.; Chabaud, S.; Pouliot, F.; Bolduc, S. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, C.; Cao, H.; Li, K.; Pang, X.; Zhong, L.; Dang, W.; Tang, H.; Huang, Y.; Wei, L.; et al. Activation of IL-8 via PI3K/Aktdependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol. Ther. 2015, 16, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Kan, G.; Wang, Z.; Sheng, C.; Yao, C.; Mao, Y.; Chen, S. Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma. J. Transl. Med. 2021, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Spehalski, E.; Capper, K.M.; Smith, C.J.; Morgan, M.J.; Dinkelmann, M.; Buis, J.; Sekiguchi, J.M.; Ferguson, D.O. MRE11 Promotes Tumorigenesis by Facilitating Resistance to Onco-gene-Induced Replication Stress. Cancer Res. 2017, 77, 5327–5338. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhen, H.; Zhang, J.; Zhang, W.; Zhang, R.; Cheng, X.; Guo, G.; Mao, X.; Wang, J.; Zhang, X. Survivin promotes glioma angiogenesis through vascular endothelial growth factor and basic fibroblast growth factor In Vitro and In Vivo. Mol. Carcinog. 2012, 51, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The biochemistry and physiology of mitochondrial fatty acid be-ta-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Mohamed, E.M.; Xu, G.G.; Waters, M.; Jing, K.; Ma, Y.; Zhang, Y.; Spiegel, S.; Idowu, M.O.; Fang, X. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget 2016, 7, 3832–3846. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Vithayathil, S.; Kumar, S.; Sung, P.L.; Dobrolecki, L.E.; Putluri, V.; Bhat, V.B.; Bhowmik, S.K.; Gupta, V.; Arora, K.; et al. Fatty acid oxidation-driven src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep. 2016, 14, 2154–2165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Zeng, Z.L.; Lu, J.; Wang, Y.; Liu, Z.X.; He, M.M.; Zhao, Q.; Wang, Z.X.; Li, T.; Lu, Y.X.; et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 2018, 37, 6025–6040. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, W.; Wang, W.; Mab, Y.; Wang, Y.; Drum, D.L.; Cai, J.; Blevins, H.; Lee, E.; Syed Shah, S.; et al. CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing. Proc. Natl. Acad. Sci. USA 2023, 120, e2302878120. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol. 2023, 14, 1114582. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Li, J.; Xu, H.; Zhao, Y.; Yu, X.; Shi, S. Functional significance of cholesterol metabolism in cancer: From threat to treatment. Exp. Mol. Med. 2023, 55, 1982–1995. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sun, J.; Li, M.; Long, Y.; Zhang, D.; Guo, H.; Huang, R.; Yan, J. Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness. Cancer Res. 2021, 81, 5720–5732. [Google Scholar] [CrossRef] [PubMed]
- Miyo, M.; Konno, M.; Colvin, H.; Nishida, N.; Koseki, J.; Kawamoto, K.; Tsunekuni, K.; Nishimura, J.; Hata, T.; Takemasa, I.; et al. The importance of mitochondrial folate enzymes in human colorectal cancer. Oncol. Rep. 2017, 37, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Fiske, B.P.; Birsoy, K.; Freinkman, E.; Kami, K.; Possemato, R.L.; Chudnovsky, Y.; Pacold, M.E.; Chen, W.W.; Cantor, J.R.; et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 2015, 520, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Wiesolek, H.L.; Bui, T.M.; Lee, J.J.; Dalal, P.; Finkielsztein, A.; Ayush Batra, A.; Thorp, E.B.; Sumagin, R. Intercellular Adhesion Molecule 1 Functions as an Efferocytosis Receptor in Inflamma-tory Macrophages. Am. J. Pathol. 2020, 190, 4–874. [Google Scholar] [CrossRef] [PubMed]
- Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology. Nature 2002, 420, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, M.; Arihara, Y.; Yoshida, M.; Kubo, T.; Nakamura, H.; Ishikawa, K.; Fujita, H.; Sugita, S.; Konno, T.; Kojima, T.; et al. Gap junction beta-4 accelerates cell cycle progression and metastasis through MET-AKT activation in pancreatic cancer. Cancer Sci. 2024, 115, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Ridley, A.J. Rho family proteins and regulation of the actin cytoskeleton. Prog. Mol. Subcell. Biol. 1999, 22, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Izdebska, M.; Zielińska, W.; Hałas-Wiśniewska, M.; Grzanka, A. Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020, 9, 2245. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.E.; Leaper, J.D. The plasminogen activator and matrix metalloproteinase systems in colorectal cancer: Relationship to tumour pathology. Eur. J. Cancer 2003, 39, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Skelly, M.M.; Troy, A.; Duffy, M.J.; Mulcahy, H.E.; Duggan, C.; Connell, T.G.; O’Donoghue, D.P.; Sheahan, K. Urokinase-type plasminogen activator in colorectal cancer: Relationship with clinicopathological features and patient outcome. Clin. Cancer Res. 1997, 3, 1837–1840. [Google Scholar] [PubMed]
- Herszènyi, L.; Plebani, M.; Carraro, P.; De Paoli, M.; Roveroni, G.; Cardin, R.; Tulassay, Z.; Naccarato, R.; Farinati, F. The role of cysteine and serine proteases in colorectal carcinoma. Cancer 1999, 86, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Romer, J.; Nilsen, B.S.; Ploug, M. The urokinase receptor as a potential target in cancer therapy. Curr. Pharm. Des. 2004, 10, 2359–2376. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development (OECD). Guidance Document on the In Vitro Syrian Hamster Embryo (SHE) Cell Transformation Assay; Series on Testing & Assessment No. 214; OECD Environment Directorate, Environment, Health and Safety Division: Paris, France, 2015. [Google Scholar]
- Jacquet, N.; Maire, M.A.; Landkocz, Y.; Vasseur, P. Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells. Arch. Toxicol. 2012, 86, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, M.; Serra, S.; Ranzi, A.; Aldrovandi, F.; Maffei, G.; Mascolo, M.G.; Mescoli, A.; Montanari, E.; Pillo, G.; Rotondo, F.; et al. In vitro evaluation of the carcinogenic potential of perfluorinated chemicals. ALTEX 2024, 41, 439–456. [Google Scholar] [CrossRef]
- Jacquet, N.; Maire, M.A.; Rast, C.; Bonnard, M.; Vasseur, P. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells. Environ. Sci. Pollut. Res. Int. 2011, 19, 2537–2549. [Google Scholar] [CrossRef] [PubMed]
- Dalsager, L.; Christensen, N.; Halekoh, U.; Timmermann, C.A.G.; Nielsen, F.; Kyhl, H.B.; Husby, S.; Grandjean, P.; Jensen, T.K.; Andersen, H.R. Exposure to perfluoroalkyl substances during fetal life and hospitalization for infectious disease in childhood: A study among 1,503 children from the Odense Child Cohort. Environ. Int. 2021, 149, 106395. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Andersen, E.W.; Budtz-Jørgensen, E.; Nielsen, F.; Mølbak, K.; Pal Weihe, P.; Heilmann, C. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 2012, 307, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Mazo, J.D.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, 6223. [Google Scholar] [CrossRef]
- Liu, Y.; Eliot, M.N.; Papandonatos, G.D.; Kelsey, K.T.; Fore, R.; Langevin, S.; Buckley, J.; Chen, A.; Lanphear, B.P.; Cecil, K.M.; et al. Gestational perfluoroalkyl substance exposure and DNA methylation at birth and 12 years of age: A longitudinal epigenome-wide association study. Environ. Health Perspect. 2022, 130, 7005. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Perfluorooctanoic Acid (CASRN 335-67-1) Administered in Feed to Sprague Dawley (Hsd:Sprague Dawley® SD®) Rats (Revised); National Toxicology Program: Durham, NC, USA, 2023. [Google Scholar] [CrossRef]
- Inaguma, S.; Wang, Z.; Lasota, J.; Onda, M.; Czapiewski, P.; Langfort, R.; Rys, J.; Szpor, J.; Waloszczyk, P.; Okoń, K.; et al. Comprehensive immunohistochemical study of mesothelin (MSLN) using different monoclonal antibodies 5B2 and MN-1 in 1562 tumors with evaluation of its prognostic value in malignant pleural mesothelioma. Oncotarget 2017, 8, 26744–26754. [Google Scholar] [CrossRef] [PubMed]
- Ventelä, S.; Côme, C.; Mäkelä, J.; Hobbs, R.M.; Mannermaa, L.; Kallajoki, M.; Chan, E.K.; Pandolfi, P.P.; Toppari, J.; Westermarck, J. CIP2A promotes proliferation of spermatogonial progenitor cells and spermatogenesis in mice. PLoS ONE 2012, 7, e33209. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, E.J.; Oh, J.S.; Park, I.; Hwang, S. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1. Cancer Res. 2013, 73, 6667. [Google Scholar] [CrossRef] [PubMed]
- Junttila, M.R.; Puustinen, P.; Niemelä, M.; Ahola, R.; Arnold, H.; Böttzauw, T.; Ala-aho, R.; Nielsen, C.; Ivaska, J.; Taya, Y.; et al. CIP2A inhibits PP2A in human malignancies. Cell 2007, 130, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, M.S.; Nushtaeva, A.A.; Richter, V.A.; Koval, O.A. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genet. Sel. 2022, 26, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Genetic instabilities in human cancers. Nature 1998, 396, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Michor, F.; Iwasa, Y.; Vogelstein, B.; Lengauer, C.; Nowak, M.A. Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol. 2005, 15, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fu, L.; Zhang, L.Y.; Kwong, D.L.; Yan, L.; Guan, X.Y. Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma. Chin. J. Cancer 2012, 31, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kops, G.J.; Weaver, B.A.; Cleveland, D.W. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 2005, 5, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Duijf, P.H.; Benezra, R. The cancer biology of whole-chromosome instability. Oncogene 2013, 32, 4727–4736. [Google Scholar] [CrossRef] [PubMed]
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Xenobiotic Metabolism | Phase 1- Functionalization of Compounds | S1, S2 | — | — | CYP26B1 ↑ | — | CYP3A13 ↑ |
Aryl Hydrocarbon Receptor Signaling | S3, S4, S5 | — | — | ALDH ↑ | CHEK2 ↑, RB ↑ CDK2 ↑, Cyclin E ↑ Cyclin A ↑, ALDH ↑ Gst ↑ Tgfbeta ↓ | CDK2 ↑, CHEK1 ↑ DHFR ↑, JUN ↑ MCM7 ↑, POLA1 ↑ TP53 ↑, CYP2C/3A ↑ Gst ↑, Cyclin A ↑ Cyclin E ↑, Cyclin D ↑ ALDH ↓, NQO ↓ | |
Xenobiotic Metabolism Signaling | S6, S7, S8, S9 | — | SOD3 ↑ | ALDH ↑ | PI3K ↑, UGT ↑ Gst ↑ MAF ↓, MAP3K ↓ NCOA ↓ | CYP3A7 ↑, RAS ↑ Gst ↑ SOD3 ↓, NQO ↓ ALDH ↓, MAO ↓ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Evading Anti-growth Signaling | HIPPO Signaling | S10, S11 | — | — | — | Scf Trcp beta ↑ | TEAD ↑ DLG ↓ |
Gap Junction Signaling | S12, S13, S14 | — | Connexin (GJB4) ↑ F Actin ↑ | — | TNF receptor ↑ Tublin ↑ BIRC5 ↑ PI3K ↑ SKP2 ↑ TCF/LEF ↓ | Connexin (GJB5) ↑ GJA1 ↑, F Actin ↑ PKG ↑, BIRC5 ↑ Tublin ↑, CCND1 ↑ RAS ↑, Caspase3/7 ↑ DLG1 ↓, Ganylate cyclase ↓ CACNA1G ↓, RUNX2 ↓ CREB ↓, TCF/LEF ↓ | |
Resisting Programmed Cell Death | Apoptosis Signaling | S15, S16, S17, S18 | Ikb ↓ | calpain ↓ | — | CDK1 ↑ TNFR/Fas ↑ BID ↓ TBID ↓ | CASP3 ↑, Caspase 8/10 ↑ RAS ↑, TP53 ↑ CDK1 ↑, CYCS ↑ BCL2L11 ↓ |
Autophagy | S19, S20 | — | — | — | PI3K ↑ Tnf-receptor ↑ SLC7A5 ↑ SLC1A5 ↓ | SLC7A5 ↑, ATG5 ↑ ATG9B ↑, AP1 ↑ TP53 ↑ CREB ↓, SIRT1 ↓, IRS1/2 ↓ | |
Microautophagy Signaling Pathway | S21, S22 | — | — | Proteasome ↓ | — | TOMM20 ↑ ESCRT ↑, TP53 ↑ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Avoiding Immune Destruction | Immunogenic Cell Death Signaling | S23, S24, S25 | — | — | CXCL10 ↓ TLR3 ↓ | Tnf receptor ↑ TLR3 ↓ | CASP3 ↑, CASP8 ↑ ATG12/ATG5/ATG16L1 ↑ |
Interferon Signaling | S26, S27 | — | — | IFIT1 ↓ IFIT3 ↓ ISG15 ↓ OAS1 ↓ STAT1 ↓ TAP1 ↓ | IFI35 ↓, IFIT3 ↓ IRF9 ↓, ISG15 ↓ OAS1 ↓, STAT1 ↓ STAT2 ↓ | — | |
PD-1, PDL-1 cancer immunotherapy pathway | S28, S29 | — | — | — | CDK2 ↑, CIP2A ↑ SKP2 ↑, PI3K ↑ Tgf receptor ↑ STAT5 ↓, MHCI-α ↓ Tgf beta ↓ | CD80 ↑, CDK2 ↑ CIP2A ↑ CSK ↓, PDCD4 ↓ | |
Tumor-Promoting Inflammation | IL-1 Signaling | S30, S31 | Ikb ↓ | — | — | — | JUN ↑ |
Activin Inhibin Signaling Pathway | S32, S33, S34, S35, S36 | NFKBIA ↓ SKIL ↓ | Activin A ↑ INHBA ↑ INHIBIN A ↑ PMEPA1 ↑ SNAI1 ↑ | LIPE ↑ PMEPA1 ↑ SKI ↑ TLR ↓ MXD1 ↓ | Tnf receptor ↑ PI3K ↑, LIPE ↑ PMEPA1 ↑, SKIL ↑ SERPINE ↑ IL1 ↓, TLR ↓ MAF ↓, Tgf beta ↓ Beta-catenin/TCF ↓ | Il1 receptor ↑ AP1 ↑, ERK ↑ FOS ↑, JUN ↑ PTGS2 ↑, IL11 ↑ Beta-catenin/TCF ↓ Collagen type I ↓ | |
IL-4 Signaling | S37, S38, S39 | — | — | IL4R ↑ | IL13RA1 ↑, PI3K ↑ MAF ↓, Tgfbeta ↓ | PTPN6 ↑, RAS ↑ IRS1/2 ↓, GREB ↓ | |
IL-6 Signaling | S40, S41, S42, S43 | Ikb ↓ | SOCS3 ↑ | — | PI3K ↑ Tnfreceptor ↑ IL1 ↓ | RAS ↑, Il1receptor ↑ JUN ↑ COL1A1 ↓, SOCS5 ↓ | |
Role of JAK family kinases in IL-6-type Cytokine Signaling | S44, S45, S46, S47, S48 | LIF ↓ | SOCS3 ↑ | STAT1 ↓ | OSMR ↑, BIRC5 ↑ STAT1/5 ↓ Tgfbeta ↓, VEGF ↓ | IL11 ↑, VEGF ↑ BIRC5 ↑, CCND1 ↑ LIFR ↓, SOCS5 ↓ | |
IL-8 | S49, S50, S51 | Rho ↓ ICAM1 ↓ | — | — | ANGPT1 ↑, PI3K ↑ Myosinii rlc ↓, MMP9 ↓ VEGF ↓, VCAM1 ↓ | CyclinD ↑, VEGF ↑ PTGS2 ↑, RAS ↑ Ap1 ↑ | |
TNFR2 Signaling | S52, S53, S54 | Ikb ↓ TNFAIP3 ↓ | — | — | TNFRSF1B ↑ | TNFAIP3 ↑ JUN ↑ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Tumor Microenvironment | Tumor Microenvironment | S55, S56, S57, S58 | ICAM1 ↓ | — | FGF ↑ | FGF ↑, PI3K ↑ Tgfbeta ↓, MPP9 ↓ VEGF ↓, TNC ↓ MHCCLASS I ↓ CFLAR ↓, MMP ↓ | CSF2 ↑, VEGF ↑ RAS ↑, Ap1 ↑ CCND1 ↑, PTGF2 ↑ MMP ↓, collagentype I ↓ |
JAK/STAT Signaling | S59, S60, S61, S62 | — | SOCS3 ↑ | STAT ↓ | PI3K ↑ STAT ↓ | PTPN6 ↑, RAS ↑ JUN ↑ SHC1 ↓, SOCS5 ↓ | |
Tissue Invasion and Metastasis | Glioma Invasiveness Signaling | S63, S64, S65, S66 | Rho ↓ | — | PLAUR ↑ | HMMR ↑, PI3K ↑ TIMP ↓, MMP9 ↓ | HMMR ↑, PLAUR ↑ RAS ↑ |
FAK Signaling | S67, S68, S69, S70, S71 | GPCR ↓ | SOCS3 ↑ GPCR ↓ Integrin ↓ calpain ↓ | Cytokine recepror ↑ | PI3K ↑ ECM ↓ Tgf beta ↓ MMP14 ↓ MMP9 ↓ TCF/LEF ↓ | ECM ↑, EPH ↑ RAS ↑, AP1 ↑ CCND1 ↑, TP53 ↑ ETV4 ↑ Collagen type I ↓, SOCK ↓ CSK ↓, TCF/LEF ↓ | |
CSDE1 Signaling Pathway | S72, S73, S74 | — | SNAI1 ↑ PABP ↓ | — | TNC ↓ | PTBP1 ↑ HNRNPC ↑ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Sustained Growth Signaling | Cyclins and Cell Cycle Regulation | S75, S76 | — | — | — | CDK2 ↑, CyclinE ↑ E2F ↑, CDK1 ↑ CyclinA ↑, CyclinB ↑ SCF ↑ Tgf beta ↓, HDAC ↓ | Cyclin D ↑, CDK2 ↑ Cyclin E ↑, TP53 ↑ E2F ↑, CDK1 ↑ Cyclin A ↑, Cyclin B ↑ |
PAK Signaling | S77, S78, S79 | Integrin ↓ | — | PI3K ↑ MLC ↓ | RAS ↑, CASP3 ↑ COFLIN ↑, ETK1/2 ↓ | ||
HOTAIR Regulatory Signaling | S80, S81, S82 | NFKBIA ↓ ICAM1 ↓ | — | — | PI3K ↑, FOXM1 ↑ Wnt ↑ PRC2 ↓, Mmp ↓ TCF/LEF ↓ | MIR130A ↑, FOXM1 ↑ RBM38 ↑ Collagen type I ↓ Mmp ↓, TCF/LEF ↓ | |
EGF Signaling | S83, S84, S85 | — | — | STAT1 ↓ | PI3K ↑, STAT1 ↓ | JUN ↑ | |
FGF Signaling | S86, S87, S88 | — | — | FGF ↑ | FGF ↑, PI3K ↑ | PTPN6 ↑ CREB ↓ | |
IGF Signaling | S89, S90, S91 | — | SOCS3 ↑ | — | PI3K ↑ | RAS ↑, JUN ↑ IGFBP ↓, IRIS1/2 ↓ SOCS5 ↓ | |
TGF-β Signaling | S92, S93, S94, S95 | — | Activins /Inhibins ↑ PMEPA1 ↑ | SKI ↑ PMEPA1 ↑ IRF7 ↓ | PMEPA1 ↑ SERPIN1 ↑ Tgf beta ↓, IRF7 ↓ | RAS ↑, Ap1 ↑ JUN ↑, SMAD6 ↓ VDR ↓, RUNX2 ↓ | |
VEGF Signaling | S96, S97, S98 | — | ACTIN ↑ | — | PI3K ↑ Vegf ↓, VEGF ↓ VEGFC/D ↓, VCL ↓ | Vegf ↑, VEGF ↑ EIF ↑, RAS ↑ SHP ↑, ACTIN ↑ | |
mTOR Signaling | S99, S100, S101 | RHO ↓ | — | — | PI3K ↑ VEGF ↓ | RAS ↑, VEGF ↑ Ribosomal 40s subunit ↑ IRS1 ↓ | |
PI3K-AKT Signaling | S102, S103, S104, S105, S106 | Ikb ↓ | Integrin ↓ | Cytokine receptor ↑ | MAP3K8 ↓ | RAS ↑, PTGS2 ↑ TP53 ↑, CCND1 ↑ PI3Kp85 ↓ | |
WNT/β-catenin Signaling | S107, S108 | — | — | — | Wnt ↑ Tgf beta ↓ TCF/LEF ↓, TCF4 ↓ | TP53 ↑, RUVBL2 ↑ JUN ↑, CCND1 ↑ GJA1 ↑ Frizzied ↓, TCF/LEF ↓ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Genetic Instability | ATM Signaling | S109, S110, S111 | NFKBIA ↓ | — | — | MDC1 ↑, CHEK2 ↑ CDK1 ↑, CDK2 ↑ Cyclin B ↑, FANCD2 ↑ SMC ↑, H2AX ↑ TOPBP1 ↑ BID ↓ | MDC1 ↑, CHEK2 ↑ CDK1 ↑, CDK2 ↑ TP53 ↑, GADD45 ↑ Cyclin B ↑, BRCA1 ↑ CHEK1 ↑, FANCD2 ↑ RAD5 ↑, BLM ↑ SMC ↑, RAD50 ↑ MRE11 ↑, H2AX ↑ TOPBP1 ↑, SUV39H1 ↑ CREB ↓ |
BRCA1 in DNA Damage Response | S112, S113, S114 | — | — | STAT1 ↓ | MDC1 ↑, CHEK2 ↑ BRCA1 complex B ↑ MDC1 ↑, E2F ↑ RB ↑, PLK1 ↑ Swi-Snf ↑ FANCD2 ↑ BRCA2 ↑ | MDC1 ↑, BRCA1 ↑ BARD1 ↑ BRCA1 complex A ↑ BRCA1 complex B ↑ BRCA1 complex C ↑ BRIP1 ↑, BLM ↑ TOPBP1 ↑, RAD50 ↑ MRE11 ↑, MDC1 ↑ E2F ↑, CHEK1 ↑ PLK1 ↑, P53 ↑ Swi-Snf ↑, FANCD2 ↑ BARD1↑, RAD51 ↑ | |
Role of CHK Proteins in Cell Cycle Checkpoint Control | S115, S116 | — | — | — | MDC1 ↑, RFC ↑ CHEK2 ↑, CDK2 ↑ PLK1 ↑, CLSPN ↑ CDK1 ↑, E2F ↑ | RFC ↑, MDC1 ↑ CLPSN ↑, BRCA1 ↑ CDK1 ↑, RAD50 ↑ MRE11 ↑, CHEK1 ↑ TP53 ↑, CDK2 ↑ PCNA ↑, E2F ↑ | |
Cell cycle: G2/M DNA Damage Checkpoint Regulation | S117, S118 | — | — | — | CHK2 ↑, TOP2 ↑ BORA ↑, AURKA ↑ PLK1 ↑, PKMYT1 ↑ CDK1 ↑, CyclinB ↑ SCF ↑ | BRCA1 ↑, CHK1 ↑ TOP2 ↑, BORA ↑ AURKA ↑, PLK1 ↑ PKMYT1 ↑, CDK1 ↑ CyclinB ↑, CKS1B ↑ CKS2 ↑, TP53 ↑ | |
DNA Methylation and Transcriptional Repression Signaling | S119, S120 | — | — | — | CDK ↑, RB ↑ E2F ↑, SAP30 ↑ Transcription factor ↑ | GAD45 ↑, TP53 ↑ CDK ↑, E2F ↑ DNMT1 ↑, UHRF1 ↑ Transcription factor ↑ SUV39H1 ↑ | |
Mismatch Repair in Eukaryotes | S121, S122 | — | — | — | RFC ↑ POLD1 ↑ MutLa-MutSa-Exo1-Pold-RFC-RPA ↑ | RFC ↑, PCNA ↑ RPA1 ↑, EXO1 ↑ POLD1 ↑, LIG ↑ MutLa-MutSa-Exo1-Pold-RFC-RPA ↑ | |
Mitochondrial Dysfunction | S123, S124, S125, S126 | — | Calpain ↓ | BBC3 ↓ | OXPHOS ↑ Glutation peroxidase ↑ ACADL ↑ Cytochrome-c oxidase ↑ F0 ATP synthase ↑ PPARGC1A ↓ BID ↓ | Casp3 ↑, CYCS ↑ TOM ↑, MCU ↑ TP53 ↑, UCP2 ↑ VDCC ↓, SIRT1 ↓ CREB ↓ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Enabled Replication Immortality | Senescence Pathway | S127, S128, S129 | — | — | PI3K ↑ | PI3K ↑, FZR1 ↑ Rb1 ↑, E2F ↑ CDK2-Cyclin E ↑ DHCR24 ↑ CHEK2 ↑ SEPRINE1 ↑ Cyclin-b-Cdc2 ↑ Tgf beta ↓ | RAS ↑, ERK ↑ JUN ↑, DHCR24 ↑ CHEK1 ↑, TP53 ↑ GADD45 ↑ Cyclin-b-Cdc2 ↑ E2F ↑, CDK4/6-CyclinD1 ↑ CDK1-CyclinB ↑ MCU ↑, Smad ↓ SIRT1 ↓ |
Senescence-Associated Secretory Phenotype (SASP) | S130, S131, S132 | — | — | IL6 gene:Nucleosome H3K9Me2 ↓ IL6 gene:Nucleosome ↓ IL8 gene:Nucleosome H3K9Me2 ↓ IL8 gene:Nucleosome ↓ | Cyclin A:phospho-Cdk(Thr 160):Cdh1:phosho-APC/C complex ↑ CyclinA:Cdk2:p21/p27complex ↑ CCNA:p-T160-CDK2 Cdh1:phospho-APC/C complex ↑ EHMT1:EHMT2:Cdh1:p-APC/C ↑ Ub-EHMT1:Ub-EHMT2:Cdh1:p-APC/C ↑ IL6 gene:Nucleosome H3K9Me2 ↑ IL6 gene:Nucleosome ↑ IL8 gene:Nucleosome H3K9Me2 ↑ IL8 gene:Nucleosome ↑ | Cyclin A:phospho-Cdk(Thr 160):Cdh1:phosho-APC/C complex ↑ CyclinA:Cdk2:p21/p27complex ↑ CCNA:p-T160-CDK2 Cdh1:phospho-APC/C complex ↑ EHMT1:EHMT2:Cdh1:p-APC/C ↑ Ub-EHMT1:Ub-EHMT2:Cdh1:p-APC/C ↑ IL6 gene:Nucleosome H3K9Me2 ↑ IL6 gene:Nucleosome ↑ IL8 gene:Nucleosome H3K9Me2 ↑ IL8 gene:Nucleosome ↑ p-2S-cJUN:p-2S,2T-cFOS ↑ p-2S-JUN:p-2S,2T-FOS:IL1A gene IGFBP7 gene ↓ | |
Telomerase | S133, S134 | — | — | — | PI3K ↑ HDAC ↓ | RAS ↑, TP53 ↑ DKC1 ↑ | |
Telomere Extension by Telomerase | S135 | — | — | — | — | MRE11 ↑, RAD50 ↑ Ku ↑ | |
TGF-β Signaling | S92, S93, S94, S95 | — | Activins /Inhibins ↑ PMEPA1 ↑ | SKI ↑ PMEPA1 ↑ IRF7 ↓ | PMEPA1 ↑ SERPIN1 ↑ Tgf beta ↓, IRF7 ↓ | RAS ↑, Ap1 ↑ JUN ↑, SMAD6 ↓ VDR ↓, RUNX2 ↓ | |
WNT/β-catenin Signaling | S107, S108 | — | — | — | Wnt ↑ Tgf beta ↓ TCF/LEF ↓, TCF4 ↓ | TP53 ↑, RUVBL2 ↑ JUN ↑, CCND1 ↑ GJA1 ↑ Frizzied ↓, TCF/LEF ↓ | |
Inducing New Blood Flow | Angiopoietin Signaling | S136, S137, S138 | Ikb ↓ | — | — | ANGPT1 ↑ BIRC5 ↑, STAT5 ↓ | RAS ↑, BIRC5 ↑ PI3Kp85 ↓ |
VEGF Signaling | S96, S97, S98 | — | ACTIN ↑ | — | PI3K ↑ Vegf ↓, VEGF ↓ VEGFC/D ↓, VCL ↓ | Vegf ↑, VEGF ↑ EIF ↑, RAS ↑ SHP ↑, ACTIN ↑ |
Hallmark | Pathway | Supplementary Data (Figure) | 1 h | 6 h | 24 h | 8 Days | Day 21 |
---|---|---|---|---|---|---|---|
Deregulated Cellular Metabolism | Fatty acid β-oxidation I | S139, S140, S141 | — | — | dodecanoyl-CoA D-isomerase ↑ Acetyl-CoA C-acyltransferase ↑ | long-chain-fatty-acid-CoA ligase ↑ Acetyl-CoA C-acyltransferase ↑ | long-chain-fatty-acid-CoA ligase ↑ |
Mitochondrial fatty acid beta oxidation | S142, S143, S144 | — | — | ACCA2 tetramer ↑ | ACCA2 tetramer ↑ ACADL tetramer ↑ DECR1 tetramer ↑ | ACHOT2,9, THEM4,5 dimer ↑ | |
PPAR signaling | S145, S146, S147 | Ikb ↓ | — | — | Tnf receptor ↑ IL1 ↓, NRIH3 ↓ STAT5 ↓, NCOA ↓ | RAS ↑, Il1 receptor ↑ JUN ↑, PTGS2 ↑ | |
AMPK signaling | S148, S149, S150, S151 | — | Adenylate kinase ↑ CPT1 ↑ | LIPE ↑ CPT1 ↑ | PI3K ↑, PFK ↑ CPT1 ↑, CCNA2 ↑ LIPE ↑, HMGCR ↑ Swi-Snf ↑ PP2C ↓, PPARGC1A ↓ | Nicotinic acetylcholine receptor ↑ Adenylate kinase ↑ PPAT ↑, CCNA2 ↑ CCND1 ↑, HMGCR ↑ IRS1/2 ↓ | |
Superpathway of Cholesterol Biosynthesis | S152, S153, S154 | — | — | acetyl-CoA C-acyltransferase ↑ | acetyl-CoA C-acyltransferase ↑ hydroximethylglutaryl-CoA synthase ↑ hydroximethylglutaryl-CoA reductase ↑ farnecyl-diphosphate farnecyltransferase ↑ squalene monooxygenase ↑ D24-sterol reductase ↑ | acetyl-CoA C-acyltransferase ↑ hydroximethylglutaryl-CoA synthase ↑ hydroximethylglutaryl-CoA reductase ↑ diphosphomevalonate ↑ decarboxylase isopentenyl-diphosphate D-isomerase ↑ farnesyl-diphosphate farnesyltransferase ↑ D24-sterol reductase ↑ methylsterol monooxygenase ↑ 3beta-hydroxy-4alpha-methylcholestenecarboxylate ↑ 3-dehydrogenase (decarboxylating) ↑ | |
Folate signaling pathway | S155, S156, S157 | — | — | OAS2 ↓ | SHMT2 ↑ ALDH1L2 ↑ TYMS ↑, CCNA2 ↑ OAS2 ↓ | SHMT2 ↑, SHMT1 ↑ MTHFD1L ↑, DHFR ↑ TYMS↑, Purino-some ↑ TP53↑, CCNA2 ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohmori, K. Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis. Biomolecules 2025, 15, 1431. https://doi.org/10.3390/biom15101431
Ohmori K. Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis. Biomolecules. 2025; 15(10):1431. https://doi.org/10.3390/biom15101431
Chicago/Turabian StyleOhmori, Kiyomi. 2025. "Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis" Biomolecules 15, no. 10: 1431. https://doi.org/10.3390/biom15101431
APA StyleOhmori, K. (2025). Oncotransformation in Bhas 42 Cell Transformation Assay by Typical Non-Genotoxic Carcinogens, PFOA and PFOS, and Time-Course Transcriptome Analysis. Biomolecules, 15(10), 1431. https://doi.org/10.3390/biom15101431