Topical Application of Jojoba Oil Suppresses Exercise-Induced Inflammatory Gene Expression in Mouse Skeletal Muscle
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Chemicals
2.4. Experimental Protocol
2.5. Biochemical Analysis of Plasma
2.6. RNA Isolation and Gene Expression Analysis Using Real-Time Polymerase Chain Reaction (Real-Time PCR)
2.7. Quantitative Analysis of Inflammation-Related Plasma Cytokines
2.8. Statistical Analysis
3. Results
3.1. The Effect of Topical Application of Undiluted Jojoba Oil Before Exercise on Endurance Performance
3.2. Plasma Biochemical Analysis
3.3. Effects of Exhaustive Exercise With or Without Topical Application of Jojoba Oil on the Expression Levels of Inflammation-Related Genes in the Soleus Muscle
3.4. Effects of Exhaustive Exercise With or Without Topical Application of Jojoba Oil on the Expression Levels of Inflammation-Related Genes in the Gastrocnemius Muscle
3.5. Effects of Exhaustive Exercise With or Without Topical Application of Jojoba Oil on the Expression Levels of Inflammation-Related Genes in the Heart
3.6. Effects of Exhaustive Exercise With or Without Topical Application of Jojoba Oil on the Expression Levels of Inflammation-Related Genes in the Liver
3.7. Quantitative Analysis of Inflammation-Related Plasma Cytokine Levels
3.8. Correlation Between Plasma CK Levels and Time to Exhaustion With or Without Topical Application of Jojoba Oil
3.9. Correlation Between Plasma CK Levels and Inflammation-Related Genes Expressed in Skeletal Muscles with and Without Topical Application of Jojoba Oil
4. Discussion
4.1. Effect of Topical Application of Undiluted Jojoba Oil Before Exercise on Endurance Performance and Plasma Biochemical Parameters
4.2. Effects of Exhaustive Exercise With or Without Topical Application of Jojoba Oil on the Expression Levels of Inflammation-Related Genes in Various Tissues/Organs
4.3. Quantitative Analysis of Inflammation-Related Plasma Cytokine Levels by Flow Cytometry
4.4. Correlation Between Plasma CK Levels and Inflammation-Related Gene Expression in Skeletal Muscle With or Without Topical Application of Jojoba Oil
4.5. Jojoba Oil as a Novel Therapeutic Strategy for Exercise-Induced Muscle Injury
4.6. Study Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reimers, C.D.; Knapp, G.; Reimers, A.K. Does physical activity increase life expectancy? A review of the literature. J. Aging Res. 2012, 2012, 243958. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef]
- Bleakley, C.; McDonough, S.; Gardner, E.; Baxter, G.D.; Hopkins, J.T.; Davison, G.W. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst. Rev. 2012, 2012, CD008262. [Google Scholar] [CrossRef]
- Harty, P.S.; Cottet, M.L.; Malloy, J.K.; Kerksick, C.M. Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: A brief review. Sports Med. Open 2019, 5, 1. [Google Scholar] [CrossRef]
- Peake, J.M.; Suzuki, K.; Wilson, G.; Hordern, M.; Nosaka, K.; Mackinnon, L.; Coombes, J.S. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation. Med. Sci. Sports Exerc. 2005, 37, 737–745. [Google Scholar] [CrossRef]
- Howatson, G.; van Someren, K.A. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38, 483–503. [Google Scholar] [CrossRef]
- Suzuki, K. Involvement of neutrophils in exercise-induced muscle damage and its modulation. Gen. Intern. Med. Clin. Innov 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Kargarfard, M.; Lam, E.T.; Shariat, A.; Shaw, I.; Shaw, B.S.; Tamrin, S.B. Efficacy of massage on muscle soreness, perceived recovery, physiological restoration and physical performance in male bodybuilders. J. Sports Sci. 2016, 34, 959–965. [Google Scholar] [CrossRef]
- De Marchi, T.; Schmitt, V.M.; Danubia da Silva Fabro, C.; da Silva, L.L.; Sene, J.; Tairova, O.; Salvador, M. Phototherapy for improvement of performance and exercise recovery: Comparison of 3 commercially available devices. J. Athl. Train. 2017, 52, 429–438. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Teixeira, V.H.; Soares, J. Dietary strategies to recover from exercise-induced muscle damage. Int. J. Food Sci. Nutr. 2014, 65, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.D.; Ogborn, D.I.; Cupido, C.; Melov, S.; Hubbard, A.; Bourgeois, J.M.; Tarnopolsky, M.A. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci. Transl. Med. 2012, 4, 119ra113. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.L.; Alabed, S.; Chico, T.J.A. Effect of sports massage on performance and recovery: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2020, 6, e000614. [Google Scholar] [CrossRef]
- Guo, J.; Li, L.; Gong, Y.; Zhu, R.; Xu, J.; Zou, J.; Chen, X. Massage alleviates delayed onset muscle soreness after strenuous exercise: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 747. [Google Scholar] [CrossRef]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugue, B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and Inflammation: A systematic review with meta-analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef]
- Callaghan, M.J. The role of massage in the management of the athlete: A review. Br. J. Sports Med. 1993, 27, 28–33. [Google Scholar] [CrossRef]
- Best, T.M.; Hunter, R.; Wilcox, A.; Haq, F. Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clin. J. Sport Med. 2008, 18, 446–460. [Google Scholar] [CrossRef]
- Tiidus, P.M. Manual massage and recovery of muscle function following exercise: A literature review. J. Orthop. Sports Phys. Ther. 1997, 25, 107–112. [Google Scholar] [CrossRef]
- Ernst, E. Does post-exercise massage treatment reduce delayed onset muscle soreness? A systematic review. Br. J. Sports Med. 1998, 32, 212–214. [Google Scholar] [CrossRef]
- J.Hemmings, B. Physiological, psychological and performance effects of massage therapy in sport: A review of the literature. Phys. Ther. Sport 2001, 2, 165–170. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Habashy, R.R.; Abdel-Naim, A.B.; Khalifa, A.E.; Al-Azizi, M.M. Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol. Res. 2005, 51, 95–105. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakaji, S.; Kurakake, S.; Totsuka, M.; Sato, K.; Kuriyama, T.; Fujimoto, H.; Shibusawa, K.; Machida, K.; Sugawara, K. Exhaustive exercise and type-1/type-2 cytokine balance in special focus on interleukin-12 p40/p70. Exerc. Immunol. Rev. 2003, 9, 48–57. [Google Scholar]
- Matsumoto, Y.; Ma, S.; Tominaga, T.; Yokoyama, K.; Kitatani, K.; Horikawa, K.; Suzuki, K. Acute effects of transdermal administration of jojoba oil on lipid metabolism in mice. Medicina 2019, 55, 594. [Google Scholar] [CrossRef]
- Fujisaki, R.; Kamei, K.; Yamamura, M.; Nishiya, H.; Inouye, S.; Takahashi, M.; Abe, S. In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol. Southeast Asian J. Trop. Med. Public Health 2012, 43, 270–279. [Google Scholar]
- Jäger, W.; Buchbauer, G.; Jirovetz, L.; Fritzer, M. Percutaneous absorption of lavender oil from a massage oil. J. Soc. Cosmet. Chem. 1992, 43, 49–54. [Google Scholar]
- Conner, J.D.; Wolden-Hanson, T.; Quinn, L.S. Assessment of murine exercise endurance without the use of a shock grid: An alternative to forced exercise. J. Vis. Exp. 2014, 90, e51846. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Moller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef]
- Ellingsgaard, H.; Hauselmann, I.; Schuler, B.; Habib, A.M.; Baggio, L.L.; Meier, D.T.; Eppler, E.; Bouzakri, K.; Wueest, S.; Muller, Y.D.; et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011, 17, 1481–1489. [Google Scholar] [CrossRef]
- Schwane, J.A.; Johnson, S.R.; Vandenakker, C.B.; Armstrong, R.B. Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Med. Sci. Sports Exerc. 1983, 15, 51–56. [Google Scholar] [CrossRef]
- Bilgic, I.; Gelecek, S.; Akgun, A.E.; Ozmen, M.M. Evaluation of liver injury in a tertiary hospital: A retrospective study. Ulus. Travma Acil Cerrahi Derg. 2014, 20, 359–365. [Google Scholar] [CrossRef]
- Li, Y.C.; Shen, J.D.; Lu, S.F.; Zhu, L.L.; Wang, B.Y.; Bai, M.; Xu, E.P. Transcriptomic analysis reveals the mechanism of sulfasalazine-induced liver injury in mice. Toxicol. Lett. 2020, 321, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Young, M.E. Circadian rhythms in the development of obesity: Potential role for the circadian clock within the adipocyte. Obes. Rev. 2007, 8, 169–181. [Google Scholar] [CrossRef]
- Zanquetta, M.M.; Correa-Giannella, M.L.; Monteiro, M.B.; Villares, S.M. Body weight, metabolism and clock genes. Diabetol. Metab. Syndr. 2010, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. The interleukin-1 family: 10 years of discovery. FASEB J. 1994, 8, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Opp, M.R.; Smith, E.M.; Hughes, T.K., Jr. Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J. Neuroimmunol. 1995, 60, 165–168. [Google Scholar] [CrossRef]
- Salter, M.; Knowles, R.G.; Moncada, S. Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. FEBS Lett. 1991, 291, 145–149. [Google Scholar] [CrossRef]
- Chiang, J.; Shen, Y.C.; Wang, Y.H.; Hou, Y.C.; Chen, C.C.; Liao, J.F.; Yu, M.C.; Juan, C.W.; Liou, K.T. Honokiol protects rats against eccentric exercise-induced skeletal muscle damage by inhibiting NF-kB induced oxidative stress and inflammation. Eur. J. Pharmacol. 2009, 610, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Pauli, J.R.; Ropelle, E.R.; Cintra, D.E.; Carvalho-Filho, M.A.; Moraes, J.C.; De Souza, C.T.; Velloso, L.A.; Carvalheira, J.B.; Saad, M.J. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J. Physiol. 2008, 586, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc. Immunol. Rev. 2002, 8, 6–48. [Google Scholar] [PubMed]
- Tietel, Z.; Melamed, S.; Ogen-Shtern, N.; Eretz-Kdosha, N.; Silberstein, E.; Ayzenberg, T.; Dag, A.; Cohen, G. Topical application of jojoba (Simmondsia chinensis L.) wax enhances the synthesis of pro-collagen III and hyaluronic acid and reduces inflammation in the ex-vivo human skin organ culture model. Front. Pharmacol. 2024, 15, 1333085. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, F.; Sun, Y.; Yu, X.; Xiao, Z.; Fang, R.; Li, J.; Li, Q.; Du, L.; Jin, Y. Inhalable jojoba oil dry nanoemulsion powders for the treatment of lipopolysaccharide- or H2O2-induced acute lung injury. Pharmaceutics 2021, 13, 486. [Google Scholar] [CrossRef]
- Belhadj, S.; Hentati, O.; Hamdaoui, G.; Fakhreddine, K.; Maillard, E.; Dal, S.; Sigrist, S. Beneficial effect of jojoba seed extracts on hyperglycemia-induced oxidative stress in RINm5f beta cells. Nutrients 2018, 10, 384. [Google Scholar] [CrossRef]
- Abdel-Mageed, W.M.; Bayoumi, S.A.; Al-Wahaibi, L.H.; Li, L.; Sayed, H.M.; Abdelkader, M.S.; El-Gamal, A.A.; Liu, M.; Zhang, J.; Zhang, L.; et al. Noncyanogenic cyanoglucoside cyclooxygenase inhibitors from Simmondsia chinensis. Org. Lett. 2016, 18, 1728–1731. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Cannon, J.G.; St Pierre, B.A. Cytokines in exertion-induced skeletal muscle injury. Mol. Cell. Biochem. 1998, 179, 159–167. [Google Scholar] [CrossRef]
- Heinonen, I.; Nesterov, S.V.; Kemppainen, J.; Nuutila, P.; Knuuti, J.; Laitio, R.; Kjaer, M.; Boushel, R.; Kalliokoski, K.K. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans. J. Appl. Physiol. 2007, 103, 2042–2048. [Google Scholar] [CrossRef]
- Sterpetti, A.V.; Cucina, A.; Morena, A.R.; Di Donna, S.; D’Angelo, L.S.; Cavalarro, A.; Stipa, S. Shear stress increases the release of interleukin-1 and interleukin-6 by aortic endothelial cells. Surgery 1993, 114, 911–914. [Google Scholar]
- Starkie, R.; Ostrowski, S.R.; Jauffred, S.; Febbraio, M.; Pedersen, B.K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 2003, 17, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.L.; Steinberg, G.R.; Macaulay, S.L.; Thomas, W.G.; Holmes, A.G.; Ramm, G.; Prelovsek, O.; Hohnen-Behrens, C.; Watt, M.J.; James, D.E.; et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006, 55, 2688–2697. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.W.; Carey, A.L.; Sacchetti, M.; Steinberg, G.R.; Macaulay, S.L.; Febbraio, M.A.; Pedersen, B.K. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E155–E162. [Google Scholar] [CrossRef]
- Davis, J.M.; Kohut, M.L.; Colbert, L.H.; Jackson, D.A.; Ghaffar, A.; Mayer, E.P. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J. Appl. Physiol. 1997, 83, 1461–1466. [Google Scholar] [CrossRef]
- Lancaster, G.I.; Khan, Q.; Drysdale, P.T.; Wallace, F.; Jeukendrup, A.E.; Drayson, M.T.; Gleeson, M. Effect of prolonged exercise and carbohydrate ingestion on type 1 and type 2 T lymphocyte distribution and intracellular cytokine production in humans. J. Appl. Physiol. 2005, 98, 565–571. [Google Scholar] [CrossRef]
- Kunicka, J.E.; Talle, M.A.; Denhardt, G.H.; Brown, M.; Prince, L.A.; Goldstein, G. Immunosuppression by glucocorticoids: Inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell. Immunol. 1993, 149, 39–49. [Google Scholar] [CrossRef]
- Moynihan, J.A.; Callahan, T.A.; Kelley, S.P.; Campbell, L.M. Adrenal hormone modulation of type 1 and type 2 cytokine production by spleen cells: Dexamethasone and dehydroepiandrosterone suppress interleukin-2, interleukin-4, and interferon-γ production in vitro. Cell. Immunol. 1998, 184, 58–64. [Google Scholar] [CrossRef]
- Yano, H.; Uchida, M.; Nakai, R.; Ishida, K.; Kato, Y.; Kawanishi, N.; Shiva, D. Exhaustive exercise reduces TNF-α and IFN-α production in response to R-848 via toll-like receptor 7 in mice. Eur. J. Appl. Physiol. 2010, 110, 797–803. [Google Scholar] [CrossRef]
- van der Poll, T.; Coyle, S.M.; Barbosa, K.; Braxton, C.C.; Lowry, S.F. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J. Clin. Investig. 1996, 97, 713–719. [Google Scholar] [CrossRef]
- Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol. 2007, 103, 693–699. [Google Scholar] [CrossRef]
- Suzuki, K. Cytokine response to exercise and Its modulation. Antioxidants 2018, 7, 17. [Google Scholar] [CrossRef]
- Price, D.D.; Mao, J.; Lu, J.; Caruso, F.S.; Frenk, H.; Mayer, D.J. Effects of the combined oral administration of NSAIDs and dextromethorphan on behavioral symptoms indicative of arthritic pain in rats. Pain 1996, 68, 119–127. [Google Scholar] [CrossRef]
- Kalra, B.S.; Shalini; Chaturvedi, S.; Tayal, V.; Gupta, U. Evaluation of gastric tolerability, antinociceptive and antiinflammatory activity of combination NSAIDs in rats. Indian J. Dent. Res. 2009, 20, 418–422. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Harvey, C.J. Dissolution of materials in artificial skin surface film liquids. Toxicol. In Vitro 2006, 20, 1265–1283. [Google Scholar] [CrossRef] [PubMed]
- Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol. 2015, 172, 2179–2209. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016, 23, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Hartmann-Boyce, J.; Chepkin, S.C.; Ye, W.; Bullen, C.; Lancaster, T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst. Rev. 2018, 5, CD000146. [Google Scholar] [CrossRef]
- Saitou, K.; Tokunaga, M.; Yoshino, D.; Sakitani, N.; Maekawa, T.; Ryu, Y.; Nagao, M.; Nakamoto, H.; Saito, T.; Kawanishi, N.; et al. Local cyclical compression modulates macrophage function in situ and alleviates immobilization-induced muscle atrophy. Clin. Sci. 2018, 132, 2147–2161. [Google Scholar] [CrossRef] [PubMed]
- Mizokami, T.; Suzuki, K. Involvement of neutrophils and macrophages in exhaustive exercise-induced liver, kidney, heart, and lung injuries. Exerc. Immunol. Rev. 2024, 30, 49–62. [Google Scholar] [PubMed]
Name | MW [g/moL] | Content [%] |
---|---|---|
Eicosenoic acid | 310.51 | 73.4 |
Erucic acide | 338.57 | 14.7 |
Oleic acid | 282.47 | 8.3 |
Gene | Accession No. | Forward | Reverse |
---|---|---|---|
Il-1b | NM_008361.4 | TGCCACCTTTTGACAGTGATG | TGTGCTGCTGCGAGATTTGA |
Il-1ra | NM_031167.5 | TGTGCCAAGTCTGGAGATGA | TTCTTTGTTCTTGCTCAGATCAGT |
Il-6 | NM_001314054.1 | GCTACCAAACTGGATATAATCAGGA | CCAGGTAGCTATGGTACTCCAGAA |
Il-10 | NM_010548.2 | CAGAGCCACATGCTCCTAGA | TGTCCAGCTGGTCCTTTGTT |
iNOS | NM_001313922.1 | GGGCTGTCACGGAGATCA | CCATGATGGTCACATTCTGC |
Actb | NM_007393.5 | CCTCCCTGGAGAAGAGCTATG | TTACGGATGTCAACGTCACAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, Y.; Suzuki, K. Topical Application of Jojoba Oil Suppresses Exercise-Induced Inflammatory Gene Expression in Mouse Skeletal Muscle. Biomolecules 2025, 15, 1394. https://doi.org/10.3390/biom15101394
Matsumoto Y, Suzuki K. Topical Application of Jojoba Oil Suppresses Exercise-Induced Inflammatory Gene Expression in Mouse Skeletal Muscle. Biomolecules. 2025; 15(10):1394. https://doi.org/10.3390/biom15101394
Chicago/Turabian StyleMatsumoto, Yutaka, and Katsuhiko Suzuki. 2025. "Topical Application of Jojoba Oil Suppresses Exercise-Induced Inflammatory Gene Expression in Mouse Skeletal Muscle" Biomolecules 15, no. 10: 1394. https://doi.org/10.3390/biom15101394
APA StyleMatsumoto, Y., & Suzuki, K. (2025). Topical Application of Jojoba Oil Suppresses Exercise-Induced Inflammatory Gene Expression in Mouse Skeletal Muscle. Biomolecules, 15(10), 1394. https://doi.org/10.3390/biom15101394