Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy
Abstract
1. Introduction
2. The Biological Basis of Neurotransmitters
3. The Role of Major Neurotransmitters in Cancer
3.1. Classic Neurotransmitters
3.1.1. Acetylcholine
3.1.2. Glutamate
3.1.3. Gamma-Aminobutyric Acid
3.1.4. Norepinephrine and Epinephrine
3.1.5. Dopamine
3.1.6. 5-Hydroxytryptamine
3.1.7. Retrograde Messenger
3.1.8. The Dual Role of NO
3.1.9. Therapeutic Potential and Challenges of CO
3.1.10. Complex Regulation by Endocannabinoids
3.1.11. Neuropeptide
3.1.12. Neuropeptide Y (NPY) in Tumor Progression and Therapy
3.1.13. Substance P Mediated Oncogenic Signaling
4. Conclusions, Challenges, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swanton, C.; Bernard, E.; Abbosh, C.; Andre, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef]
- Mancusi, R.; Monje, M. The neuroscience of cancer. Nature 2023, 618, 467–479. [Google Scholar] [CrossRef]
- Li, J.; Che, M.J.; Zhang, B.; Zhao, K.W.; Wan, C.; Yang, K.Y. The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. BBA-Rev. Cancer 2023, 1878, 189007. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Wu, X.; He, W.; Song, M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin. Transl. Med. 2024, 14, e1750. [Google Scholar] [CrossRef]
- Schledwitz, A.; Sundel, M.H.; Alizadeh, M.; Hu, S.; Xie, G.; Raufman, J.P. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int. J. Mol. Sci. 2021, 22, 13153. [Google Scholar] [CrossRef]
- Nimgampalle, M.; Chakravarthy, H.; Sharma, S.; Shree, S.; Bhat, A.R.; Pradeepkiran, J.A.; Devanathan, V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res. Rev. 2023, 89, 101994. [Google Scholar] [CrossRef] [PubMed]
- Rizo, J. Molecular Mechanisms Underlying Neurotransmitter Release. Annu. Rev. Biophys. 2022, 51, 377–408. [Google Scholar] [CrossRef]
- Sudhof, T.C. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Chakroborty, D.; Sarkar, C.; Basu, B.; Dasgupta, P.S.; Basu, S. Catecholamines regulate tumor angiogenesis. Cancer Res. 2009, 69, 3727–3730. [Google Scholar] [CrossRef]
- Abid, M.S.R.; Mousavi, S.; Checco, J.W. Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chem. Biol. 2021, 16, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Kaczynska, K.; Zajac, D.; Wojciechowski, P.; Kogut, E.; Szereda-Przestaszewska, M. Neuropeptides and breathing in health and disease. Pulm. Pharmacol. Ther. 2018, 48, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladacenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [CrossRef]
- Sears, S.M.; Hewett, S.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.H.; Hu, L.P.; Wang, X.; Li, J.; Zhang, Z.G. Neurotransmitters: Emerging targets in cancer. Oncogene 2020, 39, 503–515. [Google Scholar] [CrossRef]
- Shi, Y.M.; Luo, J.M.; Wang, X.Q.; Zhang, Y.Q.; Zhu, H.; Su, D.S.; Yu, W.F.; Tian, J. Emerging Trends on the Correlation Between Neurotransmitters and Tumor Progression in the Last 20 Years: A Bibliometric Analysis CiteSpace. Front. Oncol. 2022, 12, 800499. [Google Scholar] [CrossRef]
- Zahalka, A.H.; Frenette, P.S. Nerves in cancer. Nat. Rev. Cancer 2020, 20, 143–157. [Google Scholar] [CrossRef]
- Silverman, D.A.; Martinez, V.K.; Dougherty, P.M.; Myers, J.N.; Calin, G.A.; Amit, M. Cancer-Associated Neurogenesis and Nerve-Cancer Cross-talk. Cancer Res. 2021, 81, 1431–1440. [Google Scholar] [CrossRef]
- Zahalka, A.H.; Arnal-Estape, A.; Maryanovich, M.; Nakahara, F.; Cruz, C.D.; Finley, L.W.S.; Frenette, P.S. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 2017, 358, 321–326. [Google Scholar] [CrossRef]
- Mendoza-Torreblanca, J.G.; Cardenas-Rodriguez, N.; Carro-Rodriguez, J.; Contreras-Garcia, I.J.; Garciadiego-Cazares, D.; Ortega-Cuellar, D.; Martinez-Lopez, V.; Alfaro-Rodriguez, A.; Evia-Ramirez, A.N.; Ignacio-Mejia, I.; et al. Antiangiogenic Effect of Dopamine and Dopaminergic Agonists as an Adjuvant Therapeutic Option in the Treatment of Cancer, Endometriosis, and Osteoarthritis. Int. J. Mol. Sci. 2023, 24, 10199. [Google Scholar] [CrossRef]
- Prado, M.A.; Reis, R.A.; Prado, V.F.; de Mello, M.C.; Gomez, M.V.; de Mello, F.G. Regulation of acetylcholine synthesis and storage. Neurochem. Int. 2002, 41, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, C.; Shichkova, P.; Keller, D.; Markram, H.; Ramaswamy, S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front. Neural Circuits 2019, 13, 24. [Google Scholar] [CrossRef]
- Hogg, R.C.; Raggenbass, M.; Bertrand, D. Nicotinic acetylcholine receptors: From structure to brain function. Rev. Physiol. Biochem. Pharmacol. 2003, 147, 1–46. [Google Scholar] [CrossRef]
- Terry, A.V., Jr.; Jones, K.; Bertrand, D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol. Res. 2023, 191, 106764. [Google Scholar] [CrossRef]
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef]
- Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: Novel opportunities for drug development. Nat. Rev. Drug Discov. 2014, 13, 549–560. [Google Scholar] [CrossRef]
- Hulme, E.C.; Birdsall, N.J.; Buckley, N.J. Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 633–673. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Improgo, M.R.; Scofield, M.D.; Tapper, A.R.; Gardner, P.D. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer. Prog. Neurobiol. 2010, 92, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.K.; Lin, P.C.; Huang, T.T.; Hung, H.Y.; Huang, T.W.; Huang, E.Y.K. Nicotine activates HIF-1α and regulates acid extruders through the nicotinic acetylcholine receptor to promote the Warburg effect in non-small cell lung cancer cells. Eur. J. Pharmacol. 2023, 950, 175778. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, X.P.; Zhao, Q.N.; Yang, X.J.; An, S.M.; Wang, H.; Xu, L.; Zhu, L.; Chen, H.Z. Role of alpha7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget 2016, 7, 59199–59208. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.R.; Richbart, S.D.; Merritt, J.C.; Brown, K.C.; Nolan, N.A.; Akers, A.T.; Lau, J.K.; Robateau, Z.R.; Miles, S.L.; Dasgupta, P. Acetylcholine signaling system in progression of lung cancers. Pharmacol. Ther. 2019, 194, 222–254. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Takayama, K.; Harada, T.; Okamoto, I.; Iwama, E.; Fujii, A.; Ota, K.; Hidaka, N.; Kawano, Y.; et al. Nicotine induces resistance to erlotinib via cross-talk between alpha 1 nAChR and EGFR in the non-small cell lung cancer xenograft model. Lung Cancer 2015, 88, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y.; Zhang, Y.; Zhou, D.; Sun, H.; Ma, X. alpha5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J. Cell Mol. Med. 2020, 24, 2497–2506. [Google Scholar] [CrossRef]
- Zhu, P.; Kang, G.; Jiao, Y.; Gui, C.; Fan, H.; Li, X.; Jia, Y.; Zhang, L.; Ma, X. The alpha5-nAChR/PD-L1 axis facilitates lung adenocarcinoma cell migration and invasion. Hum. Cell 2022, 35, 1207–1218. [Google Scholar] [CrossRef]
- Ding, K.; Jiang, X.; Ni, J.; Zhang, C.; Li, A.; Zhou, J. JWA inhibits nicotine-induced lung cancer stemness and progression through CHRNA5/AKT-mediated JWA/SP1/CD44 axis. Ecotoxicol. Environ. Saf. 2023, 259, 115043. [Google Scholar] [CrossRef]
- Kang, G.; Jiao, Y.; Pan, P.; Fan, H.; Li, Q.; Li, X.; Li, J.; Wang, Y.; Jia, Y.; Wang, J.; et al. alpha5-nAChR/STAT3/CD47 axis contributed to nicotine-related lung adenocarcinoma progression and immune escape. Carcinogenesis 2023, 44, 773–784. [Google Scholar] [CrossRef]
- Kang, G.; Song, H.; Bo, L.; Liu, Q.; Li, Q.; Li, J.; Pan, P.; Wang, J.; Jia, Y.; Sun, H.; et al. Nicotine promotes M2 macrophage polarization through alpha5-nAChR/SOX2/CSF-1 axis in lung adenocarcinoma. Cancer Immunol. Immunother. 2024, 74, 11. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, Y.; Pan, P.; Zhang, X.; Jia, Y.; Zhu, P.; Chen, X.; Jiao, Y.; Kang, G.; Zhang, L.; et al. alpha5-nAChR associated with Ly6E modulates cell migration via TGF-beta1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022, 43, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Hsu, Y.F.; Liu, C.H.; Kuo, Y.L.; Chen, Y.C.; Yeh, Y.C.; Ho, H.L.; Wu, Y.C.; Chou, T.Y.; Wu, C.W. Low-Dose Nicotine Activates EGFR Signaling via alpha5-nAChR and Promotes Lung Adenocarcinoma Progression. Int. J. Mol. Sci. 2020, 21, 6829. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Q.; Liu, Z.; Pan, P.; Jia, Y.; Zhu, P.; Jiao, Y.; Kang, G.; Ma, X. The role of alpha5-nicotinic acetylcholine receptor/NLRP3 signaling pathway in lung adenocarcinoma cell proliferation and migration. Toxicology 2022, 469, 153120. [Google Scholar] [CrossRef]
- Witayateeraporn, W.; Arunrungvichian, K.; Pothongsrisit, S.; Doungchawee, J.; Vajragupta, O.; Pongrakhananon, V. alpha7-Nicotinic acetylcholine receptor antagonist QND7 suppresses non-small cell lung cancer cell proliferation and migration via inhibition of Akt/mTOR signaling. Biochem. Biophys. Res. Commun. 2020, 521, 977–983. [Google Scholar] [CrossRef]
- Bai, S.; Wen, W.; Hou, X.; Wu, J.; Yi, L.; Zhi, Y.; Lv, Y.; Tan, X.; Liu, L.; Wang, P.; et al. Inhibitory effect of sinomenine on lung cancer cells via negative regulation of alpha7 nicotinic acetylcholine receptor. J. Leukoc. Biol. 2021, 109, 843–852. [Google Scholar] [CrossRef]
- Joukhan, A.; Kononenko, V.; Bele, T.; Sollner Dolenc, M.; Peigneur, S.; Pinheiro-Junior, E.L.; Tytgat, J.; Turk, T.; Krizaj, I.; Drobne, D. Attenuation of Nicotine Effects on A549 Lung Cancer Cells by Synthetic alpha7 nAChR Antagonists APS7-2 and APS8-2. Mar. Drugs 2024, 22, 147. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, H.; Wu, H.; Zhang, H.; Zhang, X.; Xiao, D.; Ma, X.; Wang, Y. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating alpha5-nAChR/AKT Signaling in Human Gastric Cancer Cells. PLoS ONE 2016, 11, e0149120. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Zhang, A.; Chen, Z.; Zhang, X.; Zhang, R.; Yin, C.; Zhang, J.; Zhang, Y.; Yan, Y. Migration of gastric cancer is suppressed by recombinant Newcastle disease virus (rL-RVG) via regulating alpha7-nicotinic acetylcholine receptors/ERK- EMT. BMC Cancer 2019, 19, 976. [Google Scholar] [CrossRef]
- Chen, P.C.; Lee, W.Y.; Ling, H.H.; Cheng, C.H.; Chen, K.C.; Lin, C.W. Activation of fibroblasts by nicotine promotes the epithelial-mesenchymal transition and motility of breast cancer cells. J. Cell Physiol. 2018, 233, 4972–4980. [Google Scholar] [CrossRef]
- Guo, X.; He, L.; Xu, W.; Wang, W.; Feng, X.; Fu, Y.; Zhang, X.; Ding, R.B.; Qi, X.; Bao, J.; et al. alphaO-Conotoxin GeXIVA [1,2] Suppresses In Vivo Tumor Growth of Triple-Negative Breast Cancer by Inhibiting AKT-mTOR, STAT3 and NF-kappaB Signaling Mediated Proliferation and Inducing Apoptosis. Mar. Drugs 2024, 22, 252. [Google Scholar] [CrossRef]
- Sun, Z.; Zhangsun, M.; Dong, S.; Liu, Y.; Qian, J.; Zhangsun, D.; Luo, S. Differential Expression of Nicotine Acetylcholine Receptors Associates with Human Breast Cancer and Mediates Antitumor Activity of alphaO-Conotoxin GeXIVA. Mar. Drugs 2020, 18, 61. [Google Scholar] [CrossRef]
- Sun, Z.; Bao, J.; Zhangsun, M.; Dong, S.; Zhangsun, D.; Luo, S. alphaO-Conotoxin GeXIVA Inhibits the Growth of Breast Cancer Cells via Interaction with alpha9 Nicotine Acetylcholine Receptors. Mar. Drugs 2020, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Ochirbat, S.; Kan, T.C.; Hsu, C.C.; Huang, T.H.; Chuang, K.H.; Chen, M.; Cheng, C.C.; Chang, C.C.; Rahayu, S.; Chang, J. The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers. Angiogenesis 2024, 27, 827–843. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, T.; Friedman, T.; Vadgama, J.; Singh, V.; Tucker, A.; Collazo, J.; Sinha, S.; Hikim, A.S.; Singh, R.; Pervin, S. Nicotine Synergizes with High-Fat Diet to Induce an Anti-Inflammatory Microenvironment to Promote Breast Tumor Growth. Mediators Inflamm. 2020, 2020, 5239419. [Google Scholar] [CrossRef]
- Xiang, T.; Yu, F.; Fei, R.; Qian, J.; Chen, W. CHRNA7 inhibits cell invasion and metastasis of LoVo human colorectal cancer cells through PI3K/Akt signaling. Oncol. Rep. 2016, 35, 999–1005. [Google Scholar] [CrossRef]
- Fei, R.; Zhang, Y.; Wang, S.; Xiang, T.; Chen, W. alpha7 nicotinic acetylcholine receptor in tumor-associated macrophages inhibits colorectal cancer metastasis through the JAK2/STAT3 signaling pathway. Oncol. Rep. 2017, 38, 2619–2628. [Google Scholar] [CrossRef]
- Nimmakayala, R.K.; Seshacharyulu, P.; Lakshmanan, I.; Rachagani, S.; Chugh, S.; Karmakar, S.; Rauth, S.; Vengoji, R.; Atri, P.; Talmon, G.A.; et al. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology 2018, 155, 892–908.e6. [Google Scholar] [CrossRef]
- Chen, S.; Kang, X.; Liu, G.; Zhang, B.; Hu, X.; Feng, Y. α7-Nicotinic Acetylcholine Receptor Promotes Cholangiocarcinoma Progression and Epithelial-Mesenchymal Transition Process. Dig. Dis. Sci. 2019, 64, 2843–2853. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Sakitani, K.; Konishi, M.; Asfaha, S.; Niikura, R.; Tomita, H.; Renz, B.W.; Tailor, Y.; Macchini, M.; Middelhoff, M.; et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell 2017, 31, 21–34. [Google Scholar] [CrossRef]
- Nie, M.; Chen, N.; Pang, H.; Jiang, T.; Jiang, W.; Tian, P.; Yao, L.; Chen, Y.; DeBerardinis, R.J.; Li, W.; et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse. J. Clin. Investig. 2022, 132, e160152. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Gu, X.; Zhang, C.; Lu, Q.; Chen, H.; Xu, L. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Cancer Biol. Ther. 2015, 16, 634–643. [Google Scholar] [CrossRef]
- Zhao, Q.; Yue, J.; Zhang, C.; Gu, X.; Chen, H.; Xu, L. Inactivation of M2 AChR/NF-kappaB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget 2015, 6, 29335–29346. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chen, M.C.; Chiu, T.H.; Li, Y.H.; Yu, W.C.; Liao, W.L.; Oner, M.; Yu, C.R.; Wu, C.C.; Yang, T.Y.; et al. Arecoline Promotes Migration of A549 Lung Cancer Cells through Activating the EGFR/Src/FAK Pathway. Toxins 2019, 11, 185. [Google Scholar] [CrossRef]
- Xu, R.; Shang, C.; Zhao, J.; Han, Y.; Liu, J.; Chen, K.; Shi, W. Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation and invasion via EGFR/PI3K/AKT pathway. Tumour Biol. 2015, 36, 4091–4100. [Google Scholar] [CrossRef]
- Wang, L.; Zhi, X.; Zhang, Q.; Wei, S.; Li, Z.; Zhou, J.; Jiang, J.; Zhu, Y.; Yang, L.; Xu, H.; et al. Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol. 2016, 37, 2105–2117. [Google Scholar] [CrossRef]
- Yu, H.; Xia, H.; Tang, Q.; Xu, H.; Wei, G.; Chen, Y.; Dai, X.; Gong, Q.; Bi, F. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci. Rep. 2017, 7, 40802. [Google Scholar] [CrossRef]
- Yang, T.; He, W.; Cui, F.; Xia, J.; Zhou, R.; Wu, Z.; Zhao, Y.; Shi, M. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget 2016, 7, 18085–18094. [Google Scholar] [CrossRef]
- Pelegrina, L.T.; Lombardi, M.G.; Fiszman, G.L.; Azar, M.E.; Morgado, C.C.; Sales, M.E. Immunoglobulin g from breast cancer patients regulates MCF-7 cells migration and MMP-9 activity by stimulating muscarinic acetylcholine receptors. J. Clin. Immunol. 2013, 33, 427–435. [Google Scholar] [CrossRef]
- Lombardi, M.G.; Negroni, M.P.; Pelegrina, L.T.; Castro, M.E.; Fiszman, G.L.; Azar, M.E.; Morgado, C.C.; Sales, M.E. Autoantibodies against muscarinic receptors in breast cancer: Their role in tumor angiogenesis. PLoS ONE 2013, 8, e57572. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Alkuwayti, M.A.; Ibrahim, H.M. Atropine Is a Suppressor of Epithelial-Mesenchymal Transition (EMT) That Reduces Stemness in Drug-Resistant Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 9849. [Google Scholar] [CrossRef]
- Cholpraipimolrat, W.; Suriyo, T.; Rangkadilok, N.; Nookabkaew, S.; Satayavivad, J. Hijiki and sodium arsenite stimulate growth of human colorectal adenocarcinoma cells through ERK1/2 activation. Food Chem. Toxicol. 2017, 110, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Liu, Z.; Vasamsetti, B.M.; Cho, N.J. The ERK1/2 and mTORC1 Signaling Pathways Are Involved in the Muscarinic Acetylcholine Receptor-Mediated Proliferation of SNU-407 Colon Cancer Cells. J. Cell Biochem. 2016, 117, 2854–2863. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cho, N.J. Muscarinic acetylcholine receptors mediate eIF4B phosphorylation in SNU-407 colon cancer cells. Biochem. Biophys. Res. Commun. 2016, 480, 450–454. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, X.; Liu, G.; Lu, L.; Zhao, W.; Shen, F.; Ma, K.; Sun, C.; Zhu, C.; Zhang, B. M3 muscarinic acetylcholine receptors regulate epithelial-mesenchymal transition, perineural invasion, and migration/metastasis in cholangiocarcinoma through the AKT pathway. Cancer Cell Int. 2018, 18, 173. [Google Scholar] [CrossRef]
- Amonyingcharoen, S.; Suriyo, T.; Thiantanawat, A.; Watcharasit, P.; Satayavivad, J. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway. Int. J. Oncol. 2015, 46, 2317–2326. [Google Scholar] [CrossRef]
- Guerriero, C.; Manfredelli, M.; Matera, C.; Iuzzolino, A.; Conti, L.; Dallanoce, C.; De Amici, M.; Trisciuoglio, D.; Tata, A.M. M2 Muscarinic Receptor Stimulation Induces Autophagy in Human Glioblastoma Cancer Stem Cells via mTOR Complex-1 Inhibition. Cancers 2023, 16, 25. [Google Scholar] [CrossRef]
- Taggi, M.; Kovacevic, A.; Capponi, C.; Falcinelli, M.; Cacciamani, V.; Vicini, E.; Canipari, R.; Tata, A.M. The activation of M2 muscarinic receptor inhibits cell growth and survival in human epithelial ovarian carcinoma. J. Cell Biochem. 2022, 123, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Mehedinteanu, A.M.; Mirea, C.S.; Stovicek, P.O.; Schenker, M.; Stancu, M.I.; Ciurea, A.M.; Streba, L.; Istrate-Ofiteru, A.M.; Sas, T.N.; Vere, C.C. Expression of M3 muscarinic acetylcholine receptors in gastric cancer. Rom. J. Morphol. Embryol. 2021, 62, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef]
- Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021, 196, 108719. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73, 298–487. [Google Scholar] [CrossRef]
- Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018, 150, 1081–1105. [Google Scholar] [CrossRef]
- Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef]
- Yu, L.J.; Wall, B.A.; Wangari-Talbot, J.; Chen, S. Metabotropic glutamate receptors in cancer. Neuropharmacology 2017, 115, 193–202. [Google Scholar] [CrossRef]
- Eddy, K.; Eddin, M.N.; Fateeva, A.; Pompili, S.V.B.; Shah, R.; Doshi, S.; Chen, S. Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022, 11, 2857. [Google Scholar] [CrossRef]
- Speyer, C.L.; Hachem, A.H.; Assi, A.A.; Johnson, J.S.; DeVries, J.A.; Gorski, D.H. Metabotropic glutamate receptor-1 as a novel target for the antiangiogenic treatment of breast cancer. PLoS ONE 2014, 9, e88830. [Google Scholar] [CrossRef]
- Kaittanis, C.; Andreou, C.; Hieronymus, H.; Mao, N.; Foss, C.A.; Eiber, M.; Weirich, G.; Panchal, P.; Gopalan, A.; Zurita, J.; et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J. Exp. Med. 2018, 215, 159–175. [Google Scholar] [CrossRef]
- Morikawa, N.; Tachibana, M.; Ago, Y.; Goda, H.; Sakurai, F.; Mizuguchi, H. LY341495, an mGluR2/3 Antagonist, Regulates the Immunosuppressive Function of Myeloid-Derived Suppressor Cells and Inhibits Melanoma Tumor Growth. Biol. Pharm. Bull. 2018, 41, 1866–1869. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, K.; Zhu, K.; Zheng, X.; Wang, L.; Luan, Y.; Wang, X.; Lu, H.; Wu, K.; et al. Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer. J. Cell Physiol. 2019, 234, 2741–2755. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Ichinose, T.; Kadokawa, R.; Mizutani, R.; Iwabuchi, S.; Togi, S.; Ura, H.; Tange, S.; Shinjo, K.; Nakayama, J.; et al. Astrocyte-induced mGluR1 activates human lung cancer brain metastasis via glutamate-dependent stabilization of EGFR. Dev. Cell 2024, 59, 579–594.e6. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Kwak, H.; Cheong, E.; Lee, C.J. GABA tone regulation and its cognitive functions in the brain. Nat. Rev. Neurosci. 2023, 24, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Zou, G.; Zhu, R.; Kong, C.; Miao, C.; Zhang, M.; Li, J.; Xiong, W.; Wang, C. Structural basis of GABARAP-mediated GABA(A) receptor trafficking and functions on GABAergic synaptic transmission. Nat. Commun. 2021, 12, 297. [Google Scholar] [CrossRef]
- Kerr, D.I.; Ong, J. GABAB receptors. Pharmacol. Ther. 1995, 67, 187–246. [Google Scholar] [CrossRef]
- El-Habr, E.A.; Dubois, L.G.; Burel-Vandenbos, F.; Bogeas, A.; Lipecka, J.; Turchi, L.; Lejeune, F.X.; Coehlo, P.L.; Yamaki, T.; Wittmann, B.M.; et al. A driver role for GABA metabolism in controlling stem and proliferative cell state through GHB production in glioma. Acta Neuropathol. 2017, 133, 645–660. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, G.; Nie, D.; Xu, Y.; Bai, X.; Lu, C.; Jian, F.; Wang, H.; Zheng, X. Tumor-derived GABA promotes lung cancer progression by influencing TAMs polarization and neovascularization. Int. Immunopharmacol. 2024, 126, 111217. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, D.; Sun, K.; Zhu, Y.; Xu, J.; Kang, Y.; Zhang, G.; Cai, Y.; Mao, S.; Long, R.; et al. Propofol maintains Th17/Treg cell balance in elderly patients undergoing lung cancer surgery through GABAA receptor. BMC Immunol. 2022, 23, 58. [Google Scholar] [CrossRef]
- Liu, Q.; Sheng, Z.; Cheng, C.; Zheng, H.; Lanuti, M.; Liu, R.; Wang, P.; Shen, Y.; Xie, Z. Anesthetic Propofol Promotes Tumor Metastasis in Lungs via GABA(A) R-Dependent TRIM21 Modulation of Src Expression. Adv. Sci. 2021, 8, e2102079. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xu, X.; Liu, D.; Gao, J.; Gao, Y.; Wu, X.; Sheng, H.; Li, Q.; Mi, J. The delta subunit of the GABA(A) receptor is necessary for the GPT2-promoted breast cancer metastasis. Theranostics 2023, 13, 1355–1369. [Google Scholar] [CrossRef]
- Gumireddy, K.; Li, A.; Kossenkov, A.V.; Sakurai, M.; Yan, J.; Li, Y.; Xu, H.; Wang, J.; Zhang, P.J.; Zhang, L.; et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis. Nat. Commun. 2016, 7, 10715. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.; Shaw, J.; Hammel, M.; Nguyen, J.; Robbins, C.; Mercier, I.; Suryanarayanan, A. Role of beta3 subunit of the GABA type A receptor in triple negative breast cancer proliferation, migration, and cell cycle progression. Cell Cycle 2024, 23, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Sizemore, G.M.; Sizemore, S.T.; Seachrist, D.D.; Keri, R.A. GABA(A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J. Biol. Chem. 2014, 289, 24102–24113. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Yao, Z.; Wei, C.; Ning, N.; Li, J. GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett. 2014, 348, 100–108. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Wan, H.; Chen, L.; Wang, F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed. Pharmacother. 2010, 64, 583–588. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Sun, Z.; Chen, W.; Miao, C. GABAB receptor inhibits tumor progression and epithelial-mesenchymal transition via the regulation of Hippo/YAP1 pathway in colorectal cancer. Int. J. Biol. Sci. 2021, 17, 1953–1962. [Google Scholar] [CrossRef]
- Shu, Q.; Liu, J.; Liu, X.; Zhao, S.; Li, H.; Tan, Y.; Xu, J. GABAB R/GSK-3beta/NF-kappaB signaling pathway regulates the proliferation of colorectal cancer cells. Cancer Med. 2016, 5, 1259–1267. [Google Scholar] [CrossRef]
- An, J.; Seok, H.; Ha, E.M. GABA-producing Lactobacillus plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant colorectal cancer cells via GABA(B) receptor signaling. J. Microbiol. 2021, 59, 202–216. [Google Scholar] [CrossRef]
- Xia, S.; He, C.; Zhu, Y.; Wang, S.; Li, H.; Zhang, Z.; Jiang, X.; Liu, J. GABA(B)R-Induced EGFR Transactivation Promotes Migration of Human Prostate Cancer Cells. Mol. Pharmacol. 2017, 92, 265–277. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Yu, Y.; Li, M.; Cao, Y.; Prochownik, E.V.; Li, Y. Increases in 4-Acetaminobutyric Acid Generated by Phosphomevalonate Kinase Suppress CD8(+) T Cell Activation and Allow Tumor Immune Escape. Adv. Sci. 2024, 11, e2403629. [Google Scholar] [CrossRef]
- Kaushik, I.; Srivastava, S.K. GABA(A) receptor agonist suppresses pediatric medulloblastoma progression by inhibiting PKA-Gli1 signaling axis. Mol. Ther. 2022, 30, 2584–2602. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, A.D. Structure, function, and regulation of adrenergic receptors. Protein Sci. 1993, 2, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Verberne, A.J.; Korim, W.S.; Sabetghadam, A.; Llewellyn-Smith, I.J. Adrenaline: Insights into its metabolic roles in hypoglycaemia and diabetes. Br. J. Pharmacol. 2016, 173, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.; Davenport, A.P.; Kelly, E.; Marrion, N.; Peters, J.A.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Southan, C.; et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 2015, 172, 5744–5869. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Huang, W.C.; Donin, N.M.; Levey, A.S.; Campbell, S.C. Chronic Kidney Disease and Kidney Cancer Surgery: New Perspectives. J. Urol. 2020, 203, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, N.S.; Amit, U.; Reibel, J.B.; Berlin, E.; Howell, K.; Ky, B. Cardiovascular disease and cancer: Shared risk factors and mechanisms. Nat. Rev. Cardiol. 2024, 21, 617–631. [Google Scholar] [CrossRef]
- Tu, H.; Wen, C.P.; Tsai, S.P.; Chow, W.H.; Wen, C.; Ye, Y.; Zhao, H.; Tsai, M.K.; Huang, M.; Dinney, C.P.; et al. Cancer risk associated with chronic diseases and disease markers: Prospective cohort study. BMJ 2018, 360, k134. [Google Scholar] [CrossRef] [PubMed]
- Eckerling, A.; Ricon-Becker, I.; Sorski, L.; Sandbank, E.; Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nat. Rev. Cancer 2021, 21, 767–785. [Google Scholar] [CrossRef]
- Forte, P.; Abate, V.; Bolognini, I.; Mazzoni, O.; Quagliariello, V.; Maurea, N.; Di Bonito, D.; Quarata, E.; Migliaccio, G.; Petrillo, M.; et al. Mindfulness-based stress reduction in cancer patients: Impact on overall survival, quality of life and risk factor. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 8190–8197. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Kim-Fuchs, C.; Le, C.P.; Pimentel, M.A.; Shackleford, D.; Ferrari, D.; Angst, E.; Hollande, F.; Sloan, E.K. Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 2014, 40, 40–47. [Google Scholar] [CrossRef]
- Lin, X.; He, J.; Liu, F.; Li, L.; Sun, L.; Niu, L.; Xi, H.; Zhan, Y.; Liu, X.; Hu, P. beta-adrenergic receptor activation promotes the proliferation of HepG2 cells via the ERK1/2/CREB pathways. Oncol. Lett. 2023, 26, 519. [Google Scholar] [CrossRef]
- Reavis, H.D.; Gysler, S.M.; McKenney, G.B.; Knarr, M.; Lusk, H.J.; Rawat, P.; Rendulich, H.S.; Mitchell, M.A.; Berger, D.S.; Moon, J.S.; et al. Norepinephrine induces anoikis resistance in high-grade serous ovarian cancer precursor cells. JCI Insight 2024, 9, e170961. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Park, H.J.; Park, S.H.; Choi, Y.H.; Chi, G.Y. beta2-Adrenergic Receptor Signaling Pathway Stimulates the Migration and Invasion of Cancer Cells via Src Activation. Molecules 2022, 27, 5940. [Google Scholar] [CrossRef]
- Mohammadpour, H.; MacDonald, C.R.; McCarthy, P.L.; Abrams, S.I.; Repasky, E.A. beta2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME. Cell Rep. 2021, 37, 109883. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Rao, Z.; Li, Z.; Hu, Y.; Zhang, Z.; Zhou, J.; Zhou, T.; Wang, H. The role of beta2-AR/PI3K/AKT pathway in the proliferation, migration and invasion of THLE-2 cells induced by nicotine. Toxicology 2024, 508, 153924. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Cheng, C.; Bi, M.; Li, J.; Cong, J.; Wang, X. Social isolation promotes tumor immune evasion via beta2-adrenergic receptor. Brain Behav. Immun. 2024, 123, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Daher, C.; Vimeux, L.; Stoeva, R.; Peranzoni, E.; Bismuth, G.; Wieduwild, E.; Lucas, B.; Donnadieu, E.; Bercovici, N.; Trautmann, A.; et al. Blockade of beta-Adrenergic Receptors Improves CD8(+) T-cell Priming and Cancer Vaccine Efficacy. Cancer Immunol. Res. 2019, 7, 1849–1863. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, D.; Liu, S.; Fu, W.; Wang, J.; Liang, Z. Norepinephrine inhibits the cytotoxicity of NK92-MI cells via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Mol. Med. Rep. 2018, 17, 8530–8535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, J.; Yu, J.; Wang, Y.; Wang, Z.; He, Z.; Ouyang, D.; Liu, H.; Wang, Y. Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy. J. Control Release 2022, 351, 656–666. [Google Scholar] [CrossRef]
- Garritsen, O.; van Battum, E.Y.; Grossouw, L.M.; Pasterkamp, R.J. Development, wiring and function of dopamine neuron subtypes. Nat. Rev. Neurosci. 2023, 24, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
- Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Belle, M.; Bertaso, F.; Arango-Lievano, M.; Ango, F.; Rubinstein, M.; Quintana, A.; et al. Cerebellar dopamine D2 receptors regulate social behaviors. Nat. Neurosci. 2022, 25, 900–911. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Krumm, B.E.; Zhuang, Y.; Mao, C.; Zhang, Y.; Wang, Y.; Huang, X.P.; Liu, Y.F.; He, X.; et al. Structural genomics of the human dopamine receptor system. Cell Res. 2023, 33, 604–616. [Google Scholar] [CrossRef]
- Yong, L.; Yao, Y.; Chen, G.S.; Yan, X.X.; Guo, Y.C.; Han, M.Y.; Xue, J.S.; Jian, W.Z.; Zhou, T.Y. QAP14 suppresses breast cancer stemness and metastasis via activation of dopamine D1 receptor. Acta Pharmacol. Sin. 2022, 43, 1001–1012. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, R.; Liu, L.; Yang, D.; Xiang, Q.; Li, L.; Tang, J.; Qiu, Z.; Peng, W.; Wang, Y.; et al. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-kappaB signaling to trigger pyroptosis in breast cancer. Theranostics 2021, 11, 5214–5231. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, M.; Zhu, H.; You, Q.; Yuan, H.; Li, Y. Hypomethylation of DRD2 promotes breast cancer through the FLNA-ERK pathway. Cancer Genet. 2023, 278–279, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, L.; Chen, J.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Zhang, Q.; Xia, Y.; Luo, M. Thioridazine hydrochloride: An antipsychotic agent that inhibits tumor growth and lung metastasis in triple-negative breast cancer via inducing G0/G1 arrest and apoptosis. Cell Cycle 2020, 19, 3521–3533. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, J.; Zhang, Y.; Han, J.; Yang, Y.; Zhao, Z.; Dai, X.; Wang, H.; Ding, X.; Liu, Y.; et al. Psychologic Stress Drives Progression of Malignant Tumors via DRD2/HIF1alpha Signaling. Cancer Res. 2021, 81, 5353–5365. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.E.; Flis, A.L.; Toulabi, L.; Zingone, A.; Rossi, E.; Aploks, K.; Sheppard, H.; Ryan, B.M. DRD1 suppresses cell proliferation and reduces EGFR activation and PD-L1 expression in NSCLC. Mol. Oncol. 2024, 18, 1631–1648. [Google Scholar] [CrossRef]
- Hoeppner, L.H.; Wang, Y.; Sharma, A.; Javeed, N.; Van Keulen, V.P.; Wang, E.; Yang, P.; Roden, A.C.; Peikert, T.; Molina, J.R.; et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol. 2015, 9, 270–281. [Google Scholar] [CrossRef]
- Roy, S.; Lu, K.; Nayak, M.K.; Bhuniya, A.; Ghosh, T.; Kundu, S.; Ghosh, S.; Baral, R.; Dasgupta, P.S.; Basu, S. Activation of D2 Dopamine Receptors in CD133+ve Cancer Stem Cells in Non-small Cell Lung Carcinoma Inhibits Proliferation, Clonogenic Ability, and Invasiveness of These Cells. J. Biol. Chem. 2017, 292, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Pan, J.; Chen, Y.; Xing, W.; Li, Q.; Wang, D.; Zhou, X.; Xie, J.; Miao, C.; Yuan, Y.; et al. Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer. Commun. 2020, 40, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.B.; Zhang, B.H.; Zhang, K.Z.; Meng, X.T.; Jia, Q.A.; Zhang, Q.B.; Bu, Y.; Zhu, X.D.; Ma, D.N.; Ye, B.G.; et al. Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: With reference to nervous system. Oncogene 2016, 35, 4122–4131. [Google Scholar] [CrossRef]
- Hartwell, H.J.; Petrosky, K.Y.; Fox, J.G.; Horseman, N.D.; Rogers, A.B. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc. Natl. Acad. Sci. USA 2014, 111, 11455–11460. [Google Scholar] [CrossRef]
- Huang, H.; Wu, K.; Ma, J.; Du, Y.; Cao, C.; Nie, Y. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int. Immunopharmacol. 2016, 39, 113–120. [Google Scholar] [CrossRef]
- Sim, S.J.; Jang, J.H.; Choi, J.S.; Chun, K.S. Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells. Biomol. Ther. 2024, 32, 568–576. [Google Scholar] [CrossRef]
- Ren, Y.; Tao, J.; Jiang, Z.; Guo, D.; Tang, J. Pimozide suppresses colorectal cancer via inhibition of Wnt/beta-catenin signaling pathway. Life Sci. 2018, 209, 267–273. [Google Scholar] [CrossRef]
- Yogo, A.; Masui, T.; Takaishi, S.; Masuo, K.; Chen, R.; Kasai, Y.; Nagai, K.; Anazawa, T.; Watanabe, S.; Sakamoto, S.; et al. Inhibition of dopamine receptor D1 signaling promotes human bile duct cancer progression via WNT signaling. Cancer Sci. 2023, 114, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Sarkar, C.; Chakroborty, D.; Nagy, J.; Mitra, R.B.; Dasgupta, P.S.; Mukhopadhyay, D. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res. 2004, 64, 5551–5555. [Google Scholar] [CrossRef]
- Jeon, H.M.; Oh, Y.T.; Shin, Y.J.; Chang, N.; Kim, D.; Woo, D.; Yeup, Y.; Joo, K.M.; Jo, H.; Yang, H.; et al. Dopamine receptor D2 regulates glioblastoma survival and death through MET and death receptor 4/5. Neoplasia 2023, 39, 100894. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, K.; Qi, J.; Zhang, Y.; Wang, X.; Zhang, L.; Zhou, Y.; Gu, L.; Yu, R.; et al. Chronic stress accelerates glioblastoma progression via DRD2/ERK/beta-catenin axis and Dopamine/ERK/TH positive feedback loop. J. Exp. Clin. Cancer Res. 2023, 42, 161. [Google Scholar] [CrossRef]
- Caragher, S.P.; Shireman, J.M.; Huang, M.; Miska, J.; Atashi, F.; Baisiwala, S.; Hong Park, C.; Saathoff, M.R.; Warnke, L.; Xiao, T.; et al. Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic Plasticity in Glioblastoma. J. Neurosci. 2019, 39, 1982–1993. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.; Wang, F.; Wu, Q.; Li, W.; Zhong, X.; Tian, K.; Zeng, T.; Gao, L.; Liu, Y.; et al. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J. Mol. Cell Biol. 2017, 9, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Marisetty, A.L.; Lu, L.; Veo, B.L.; Liu, B.; Coarfa, C.; Kamal, M.M.; Kassem, D.H.; Irshad, K.; Lu, Y.; Gumin, J.; et al. REST-DRD2 mechanism impacts glioblastoma stem cell-mediated tumorigenesis. Neuro Oncol. 2019, 21, 775–785. [Google Scholar] [CrossRef]
- Chakroborty, D.; Sarkar, C.; Mitra, R.B.; Banerjee, S.; Dasgupta, P.S.; Basu, S. Depleted dopamine in gastric cancer tissues: Dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin. Cancer Res. 2004, 10, 4349–4356. [Google Scholar] [CrossRef]
- Coufal, M.; Invernizzi, P.; Gaudio, E.; Bernuzzi, F.; Frampton, G.A.; Onori, P.; Franchitto, A.; Carpino, G.; Ramirez, J.C.; Alvaro, D.; et al. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Int. J. Cancer 2010, 126, 2112–2122. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, P.; Hu, B.; Cao, S.; Shi, X.; Guo, W.; Zhang, S. Dopamine and dopamine receptor D1 as a novel favourable biomarker for hepatocellular carcinoma. Cancer Cell Int. 2021, 21, 586. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.B.; Luo, C.; Mao, X.Y.; Li, X.; Yin, J.Y.; Zhang, W.; Zhou, H.H.; Liu, Z.Q. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J. Cancer 2019, 10, 1622–1632. [Google Scholar] [CrossRef]
- Cervantes-Villagrana, R.D.; Albores-Garcia, D.; Cervantes-Villagrana, A.R.; Garcia-Acevez, S.J. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduct. Target. Ther. 2020, 5, 99. [Google Scholar] [CrossRef]
- Grant, C.E.; Flis, A.L.; Ryan, B.M. Understanding the role of dopamine in cancer: Past, present and future. Carcinogenesis 2022, 43, 517–527. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Liao, Q.; Zhao, Y. Potential Roles of Peripheral Dopamine in Tumor Immunity. J. Cancer 2017, 8, 2966–2973. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, F.; Dadkhah, F.; Campbell, A.; Asadi, F.; Ahangari, G. Characterization of Dopamine Receptor Associated Drugs on the Proliferation and Apoptosis of Prostate Cancer Cell Lines. Anticancer. Agents Med. Chem. 2021, 21, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.R. Serotonin receptors: Subtypes, functional responses and therapeutic relevance. Pharmacol. Ther. 1995, 66, 339–368. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.W.; Peroutka, S.J. 5-Hydroxytryptamine receptor “families”. FASEB J. 1989, 3, 2242–2249. [Google Scholar] [CrossRef]
- Okaty, B.W.; Commons, K.G.; Dymecki, S.M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 2019, 20, 397–424. [Google Scholar] [CrossRef] [PubMed]
- De Deurwaerdere, P.; Di Giovanni, G. Serotonin in Health and Disease. Int. J. Mol. Sci. 2020, 21, 3500. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, S.; Lal, G. Role of serotonin receptor signaling in cancer cells and anti-tumor immunity. Theranostics 2021, 11, 5296–5312. [Google Scholar] [CrossRef]
- Ye, D.; Xu, H.; Tang, Q.; Xia, H.; Zhang, C.; Bi, F. The role of 5-HT metabolism in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188618. [Google Scholar] [CrossRef]
- Sanger, G.J. 5-hydroxytryptamine and the gastrointestinal tract: Where next? Trends Pharmacol. Sci. 2008, 29, 465–471. [Google Scholar] [CrossRef]
- Cheng, P.; Shen, P.; Shan, Y.; Yang, Y.; Deng, R.; Chen, W.; Lu, Y.; Wei, Z. Gut Microbiota-Mediated Modulation of Cancer Progression and Therapy Efficacy. Front. Cell Dev. Biol. 2021, 9, 626045. [Google Scholar] [CrossRef]
- Li, T.; Fu, B.; Zhang, X.; Zhou, Y.; Yang, M.; Cao, M.; Chen, Y.; Tan, Y.; Hu, R. Overproduction of Gastrointestinal 5-HT Promotes Colitis-Associated Colorectal Cancer Progression via Enhancing NLRP3 Inflammasome Activation. Cancer Immunol. Res. 2021, 9, 1008–1023. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qu, T.; Yang, J.; Dai, Q. Serotonin acts through YAP to promote cell proliferation: Mechanism and implication in colorectal cancer progression. Cell Commun. Signal 2023, 21, 75. [Google Scholar] [CrossRef]
- Niu, Q.; Li, L.; Zhang, C.; Qi, C.; He, Q.; Zhu, Y. Expression of 5-HT Relates to Stem Cell Marker LGR5 in Patients with Gastritis and Gastric Cancer. Dig. Dis. Sci. 2023, 68, 1864–1872. [Google Scholar] [CrossRef]
- Schneider, M.A.; Heeb, L.; Beffinger, M.M.; Pantelyushin, S.; Linecker, M.; Roth, L.; Lehmann, K.; Ungethum, U.; Kobold, S.; Graf, R.; et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci. Transl. Med. 2021, 13, eabc8188. [Google Scholar] [CrossRef]
- Tu, Y.; Yao, S.; Chen, Q.; Li, W.; Song, Y.; Zhang, P. 5-Hydroxytryptamine activates a 5-HT/c-Myc/SLC6A4 signaling loop in non-small cell lung cancer. Biochim. Biophys. Acta Gen. Subj. 2022, 1866, 130093. [Google Scholar] [CrossRef]
- Dizeyi, N.; Hedlund, P.; Bjartell, A.; Tinzl, M.; Austild-Tasken, K.; Abrahamsson, P.A. Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol. Oncol. 2011, 29, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Corvino, A.; Fiorino, F.; Severino, B.; Saccone, I.; Frecentese, F.; Perissutti, E.; Di Vaio, P.; Santagada, V.; Caliendo, G.; Magli, E. The Role of 5-HT1A Receptor in Cancer as a New Opportunity in Medicinal Chemistry. Curr. Med. Chem. 2018, 25, 3214–3227. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Lu, T.; Chen, Z.; Liu, B.; Fan, D.; Li, C.; Wu, J.; He, L.; Zhu, X.; Du, Y.; et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron 2022, 110, 2268–2282.e4. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.J.; Kim, J.M.; Kim, I.K.; Kim, N.; Jung, H.C.; Song, I.S.; Kim, J.S. Fluoxetine inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G9–G19. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.; Song, H.; Zhou, X.; Yao, Z.; Ji, G. Extracts of Zuo Jin Wan, a traditional Chinese medicine, phenocopies 5-HTR1D antagonist in attenuating Wnt/beta-catenin signaling in colorectal cancer cells. BMC Complement. Altern. Med. 2017, 17, 506. [Google Scholar] [CrossRef]
- Mao, L.; Xin, F.; Ren, J.; Xu, S.; Huang, H.; Zha, X.; Wen, X.; Gu, G.; Yang, G.; Cheng, Y.; et al. 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Theranostics 2022, 12, 3928–3945. [Google Scholar] [CrossRef]
- Li, T.; Wei, L.; Zhang, X.; Fu, B.; Zhou, Y.; Yang, M.; Cao, M.; Chen, Y.; Tan, Y.; Shi, Y.; et al. Serotonin Receptor HTR2B Facilitates Colorectal Cancer Metastasis via CREB1-ZEB1 Axis-Mediated Epithelial-Mesenchymal Transition. Mol. Cancer Res. 2024, 22, 538–554. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, S.; Park, E.J.; Pagire, H.S.; Pagire, S.H.; Choi, B.W.; Park, M.; Fang, S.; Ahn, J.H.; Oh, C.M. Inhibition of HTR2B-mediated serotonin signaling in colorectal cancer suppresses tumor growth through ERK signaling. Biomed. Pharmacother. 2024, 179, 117428. [Google Scholar] [CrossRef]
- Gurbuz, N.; Ashour, A.A.; Alpay, S.N.; Ozpolat, B. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells. PLoS ONE 2014, 9, e105245. [Google Scholar] [CrossRef]
- Wu, W.; Li, Q.; Zhu, Z.; Li, C.; Lu, P.; Zhou, X.; Huang, Y.; Liu, Y.; Wang, M.; Gong, J. HTR1D functions as a key target of HOXA10-AS/miR-340-3p axis to promote the malignant outcome of pancreatic cancer via PI3K-AKT signaling pathway. Int. J. Biol. Sci. 2022, 18, 3777–3794. [Google Scholar] [CrossRef]
- Jiang, S.H.; Li, J.; Dong, F.Y.; Yang, J.Y.; Liu, D.J.; Yang, X.M.; Wang, Y.H.; Yang, M.W.; Fu, X.L.; Zhang, X.X.; et al. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice. Gastroenterology 2017, 153, 277–291.e19. [Google Scholar] [CrossRef]
- Zuo, X.; Chen, Z.; Cai, J.; Gao, W.; Zhang, Y.; Han, G.; Pu, L.; Wu, Z.; You, W.; Qin, J.; et al. 5-Hydroxytryptamine Receptor 1D Aggravates Hepatocellular Carcinoma Progression Through FoxO6 in AKT-Dependent and Independent Manners. Hepatology 2019, 69, 2031–2047. [Google Scholar] [CrossRef]
- Tu, R.H.; Wu, S.Z.; Huang, Z.N.; Zhong, Q.; Ye, Y.H.; Zheng, C.H.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; et al. Neurotransmitter Receptor HTR2B Regulates Lipid Metabolism to Inhibit Ferroptosis in Gastric Cancer. Cancer Res. 2023, 83, 3868–3885. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Sun, H.; Liu, Y.; Li, X.; Xu, B.; Li, L.; Jin, W. HTR1A Inhibits the Progression of Triple-Negative Breast Cancer via TGF-beta Canonical and Noncanonical Pathways. Adv. Sci. 2022, 9, e2105672. [Google Scholar] [CrossRef]
- Sola-Penna, M.; Paixao, L.P.; Branco, J.R.; Ochioni, A.C.; Albanese, J.M.; Mundim, D.M.; Baptista-de-Souza, D.; Figueiredo, C.P.; Coelho, W.S.; Marcondes, M.C.; et al. Serotonin activates glycolysis and mitochondria biogenesis in human breast cancer cells through activation of the Jak1/STAT3/ERK1/2 and adenylate cyclase/PKA, respectively. Br. J. Cancer 2020, 122, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Cinar, V.; Hamurcu, Z.; Guler, A.; Nurdinov, N.; Ozpolat, B. Serotonin 5-HT7 receptor is a biomarker poor prognostic factor and induces proliferation of triple-negative breast cancer cells through FOXM1. Breast Cancer 2022, 29, 1106–1120. [Google Scholar] [CrossRef] [PubMed]
- Gautam, J.; Banskota, S.; Regmi, S.C.; Ahn, S.; Jeon, Y.H.; Jeong, H.; Kim, S.J.; Nam, T.G.; Jeong, B.S.; Kim, J.A. Tryptophan hydroxylase 1 and 5-HT(7) receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol. Cancer 2016, 15, 75. [Google Scholar] [CrossRef]
- Zhou, J.; Geng, K.K.; Ping, F.F.; Gao, Y.Y.; Liu, L.; Feng, B.N. Cross-talk between 5-hydroxytryptamine and substance P in the melanogensis and apoptosis of B16F10 melanoma cells. Eur. J. Pharmacol. 2016, 775, 106–112. [Google Scholar] [CrossRef]
- Barzegar-Fallah, A.; Alimoradi, H.; Dunlop, J.L.; Torbati, E.; Baird, S.K. Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-kappaB downregulation. Cell Biol. Toxicol. 2023, 39, 1119–1135. [Google Scholar] [CrossRef]
- Fazeli, M.S. Synaptic plasticity: On the trail of the retrograde messenger. Trends Neurosci. 1992, 15, 115–117. [Google Scholar] [CrossRef]
- Haley, J.E. Gases as neurotransmitters. Essays Biochem. 1998, 33, 79–91. [Google Scholar] [CrossRef]
- Dudok, B.; Fan, L.Z.; Farrell, J.S.; Malhotra, S.; Homidan, J.; Kim, D.K.; Wenardy, C.; Ramakrishnan, C.; Li, Y.; Deisseroth, K.; et al. Retrograde endocannabinoid signaling at inhibitory synapses in vivo. Science 2024, 383, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Getz, A.M.; Janes, T.A.; Visser, F.; Zaidi, W.; Syed, N.I. Neurotrophic factors and target-specific retrograde signaling interactions define the specificity of classical and neuropeptide cotransmitter release at identified Lymnaea synapses. Sci. Rep. 2020, 10, 13526. [Google Scholar] [CrossRef]
- Friebe, A.; Sandner, P.; Schmidtko, A. cGMP: A unique 2nd messenger molecule—Recent developments in cGMP research and development. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 287–302. [Google Scholar] [CrossRef]
- Ducrocq, C.; Blanchard, B.; Pignatelli, B.; Ohshima, H. Peroxynitrite: An endogenous oxidizing and nitrating agent. Cell Mol. Life Sci. 1999, 55, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, V.; Basudhar, D.; Bharadwaj, G.; No, J.H.; Ridnour, L.A.; Cheng, R.Y.S.; Fujita, M.; Thomas, D.D.; Anderson, S.K.; McVicar, D.W.; et al. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid. Redox Signal 2019, 30, 1124–1143. [Google Scholar] [CrossRef]
- Thomas, D.D.; Wink, D.A. NOS2 as an Emergent Player in Progression of Cancer. Antioxid. Redox Signal 2017, 26, 963–965. [Google Scholar] [CrossRef]
- Reddy, T.P.; Glynn, S.A.; Billiar, T.R.; Wink, D.A.; Chang, J.C. Targeting Nitric Oxide: Say NO to Metastasis. Clin. Cancer Res. 2023, 29, 1855–1868. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Patino, R.; Avalos-Navarro, G.; Figuera, L.E.; Varela-Hernandez, J.J.; Bautista-Herrera, L.A.; Munoz-Valle, J.F.; Gallegos-Arreola, M.P. Influence of nitric oxide signaling mechanisms in cancer. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221135454. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Tien Vo, T.T.; Vo, Q.C.; Tuan, V.P.; Wee, Y.; Cheng, H.C.; Lee, I.T. The potentials of carbon monoxide-releasing molecules in cancer treatment: An outlook from ROS biology and medicine. Redox Biol. 2021, 46, 102124. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, G.; Chen, X.; Chen, Z.; Tan, A.Y.; Lin, A.; Zhang, C.; Torres, L.K.; Bajrami, S.; Zhang, T.; et al. Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells. Cancer Lett. 2022, 546, 215831. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Yang, Q.; Yong, J.; Fang, X.; Yang, Z.; Liu, Z.; Jiang, X.; Miao, W.; Li, X. Mitochondria targeted nanoparticles to generate oxygen and responsive-release of carbon monoxide for enhanced photogas therapy of cancer. Biomater. Sci. 2021, 9, 2709–2720. [Google Scholar] [CrossRef]
- Bi, J.; Witt, E.; McGovern, M.K.; Cafi, A.B.; Rosenstock, L.L.; Pearson, A.B.; Brown, T.J.; Karasic, T.B.; Absler, L.C.; Machkanti, S.; et al. Oral Carbon Monoxide Enhances Autophagy Modulation in Prostate, Pancreatic, and Lung Cancers. Adv. Sci. 2024, 11, e2308346. [Google Scholar] [CrossRef]
- Cui, Q.; Liang, X.L.; Wang, J.Q.; Zhang, J.Y.; Chen, Z.S. Therapeutic implication of carbon monoxide in drug resistant cancers. Biochem. Pharmacol. 2022, 201, 115061. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Parikh, R.Y.; Choi, S.; Tran, D.; Gooz, M.; Hedley, Z.T.; Kim, D.S.; Pytel, D.; Kang, I.; Nadig, S.N.; et al. Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function. Cancer Res. 2022, 82, 1969–1990. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, M.; Pan, Y.; Ni, Z.; Min, Q.; Wang, B.; Ke, H.; Ji, X. Reactive Oxygen Species-Activated Metal-Free Carbon Monoxide Prodrugs for Targeted Cancer Treatment. J. Med. Chem. 2023, 66, 14583–14596. [Google Scholar] [CrossRef]
- Mechoulam, R.; Parker, L.A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Lutz, B. Neurobiology of cannabinoid receptor signaling. Dialogues Clin. Neurosci. 2020, 22, 207–222. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, B.; Ravi, J.; Ganju, R.K. Cannabinoids as therapeutic agents in cancer: Current status and future implications. Oncotarget 2014, 5, 5852–5872. [Google Scholar] [CrossRef] [PubMed]
- Melck, D.; De Petrocellis, L.; Orlando, P.; Bisogno, T.; Laezza, C.; Bifulco, M.; Di Marzo, V. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology 2000, 141, 118–126. [Google Scholar] [CrossRef]
- Turgut, N.H.; Armagan, G.; Kasapligil, G.; Erdogan, M.A. Anti-cancer effects of selective cannabinoid agonists in pancreatic and breast cancer cells. Bratisl. Lek. Listy 2022, 123, 813–821. [Google Scholar] [CrossRef]
- Bettiga, A.; Aureli, M.; Colciago, G.; Murdica, V.; Moschini, M.; Luciano, R.; Canals, D.; Hannun, Y.; Hedlund, P.; Lavorgna, G.; et al. Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism. Sci. Rep. 2017, 7, 42157. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; He, Z.; Chen, N.; Cho, Y.Y.; Zhu, F.; Lu, C.; Ma, W.Y.; Bode, A.M.; Dong, Z. 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. J. Biol. Chem. 2005, 280, 26735–26742. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, S.; Shen, J.; You, H.; Yang, H.; Yan, C.; Fang, Z.; Zhang, J.; Cai, X.; Dong, X.; et al. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal Transduct. Target. Ther. 2022, 7, 99. [Google Scholar] [CrossRef]
- Marder, E. Neuromodulation of neuronal circuits: Back to the future. Neuron 2012, 76, 1–11. [Google Scholar] [CrossRef]
- van den Pol, A.N. Neuropeptide transmission in brain circuits. Neuron 2012, 76, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.L.; Rodriguez, F.D.; Covenas, R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 9962. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.T.; Li, Y.Z.; Sun, X.Q.; Chen, Q.Q.; Huang, S.F.; Lin, S.; Cai, S.Q. Update on the Role of Neuropeptide Y and Other Related Factors in Breast Cancer and Osteoporosis. Front. Endocrinol. 2021, 12, 705499. [Google Scholar] [CrossRef] [PubMed]
- Pascetta, S.A.; Kirsh, S.M.; Cameron, M.; Uniacke, J. Pharmacological inhibition of neuropeptide Y receptors Y1 and Y5 reduces hypoxic breast cancer migration, proliferation, and signaling. BMC Cancer 2023, 23, 494. [Google Scholar] [CrossRef]
- Medeiros, P.J.; Jackson, D.N. Neuropeptide Y Y5-receptor activation on breast cancer cells acts as a paracrine system that stimulates VEGF expression and secretion to promote angiogenesis. Peptides 2013, 48, 106–113. [Google Scholar] [CrossRef]
- Ding, Y.; Lee, M.; Gao, Y.; Bu, P.; Coarfa, C.; Miles, B.; Sreekumar, A.; Creighton, C.J.; Ayala, G. Neuropeptide Y nerve paracrine regulation of prostate cancer oncogenesis and therapy resistance. Prostate 2021, 81, 58–71. [Google Scholar] [CrossRef]
- Dietrich, P.; Wormser, L.; Fritz, V.; Seitz, T.; De Maria, M.; Schambony, A.; Kremer, A.E.; Gunther, C.; Itzel, T.; Thasler, W.E.; et al. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J. Clin. Investig. 2020, 130, 2509–2526. [Google Scholar] [CrossRef]
- Cao, Y.; Ge, X.; Zhu, X.; Han, Y.; Wang, P.; Akakuru, O.U.; Wu, A.; Li, J. Transformable Neuropeptide Prodrug with Tumor Microenvironment Responsiveness for Tumor Growth and Metastasis Inhibition of Triple-Negative Breast Cancer. Adv. Sci. 2023, 10, e2300545. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, T.; Amit, M. Targeting the Nerve-Cancer Circuit. Cancer Res. 2023, 83, 2445–2447. [Google Scholar] [CrossRef]
- Padmanaban, V.; Keller, I.; Seltzer, E.S.; Ostendorf, B.N.; Kerner, Z.; Tavazoie, S.F. Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis. Nature 2024, 633, 207–215. [Google Scholar] [CrossRef]
- Munoz, M.; Covenas, R.; Esteban, F.; Redondo, M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J. Biosci. 2015, 40, 441–463. [Google Scholar] [CrossRef]
- Covenas, R.; Munoz, M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers 2022, 14, 3539. [Google Scholar] [CrossRef]
- Bosnjak, S.M.; Gralla, R.J.; Schwartzberg, L. Prevention of chemotherapy-induced nausea: The role of neurokinin-1 (NK(1)) receptor antagonists. Support. Care Cancer 2017, 25, 1661–1671. [Google Scholar] [CrossRef]
- Gesmundo, I.; Pedrolli, F.; Cai, R.; Sha, W.; Schally, A.V.; Granata, R. Growth hormone-releasing hormone and cancer. Rev. Endocr. Metab. Disord. 2024, 26, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Mehrabadi, S.; Velayati, M.; Zafari, N.; Hassanian, S.M.; Mobarhan, M.G.; Ferns, G.; Khazaei, M.; Avan, A. Growth-hormone-releasing Hormone as a Prognostic Biomarker and Therapeutic Target in Gastrointestinal Cancer. Curr. Cancer Drug Targets 2023, 23, 346–353. [Google Scholar] [CrossRef]
- Xiong, S.Y.; Wen, H.Z.; Dai, L.M.; Lou, Y.X.; Wang, Z.Q.; Yi, Y.L.; Yan, X.J.; Wu, Y.R.; Sun, W.; Chen, P.H.; et al. A brain-tumor neural circuit controls breast cancer progression in mice. J. Clin. Investig. 2023, 133, e167725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, S. Role of CRH in colitis and colitis-associated cancer: A combinative result of central and peripheral effects? Front. Endocrinol. 2024, 15, 1363748. [Google Scholar] [CrossRef] [PubMed]
- Balood, M.; Ahmadi, M.; Eichwald, T.; Ahmadi, A.; Majdoubi, A.; Roversi, K.; Roversi, K.; Lucido, C.T.; Restaino, A.C.; Huang, S.; et al. Nociceptor neurons affect cancer immunosurveillance. Nature 2022, 611, 405–412. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, C.; Liu, Z.; Sun, Y.; Chen, M.; Guo, Y.; Liu, W.; Zhang, C.; Chen, W.; Sun, J.; et al. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 2022, 34, 1999–2017.e1910. [Google Scholar] [CrossRef]
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Lung Cancer | α1nAChR | PC9, HCC827 lung cancer cells, BALB/cAJc1-nu/nu mice. | α1nAChR increases the resistance of non-small cell lung cancer to erlotinib by activating the EGFR/AKT/ERK pathway [32] | Chemoresistance | |
α5nAChR | Samples from patients with lung adenocarcinoma; A549, H1299, NCI-H1975, PC9, H226, and HCC827 lung cancer cells; lung tumor xenograft BALB/c nude mice; chicken embryo chorioallantoic membrane (CAM) model. | α5nAChR promotes EMT by regulating Stat3-Jab1/Csn5 [33]. α5nAChR mediates the STAT3/PD-L1 signal, promoting tumor invasion and migration [34]. α5nAChR mediates the AKT pathway to down-regulate JWA expression and thereby induces lung cancer stemness and progression [35]. α5nAChR up-regulates CD47 through STAT3 to facilitate immune escape [36]. nicotine activates the α5nAChR/SOX2/CSF-1 axis to promote M2 macrophage polarization and thereby inhibits the immune response [37]. α5nAChR promotes non-small cell lung cancer migration through the TGF-β1/Smad signal [38]. low-dose nicotine activates the EGFR signal through α5nAChR, increasing the levels of mesenchymal markers such as N-Ca, Slug, and VIM, and promoting the invasion and migration of lung adenocarcinoma cells [39]. α5nAChR mediates NLRP3 expression, and nicotine activates the α5nAChR/STAT3/NLRP3 axis to promote the proliferation and migration of lung cancer [40]. | Proliferation EMT Invasion Migration Stemness Immune Escape Immunosuppression | JAC4 [35] | |
α7nAChR | H460, h1975, A549 lung cancer cells, Lewis mouse-derived lung cancer cells. | Qnd7, an α7nAChR antagonist, inhibits the proliferation and migration of lung cancer cells by inhibiting AKT/mTOR signaling [41]. Sinomenine inhibited α 7nachr and related signaling molecules pERK1/2 and transcription factors TTF-1 and SP-1, and decreased the proliferation and migration ability of lung cancer A549 cells [42]. | Proliferation Migration | APS8-2 [43] QND7 [41] Sinomenine [42] | |
Gastric cancer | α5nAChR | MKN28, BGC823, MGC803, AGS gastric cancer cells; gastric cancer patient samples. | 5nAChR is highly expressed in gastric cancer tissues, and activates AKT to promote cancer cell proliferation and cisplatin resistance [44]. | Proliferation Chemoresistance | |
α7nAChR | BGC, SGC gastric cancer cells; Xenograft tumor female nude mice. | α7nAChR enhances the phosphorylation level of MEK/ERK and promotes the development of EMT, while the use of RL RVG can inhibit this process [45]. | Invasion Migration | rL-RVG [45] | |
Breast cancer | α7nAChR | MCF-7, T47D MDA-MB-435, MDA-MB-231 breast cancer cells. | Nicotine acts on α 7nAChR to activate fibroblasts and promote EMT and migration ability of breast cancer cells [46]. | Migration EMT | |
α9nAChR | breast cancer cell lines. | αO-conotoxin GeXIVA, a selective antagonist of α9nAChR, can induce cancer cell apoptosis, inhibit cell proliferation mediated by AkT mTOR, STAT3 and NF-κB, and inhibit tumor growth in vivo [47]. α9nAChR mediates the proliferation of breast cancer cells, and α o-conotoxin gexiva can inhibit this process [48,49]. Nicotine promotes VEGF-A, VEGFR2, and p-vegfr2 expression through α9nAChR, promoting angiogenesis, migration, and proliferation [50]. | Proliferation Apoptosis Migration Angiogenesis | αO-conotoxin GeXIVA [1,2,47] αO-Conotoxin GeXIVA [48,49] α9 BsAb [50] MEC [51] | |
Colorectal cancer | α7nAChR | Lovo colorectal cancer cells. | α7nAChR inhibited the invasion and migration of human colon cancer cells through PI3K/AKT signaling pathway [52]. JAK2/STA3 was inhibited and the migration ability of cancer cells was weakened afterα7nAChR knockdown in tumor associated macrophages [53]. | Invasion Migration | |
Pancreatic cancer | α7nAChR | HPNE pancreatic epithelial cells and Capan1 pancreatic cancer cells; KrasG12D, PDX1 CRE (KC) mice. | Cigarette smoke promotes the expression of Paf1 gene through α7nAChR-ERK-FOSL1 signaling pathway, while increasing PHF5A levels. PAF1 and PHF5A interact to induce cancer cell stemness characteristics [54]. | Stemness | |
Cholangiocarcinoma | α7nAChR | QBC939 and RBE human cholangiocarcinoma cells; shRNAα7nAChR, BALB/c female nude mice. | Overexpression of α7nAChR can inhibit cancer cell apoptosis, accelerate the EMT process and thus promote cholangiocarcinoma progression [55]. | Apoptosis Invasion Migration |
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Lung cancer | mAChR2 | A549, PC9 lung cancer cells; xenograft tumor nude mice. | mAChRM2 activation increases MAPK and AKT phosphorylation, which promotes lung cancer cell proliferation and accelerates EMT. mAChRM2 antagonist Methoctramine was able to reverse this process of EMT [58]. The mAChRM2/ERK/AKT/NF-κB axis promotes EMT in non-small cell lung cancer [59]. | Proliferation EMT | Methoctramine [58] |
mAChR3 | A549, H520 lung cancer cells. | The plant base Arecoline acted as an M3 agonist and activated the EGFR/Src/FAK pathway through mAChRM3, which promoted the migration of cancer cells [60]. ACh increased IL-8 levels, induced EGFR activity through M3R, and stimulated the activation of PI3K/AKT to enhance proliferation, invasion, and migration of non-small cell lung cancer cells [61]. | Proliferation Invasion Migration | ||
Gastric cancer | mAChR3 | GES-1 gastric normal epithelial cells, MKN-28, MKN-45, BGC-823, MGC-803, SGC-7901 gastric cancer cells; BALB/c nude mice. | mAChR3 knockdown arrested the G2/M phase, inhibited the formation of GC xenograft tumors, and promoted cell apoptosis. ACh activates EGFR signaling through machrm3, induces ERK1/2 and AKT phosphorylation, and promotes cell proliferation [62]. mAChR3 antagonists 4-DAMP and darifenacin could significantly inhibit tumor formation. 4-DAMP also enhanced the toxicity of 5-FU to cells and induced apoptosis related proteins such as Bax and caseinase-3 to promote gastric cancer cell apoptosis [63]. ACh promotes GC cell invasion/migration through mAChR3/AMPK/MACC1 signaling pathway, an oncogene associated with metastasis and overexpressed in gastric cancer [64]. | Proliferation Apoptosis Angiogenesis Chemoresistance | 4-DAMP [62] Darifenacin [62] |
Breast cancer | mAChR3 | MCF-7, MCF-10A human-derived breast cancer cells, LMM3 mouse-derived breast cancer cells; three-month-old female BALB/c nude mice. | Immunoglobulin (GT1N0Mx-IgG) in clinical stage I (T1N0Mx stage) breast cancer patients increases MMP9 activity and promotes tumor cell migration through mAChRM3 [65]. T1N0Mx-IgG and carbachol promote VEGF-α production and promote neovascularization through mAChR activation [66]. | Angiogenesis Migration | Atropine [66,67] |
Colorectal cancer | mAChRs | H508, HT29, snu-407 colorectal cancer cells. | Hijiki and sodium arsenite induced the activation of EGFR and ERK, and atropine, an inhibitor of mAChRs, partially inhibited the activation of EGFR/ERK, which in turn inhibited the proliferation of colorectal cancer cell [68]. In SNU-407 colon cancer cells, mAChRs mediated S6K1 activation through the PI3K/AKT/mTOR1 pathway, which in turn promoted tumor cell proliferation [69]. In SNU-407 colon cancer cells, mAChRs also regulate eIF4B phosphorylation through ERK1/2 and PKC signaling pathways to promote the proliferation and migration of tumor cells [70]. | Proliferation Migration | Atropine [68] |
Cholangiocarcinoma | mAChR3 | HuCCA-1, RMCCA-1, FRH0201, RBE human-derived cholangiocarcinoma cells; tissue samples from cholangiocarcinoma patients, and normal tissue samples from gallbladder and liver transplant patients. | The expression of mAChR3 was significantly upregulated in cancer tissues. Migration of cancer cells, infiltration of peripheral nerves and EMT progression were promoted by activation of the AKT signaling pathway. The use of the mAChR agonist pilocarpine significantly enhanced this process, while the mAChR antagonist atropine effectively inhibited mAChR activation, which in turn inhibited cancer cell migration, nerve infiltration, and EMT [71]. Taurocholic acid (TLCA) induces cholangiocarcinoma cell proliferation through the mAChR and EGFR/EKR1/2 signaling pathways, and the use of atropine inhibits cholangiocarcinoma cell proliferation by inhibiting the mAChR and thereby inhibiting cholangiocarcinoma cell proliferation [72]. | Migration EMT proliferation | Atropine [71,72] |
Glioblastoma | mAChR2 | U251 and GB7 human glioblastoma cells. | The mAChR2 agonist N8-Iper promotes the level of autophagy in glioblastoma. mAChR2-regulated autophagy in cancer cells can be achieved by inhibiting the PI3K/AKT/mTOR signaling pathway and increasing p-AMPK levels [73]. | Proliferation Autophagy | |
Ovarian cancer | mAChR2 | iOSE-120, iOSE-398 human normal ovarian epithelial cells, TOV-21G, SKOV-3 human ovarian cancer cells. | The mAChR2 agonist APE inhibited ovarian cancer cell proliferation, promoted apoptosis, and enhanced the sensitivity of cancer cells to chemotherapeutic drugs. Experimental data showed that APE treatment significantly elevated the proportion of G2/M-phase cells and mitotic abnormalities and improved drug response [74]. | Proliferation Apoptosis Chemoresistance | APE [74] |
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Breast cancer | mGluR1 | HDEC vascular endothelial cells, 4T1-12B murine-derived breast cancer cells, MDA-MB231 human-derived breast cancer cells, 6- to 8-week-old female BALB/c mice. | mGluR1 signaling promotes vascular endothelial cell growth, which together with VEGF activates the downstream active substance PKC, which in turn promotes tumor growth and angiogenesis [83]. | Angiogenesis Proliferation | |
Prostate cancer | mGluR1 | LNCaP, 22Rv1 and PC3 human-derived prostate cancer cells, LL2 murine-derived lung cancer cells C57BL/6J nude mice. | rostate-specific membrane antigen (PSMA) carboxypeptidase activates mGluR1 via glutamate release and PI3K-p110β phosphorylation and further promotes tumor growth and cell survival [84]. | Proliferation | |
Melanoma | mGluR2/3 | Primary MDSC, B16-F10 murine-derived melanoma cells, CD4+, CD8+ T cells; C57BL/6J mice. | High expression of mGluR2/3 on myeloid-derived suppressor cells MDSC attenuated the immunosuppressive activity of MDSC and inhibited the growth of B16-F10 melanoma in vivo using the mGluR2/3 antagonist LY341495 [85]. | Immunosuppression Proliferation | LY341495 [85] |
Bladder cancer | mGluR4 | SV-HUC human ureteral epithelial cells, RT4, T24, 253J, J82, 5637 and UMUC3 human-derived bladder cancer cells; 5-week-old male thymus-free BALB/c nude mice. | Activation of mGluR4 down-regulated cAMP/PTEN/AKT signaling, which inhibited the proliferation of bladder cancer cells, decreased the Bcl-2/Bax ratio, and promoted apoptosis of cancer cells [86]. | Proliferation Apoptosis | VU0155041 [86] |
Lung cancer | mGluR1 | WM266.4-Luc-mEGFP melanoma cells, PC9-Luc-mEGFP human lung cancer cells; 8-10-week female BALB/c nude mice. | Astrocytes activate mGluR1 signaling in cancer cells through the Wnt-5a/PRICKLE1/REST axis, which in turn promotes the glutamate-dependent interaction of mGluR1 with EGFR, enhances the migratory ability of lung cancer brain metastatic cells, and accelerates intracerebral spread [87]. | Invasion Migration | LY456236 [87] |
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Lung cancer | GABAA | LLC murine-derived Lewis lung cancer cells, L929 murine-derived fibroblasts, Raw264.7 murine-derived monocyte macrophage leukemia cell line; 6–8-week male C57BL/6J mice; Lung cancer patients undergoing radical resection; NCI-H1975 and Lewis lung cancer cells, Beas-2B normal epithelial cells; 18–24-month-old C57BL/6 mice. | GABA released by tumor cells inhibits M1-type macrophage polarization through NF-κB and STAT3 pathways and activates STAT6 pathway to promote M2-type polarization, which in turn suppresses the immune response. In addition, GABA increases FGF2 expression in macrophages and promotes tumor neovascularization. The application of GABAA receptor inhibitors significantly reduces tumor burden [92]. Isoproterenol is able to regulate the Th17/Treg balance in perioperative lung cancer patients via GABAA receptor, which in turn inhibits the invasion and migration of lung cancer cells [93]. However, isoproterenol also enhances tumor cell adhesion and extension through the GABAAR-TRIM21-Src signaling pathway, which in turn promotes lung cancer metastasis [94]. | Immunosuppression Angiogenesis Invasion Migration | Picrotoxin [92] Propofol [93] |
Breast cancer | GABAA | MCF-7, BT549, MDA-MB-453, MDA-MB-436 human-derived breast cancer cells, PY8119 murine-derived breast cancer cells; breast cancer patient tissue samples; (Gpt2fl/fl) C57BL/6 mice. | Glutamine pyruvate transaminase (GPT2) activates the GABAA receptor via GABA, leading to the opening of the associated Ca2+ channels and an increase in Ca2+ endocytosis. This process further activates the PKC-CREB signaling pathway, and CREB upregulates pro-metastasis-related genes such as MMP9 to accelerate metastasis [95]. GABAA receptor isoform α3 promotes the development of lung metastasis in breast cancer cells through activation of the AKT pathway [96]. Knockdown of GABAA β3 subunit resulted in downregulation of cyclinD1 expression and upregulation of p21 expression, triggering cell cycle arrest. And knockdown of GABAA β3 inhibited cancer cell proliferation and migration [97]. The GABA receptor subunit GABRP promotes the migration of basal-like breast cancer cells through phosphorylation of ERK1/2 [98]. | Proliferation Invasion Migration | |
GABAB | MCF-7 human-derived breast cancer cells, 4T1 mouse-derived breast cancer cells. | Baclofen (GABAB receptor agonist) promotes breast cancer invasion, migration, and metastasis in vivo through the ERK1/2 pathway [99]. | Invasion Migration | CGP55845 [99] | |
Colorectal cancer | GABAA | LOVO, HT29, SW1116 human colorectal cancer cells. | Propofol significantly reduced MMP2 and MMP9 levels through GABAA receptors and inhibited ERK1/2 phosphorylation thereby reducing cancer cell invasion [100]. | Invasion | |
GABAB | RKO, DLD1, Lovo, HCT116, HT29, SW620 human-derived colorectal cancer cells; 5-week BALB/c nude mice; HT29, 5-FU-resistant HT29 human-derived colorectal cancer cells. | GABABR1 reduces colorectal cancer cell invasion and migration by inhibiting the EMT and Hippo/YAP1 pathways [101]. GABAB receptor activation inhibits GSK-3β activation and thus NF-κB, which inhibits colorectal cancer cell proliferation [102]. GABAB receptors suppress cancer cell metastasis and induce 5-FU-resistant cell apoptosis through inhibition of the cAMP-dependent signaling pathway and the inhibitor of apoptosis protein 2 (cIAP2) to inhibit cancer cell metastasis and induce apoptosis in 5-FU-resistant cells [103]. | Invasion Migration EMT Proliferation Apoptosis Chemoresistance | Baclofen [102] | |
Prostate cancer | GABAB | PC-3 human-derived prostate cancer cells. | GABAB receptor selectively induces EGFR activation which in turn mediates ERK1/2 activation and further promotes prostate cancer cell invasion and migration [104]. | Invasion Migration | |
Liver cancer | GABAA | HEK293 human embryonic kidney cells, MHCC97L and Hep3B human-derived hepatocellular carcinoma cells, Hepa1-6 murine-derived hepatocellular carcinoma cells, 4-week-old male BALB/c nude mice, PMVKfl/fl mice, Alb-Cre mice, tissue samples from patients with hepatocellular carcinoma. | In hepatocellular carcinoma, phosphomercuric acid kinase (PMVK)-mediated 4-acetylaminobutyric acid (4-AC-GABA) activates GABAA receptors on CD8+ T cells in the tumor microenvironment and further inhibits CD8+ T cell activation, intra-tumor infiltration, and anti-tumor responses by inhibitingAKT signaling [105]. | Immune escape |
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Breast cancer | D1 | 4T1 murine breast cancer cells, MDA-MB-231 human breast cancer cells; 5-week female BALB/c mice. | D1 receptor knockdown promotes breast cancer cells to undergo invasion and lung metastasis, and the oral compound QAP14 was able to activate D1DR to inhibit stem cell properties and EMT metastasis in breast cancer [131]. | EMT Metastasis | QAP14 [131] |
D2 | MDA-MB231, BT549, YCCB1, 4T1 breast cancer cells, MCF-10A, HMEC mammary epithelial cells, THP-1 cells; 6–8- week BALB/c mice, 6-week female BALB/c mice. B16-F10 mouse melanoma cells, 4T1 mouse breast cancer cells; 4–6-week female C57BL/6J mice. | D2 receptor inhibits EMT progression in breast cancer cells; promotes macrophage polarization to M1-type in the tumor microenvironment while downregulating IL-6 and IL-10; and downregulates DDX5 and eEF1A2 to inhibit the NF-κB pathway [132]. Hypermethylation of the D2 receptor promotes proliferation, migration, and tumor growth of breast cancer through the FLNA-ERK pathway [133]. The D2 receptor antagonist thioridazine hydrochloride (Thioridazine hydrochloride) inhibits the proliferation and migration of triple-negative breast cancer cells by inhibiting the PI3K/AKT signaling pathway, and induces G0/G1 cell proliferation and migration. (Thioridazine hydrochloride) inhibits the proliferation and migration of triple-negative breast cancer cells and induces apoptosis in G0/G1 cells after cycle blockade by inhibiting the PI3K/AKT signaling pathway [134]. Activation of D2/HIF-α signaling in response to stress stimuli promotes EMT and accelerates breast cancer and melanoma progression, while the D2 receptor antagonist trifluoperazine (TFP) inhibits tumor invasion and migration [135]. | EMT immunosuppression Proliferation Migration | Thioridazine hydrochloride [134] TFP [135] | |
Lung cancer | D1 | H727 bronchial carcinoid cells, A549 lung adenocarcinoma cells, H1299 lung large cell carcinoma cells, H292 lung mucosal epidermoid carcinoma cells. | D1 receptors inhibit non-small cell lung cancer progression by suppressing the activation of EGFR and ERK1/2, and SKF-38393 (a D1 receptor agonist) significantly inhibits cancer cell proliferation [136]. | Proliferation | SKF-38393 [136] |
D2 | A459 and NCI-H23 Human Lung Cancer Cells, Human Lung Cancer Tissue Sample, 4–6 Weeks Nude Mouse. | DA inhibits VEGF-induced proliferation and migration of HUVEC through the D2 receptor. The D2 receptor agonists quinpirole and Dostinex significantly reduced tumor growth [137]. activation of the D2 receptor inhibits the ERK1/2 and AKT signaling pathways and reduces Oct-4 and MMP-9 levels thereby significantly reducing the proliferation, clone formation and invasive ability of non-small cell carcinoma stem cells [138]. | Proliferation Migration Invasion | Dostinex [137] Quinpirole [138] | |
Liver cancer | D1 | MHCC97-H, MHCC97-L, SK-HEP-1, PLC/PRF/5, Huh-7, Hep-3B and Hep-G2 human hepatocellular carcinoma cells, MIHA human normal liver cell lines, and 6-week nude mice were constructed as xenograft tumor models. | D1 receptors promote tumor progression by regulating the cAMP/PI3KAKT/CREB pathway. SCH23390 significantly inhibited cancer cell proliferation and migration [139]. | Proliferation Migration | SCH23390 [139] |
D2 | Hepa1-6, H22 murine-derived hepatocellular carcinoma cells, SMMC-7721, BEL-7402 human-derived hepatocellular carcinoma cells, L02 human normal hepatocytes, 6-week-old male C57BL/6 mice as well as male thymus-less BALB/c nude mice. Hepa1-6 murine-derived hepatocellular carcinoma cells, AML12 liver parenchymal cells, C3H/HeN mice, C57BL/6 mice. | Moderate swimming enhanced DA levels in a mouse model of hepatocellular carcinoma, and DA inhibited the EMT process triggered by TGF-β1/Smad3 via the D2 receptor. Bromocriptine, a D2 receptor agonist, significantly reduced tumor volume and inhibited lung metastasis [140]. Domperidone, a D2 receptor antagonist, increased prolactin (PRL) levels and thus inhibited hepatocellular carcinoma progression. PRL inhibits TRAF-dependent innate immune signaling and c-Myc activity, slowing down hepatocellular carcinoma progression [141]. | Proliferation Metastasis EMT | Bromocriptine [140] Domperidone [141] | |
Gastric cancer | D2 | MKN28, SGC-7901, BGC-823 and MGC-803 Human Gastric Cancer Cells. | D2 receptor activation inhibits gastric cancer cell invasion and migration via the EGFR/AKT/MMP-13 pathway [142]. | Invasion Migration | |
Colorectal cancer | D2 | HCT116 human colon cancer cells, BALB/c nude mice around 5 weeks old. HCT116 and SW480 human colon cancer cells, 5-6 months male BALB/c nude mice. | The D2 receptor antagonist Domperidone induces apoptosis by inhibiting the ERK/STAT3 pathway in human colon cancer HCT116 cells [143]. Pimozide (D2 receptor antagonist) is able to inhibit colorectal cancer tumor growth by suppressing the Wnt/β-catenin signaling pathway [144]. | Proliferation Migration Apoptosis | Domperidone [143] Pimozide [144] |
Cholangiocarcinoma | D1 | NOZ, KKU213, TKF1 cholangiocarcinoma cells; human cholangiocarcinoma-derived organoids; 8-12 weeks NOD/SCID mice. | D1 receptor activation inhibits cholangiocarcinoma progression through the WNT signaling pathway [145]. | Proliferation | |
Melanoma | D2 | B16 melanoma cells; 4–6-week maleC57BL/6 mice. | Endogenous dopamine inhibits tumor growth by inhibiting VPF/VEGF-mediated angiogenesis via D2 receptors on tumor endothelial cells [146]. | Angiogenesis | |
Glioblastoma | D2 | Glioblastoma patient specimen; primary GBM cells and human normal astrocytes; 6-week male BALB/c nude mice. Glioblastoma patient tissue specimens; 5-week male BALB/c nude mice and C57BL/6J mice. U251 human glioma cell line; thymus-free nude mice, xenograft tumor model (GBM43, 12, 6, 5, and 39). U251, T98G, A172, and U87MG glioblastoma cells, HL60, HEL, K562 leukemia cells. Glioma patient tissue samples; thymus-free BALB/c and CD-1 nude mice. | D2 receptor antagonists induce glioblastoma death via death receptors 4/5 and by inhibiting MET activation [147]. Under chronic stress, DA and D2 receptors work together to promote glioblastoma progression through a positive feedback loop formed by the ERK/GSK3β/β-catenin pathway and ERK/TH, and the use of Pimozide, a D2 receptor antagonist, significantly inhibited tumor cell proliferation in vitro and growth in vivo [148]. The ability of the D2 receptor to induce HIF1α expression, increase the glucose uptake and glycolysis rate in GBM 39 cells [149]. Paired homology frame transcription factor (PRRX1) enhances self-renewal and differentiation of glioma stem cells through the D2 receptor-mediated ERK and AKT pathways, which in turn promotes tumor infiltration and metastasis [150]. The repressor element 1 silencing transcription factor (REST) regulates glioblastoma cell apoptosis through inhibition of the D2 receptor [151]. | Proliferation Metabolism Metastasis Stemness Apoptosis | PPZ, ONC201 and ONC206 [147] Pimozide [148] |
Cancer | Receptor | Model Materials | Mechanism | Tumor Impact | Targeted Therapy |
---|---|---|---|---|---|
Colorectal cancer | 5-HT1 | Tissue samples from human colon cancer patients; knockout mice and NSG mice on a C57BL/6 background. | Binding of 5-HT to the receptors 5-HT1B/1D/1F activates Wnt/β-catenin signaling and promotes tumorigenesis and metastasis induced by colorectal cancer stem cells CSC [175]. The 5-HT1A inhibitor Fluoxetine inhibits colon cancer progression by modulating NF-κB activation [176]. | Proliferation Metastasis Stemness | GR127935 [177] Fluoxetine [176] |
5-HT2 | CT26 mouse colon cancer cells; Cre mice, xenograft tumor models; human colon cancer tissue samples. HCT116, HT29 colon cancer cells; human colon cancer tissue samples. COLO-205 human colon cancer cells, CT25 mouse colon cancer cells; SNU-1235-co colon cancer organoids; 8-week male balb/c nude mice. | The 5-HT/5-HT2B/TGF- β signaling pathway plays a dual role in colitis related cancers: inhibiting tumorigenesis in the early stage and promoting tumor progression in the late stage [178]. 5-HT2B promotes colorectal cancer metastasis through EMT mediated by the creb1-zeb1 axis [179]. 5-HT2B inhibited colon cancer growth through ERK signaling. The 5-HT2B inhibitors GM-60186 and SB204741 significantly inhibited the proliferation and migration of cancer cells [180]. | Proliferation Invasion Migration EMT | GM-60186 SB204741 [180] | |
Pancreatic cancer | 5-HT1 | PANC-1 and MIAPaCa-2 human pancreatic cancer cells, HPDE human normal pancreatic ductal epithelial cells. PANC-1, CFPAC-1 and other pancreatic cancer cells, HPDE6-C7 normal pancreatic ductal epithelial cells; xenograft tumor model. | 5-HT1B/1D can promote the proliferation and migration of tumor cells by activating β 1-integrin-Src-FAK complex and TG2/NF-κB/EMT pathway [181]. 5-HT1D, as a key molecule of HOXA10-AS/miR-340-3p axis, reduces cancer cell apoptosis and promotes cancer cell proliferation and migration by regulating PI3K/AKT signaling pathway [182]. | proliferation Invasion migration Apoptosis | |
5-HT2 | PDAC cells, PDX xenograft models; human pancreatic cancer tissue samples; Pdx1-Cre, LSL-KrasG12D/+ and LSL-Trp53R172H/+ mice. | The 5-HT2B-LYN-p85 complex exacerbated the growth and metabolism of pancreatic tumors by activating PI3K/AkT/mTOR signaling and promoting Warburg effect, and SB204741 significantly slowed tumor growth [183]. | Proliferation Metabolism | SB204741 [183] | |
Liver cancer | 5-HT1 | HCCLM3, Huh7 and other liver cancer cells, hepatocellular carcinoma tissue samples, xenograft tumor models. HepG2, SMMC-7721 hepatoma cells. | 5-HT1D promotes liver cancer progression through the Wnt/β-catenin pathway. 5-HT1D interacts with PIK3R1 to activate the PI3K/AKT/FoxO6 pathway to promote liver cancer progression [184]. | Proliferation Invasion Migration | |
Gastric cancer | 5-HT2 | GES human normal gastric mucosal epithelial cells, AGS, HGC27, MGC-823, MKN-45, NCI-N87 gastric cancer cells; gastric cancer tissue samples; xenograft tumor model. | 5-HT2B combined with Fyn regulates p85 activity, activates PI3K/AKT/mTOR signaling, inhibits iron death progression, and jointly promotes gastric cancer cell survival [185]. | Proliferation Ferroptosis | SB204741 [185] |
Prostate cancer | 5-HT1 | PC-3, Du145 and LNCaP human prostate cancer cells. | 5-HT induces ERK1/2 and AKT activation through the receptor 5-HT1A, promoting cancer cell proliferation and migration [173]. | Proliferation Migration | NAN-190 [173] |
Breast cancer | 5-HT1 | LM2, 4173, MCF10CA1a, MDA-MB-231 and HS578T breast cancer cells, breast cancer patient tissue samples, female NOD-scid and BALB/c nude mice. | 5-HT1A inhibits TGF- β downstream signals by interacting with TRIM21 and PSMD7, which in turn inhibits triple negative breast cancer progression [186]. | Proliferation | |
5-HT2 | MCF-7, MDA-MB-231 breast cancer cells, MCF10A non neoplastic breast epithelial cells. | 5-HT promotes ERK1/2 activation, AKT phosphorylation, and HIF-α expression through 5-HT2A/2C receptor phosphorylation of JAK1 and STAT3, which together lead to increased PKM2, promotes glucose uptake, enhances mitochondrial metabolic oxidation, promotes breast cancer cell proliferation, and inhibits cancer cell apoptosis [187]. | Proliferation Apoptosis Metabolism | ketanserin [187] | |
5-HT7 | MCF10A breast normal epithelial cells, MDA-MB-231, BT-546 and MCF-7 breast cancer cells. HCC-1395, T47D, HS578T human breast cancer cells; 6-week BALB/c nude mice. | 5-HT via receptor 5-HT7/ FoxM1 signaling promotes breast cancer cell proliferation [188]. Breast cancer cells autocrine 5-HT acts on receptor 5-HT7, and then promotes invasion through Gα/cAMP, and proliferation through Gβγ/PI3K/AKT [189]. | Proliferation Migration | Metergoline [188] BJ-113, SB269970 [189] | |
Melanoma | 5-HT2 | B16F10 mouse-derived melanoma cells. | Neuronal substance P promoted apoptosis in melanoma cell B16F10 by inhibiting 5-HT2A receptors [190]. | Proliferation Apoptosis | ketanserin [190] |
5-HT3 | WM-266-4, B16F10 mouse-derived melanoma cells. | 5-HT3 antagonists promote melanoma cell apoptosis by inducing sub-G1 phase DNA accumulation and caspase-3 activation. In addition, they enhance intracellular Ca2+ levels, activate ERK1/2 phosphorylation, and inhibit NF-κB signaling, which in turn suppresses tumor progression [191]. | Proliferation Apoptosis | tropisetron ondansetron [191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cao, J.; Zhang, Y.; Li, C.; Jing, Y. Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy. Biomolecules 2025, 15, 1429. https://doi.org/10.3390/biom15101429
Zhang X, Cao J, Zhang Y, Li C, Jing Y. Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy. Biomolecules. 2025; 15(10):1429. https://doi.org/10.3390/biom15101429
Chicago/Turabian StyleZhang, Xiaoyu, Jiaxin Cao, Yishu Zhang, Chuanxiong Li, and Yuhong Jing. 2025. "Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy" Biomolecules 15, no. 10: 1429. https://doi.org/10.3390/biom15101429
APA StyleZhang, X., Cao, J., Zhang, Y., Li, C., & Jing, Y. (2025). Neurotransmitter Regulatory Networks: A New Perspective on Cancer Therapy. Biomolecules, 15(10), 1429. https://doi.org/10.3390/biom15101429