A Safety Evaluation of N-Acetylglucosamine Produced by Bacillus subtilis BNZR 2-7: A Comprehensive In Vitro and In Vivo Genotoxicity Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. N-Acetylglucosamine
2.3. Bacterial Reverse Mutation Assay (Ames Test)
2.4. In Vitro Micronucleus Assay in Chinese Hamster Ovary Cells
2.5. In Vivo Mammalian Erythrocyte Micronucleus and Spermatocyte Chromosome Aberration Tests
2.6. Statistics
3. Results
3.1. GlcNAc Did Not Exhibit Mutagenic Activity in Bacterial Species
3.2. GlcNAc Was Negative for the Induction of Micronucleated Cells in CHO-WBL Cells
3.3. GlcNAc Was Negative for the Induction of Micronuclei in the Polychromatic Erythrocytes of Mice
3.4. GlcNAc Did Not Affect Chromosomal Aberrations in Mouse Spermatocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, V.; Panilaitis, B.; Shi, H.; Numuta, K.; Lee, K.; Kaplan, D.L. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl glucosamine assimilation in Gluconacetobacter xylinus. PLoS ONE 2011, 6, e18099. [Google Scholar] [CrossRef]
- Gu, Y.; Deng, J.; Liu, Y.; Li, J.; Shin, H.D.; Du, G.; Chen, J.; Liu, L. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Biotechnol. J. 2017, 12, 28731580. [Google Scholar] [CrossRef] [PubMed]
- Koch, B.E.; Stougaard, J.; Spaink, H.P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 2015, 25, 469–482. [Google Scholar] [CrossRef]
- Chen, J.K.; Shen, C.R.; Liu, C.L. N-acetylglucosamine: Production and applications. Mar. Drugs 2010, 8, 2493–2516. [Google Scholar] [CrossRef]
- Choi, S.I.; Shin, Y.C.; Lee, J.S.; Yoon, Y.C.; Kim, J.M.; Sung, M.K. N-Acetylglucosamine and its dimer ameliorate inflammation in murine colitis by strengthening the gut barrier function. Food Funct. 2023, 14, 8533–8544. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Ribeiro, H.; Voabil, P.; Penque, D.; Jensen, O.N.; Molina, H.; Matthiesen, R. Global Mass Spectrometry and Transcriptomics Array Based Drug Profiling Provides Novel Insight into Glucosamine Induced Endoplasmic Reticulum Stress. Mol. Cell. Proteom. 2014, 13, 3294–3307. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, F.; Tao, T.; Zhang, D.; Liu, X.; Zhu, G.; Xu, Z.; Ni, R.; Shen, A. Modification of p27 with O-linked N-acetylglucosamine regulates cell proliferation in hepatocellular carcinoma. Mol. Carcinog. 2017, 56, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiang, C.; Kong, X.; Liang, Y.; Rong, M.; Liu, W. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol. Med. Rep. 2012, 6, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wang, C.; Li, X.; Guan, F. Bisecting N-acetylglucosamine structures inhibit hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Front. Physiol. 2018, 9, 210. [Google Scholar] [CrossRef]
- Taniguchi, N.; Korekane, H. Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep. 2011, 44, 772–781. [Google Scholar] [CrossRef]
- Ciszewicz, M.; Wu, G.; Tam, P.; Połubinska, A.; Bręborowicz, A. Glucose but not N-acetylglucosamine accelerates in vitro senescence of human peritoneal mesothelial cells. Int. J. Artif. Organs 2011, 34, 489–494. [Google Scholar] [CrossRef]
- Kang, S.M.; Adhikari, A.; Kwon, E.H.; Gam, H.J.; Jeon, J.R.; Woo, J.I.; Lee, I.J. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress. Int. J. Mol. Sci. 2024, 25, 2844. [Google Scholar] [CrossRef]
- Das, S.; Chowdhury, C.; Kumar, S.P.; Roy, D.; Gosavi, S.W.; Sen, R. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development. Carbohydr. Res. 2024, 536, 109039. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Y.; Wang, Y.; Lv, X.; Li, J.; Du, G.; Liu, L. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5′-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis. Biotechnol. J. 2019, 14, e1800264. [Google Scholar] [CrossRef]
- Utili, R.; Abernathy, C.O.; Zimmerman, H.J. Cholestatic effects of Escherichia coli endotoxin endotoxin on the isolated perfused rat liver. Gastroenterology 1976, 70, 248–253. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Li, J.; Du, G.; Chen, J. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresour. Technol. 2012, 110, 534–538. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Li, J.; Shin, H.D.; Chen, R.R.; Du, G.; Liu, L.; Chen, J. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab. Eng. 2014, 23, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhang, C.; Cui, S.; Xu, X.; Wang, L.; Li, J.; Du, G.; Chen, J.; Ledesma-Amaro, R.; Liu, L. Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metab. Eng. 2020, 61, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Calvert, M.B.; Mayer, C.; Titz, A. An efficient synthesis of 1,6-anhydro-N-acetylmuramic acid from N-acetylglucosamine. Beilstein J. Org. Chem. 2017, 13, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, HHS. International Conference on Harmonisation; guidance on S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals intended for Human Use; availability. Notice. Fed. Regist. 2012, 77, 33748–33749. [Google Scholar]
- U.S. Food and Drug Administration. Redbook 2000: IV.C.1.b. In Vitro Mammalian Chromosomal Aberration Test; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2020. [Google Scholar]
- GB 15193.5-2014; National Food Safety Standard—Mammalian Erythrocyte Micronucleus Test. Standards Press of China: Beijing, China, 2014.
- GB 15193.8-2014; National Food Safety Standard—Chromosome Aberration Test of Mouse Spermatogonia or Spermatocyte. Standards Press of China: Beijing, China, 2014.
- Burgum, M.J.; Ulrich, C.; Partosa, N.; Evans, S.J.; Gomes, C.; Seiffert, S.B.; Landsiedel, R.; Honarvar, N.; Doak, S.H. Adapting the in vitro micronucleus assay (OECD Test Guideline No. 487) for testing of manufactured nanomaterials: Recommendations for best practices. Mutagenesis 2024, 39, 205–217. [Google Scholar] [CrossRef]
- Rubin, B.R.; Talent, J.M.; Kongtawelert, P.; Pertusi, R.M.; Forman, M.D.; Gracy, R.W. Oral polymeric N-acetyl-D-glucosamine and osteoarthritis. J. Am. Osteopath. Assoc. 2001, 101, 339–344. [Google Scholar] [PubMed]
- Lee, K.Y.; Shibutani, M.; Takagi, H.; Arimura, T.; Takigami, S.; Uneyama, C.; Kato, N.; Hirose, M. Subchronic toxicity study of dietary N-acetylglucosamine in F344 rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2004, 42, 687–695. [Google Scholar] [CrossRef]
- Takahashi, M.; Inoue, K.; Yoshida, M.; Morikawa, T.; Shibutani, M.; Nishikawa, A. Lack of chronic toxicity or carcinogenicity of dietary N-acetylglucosamine in F344 rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2009, 47, 462–471. [Google Scholar] [CrossRef]
- Lorge, E.; Moore, M.M.; Clements, J.; O’Donovan, M.; Fellows, M.D.; Honma, M.; Kohara, A.; Galloway, S.; Armstrong, M.J.; Thybaud, V.; et al. Standardized cell sources and recommendations for good cell culture practices in genotoxicity testing. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 809, 1–15. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Sathitsuksanoh, N.; Zhu, Z.; Percival Zhang, Y.H. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab. Eng. 2011, 13, 364–372. [Google Scholar] [CrossRef]
- Choi, K.Y.; Wernick, D.G.; Tat, C.A.; Liao, J.C. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 2014, 23, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, Y.; Ma, W.; Shin, H.D.; Li, J.; Liu, L.; Du, G.; Chen, J. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab. Eng. 2014, 24, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, R.; Bao, T.; Rao, Z.; Yang, T.; Xu, M.; Xu, Z.; Li, H.; Yang, S. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 2014, 23, 34–41. [Google Scholar] [CrossRef]
- Yang, S.; Du, G.; Chen, J.; Kang, Z. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2017, 101, 4151–4161. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Y.; Shin, H.D.; Li, J.; Chen, J.; Du, G.; Liu, L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour. Technol. 2018, 250, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Gleizer, S.; Ben-Nissan, R.; Bar-On, Y.M.; Antonovsky, N.; Noor, E.; Zohar, Y.; Jona, G.; Krieger, E.; Shamshoum, M.; Bar-Even, A.; et al. Conversion of Escherichia coli to Generate All Biomass Carbon from CO(2). Cell 2019, 179, 1255–1263.e1212. [Google Scholar] [CrossRef] [PubMed]
- Satanowski, A.; Dronsella, B.; Noor, E.; Vögeli, B.; He, H.; Wichmann, P.; Erb, T.J.; Lindner, S.N.; Bar-Even, A. Awakening a latent carbon fixation cycle in Escherichia coli. Nat. Commun. 2020, 11, 5812. [Google Scholar] [CrossRef] [PubMed]
Tester Strains | S9 * | Positive Control | Dose Level |
---|---|---|---|
TA98, TA100, TA1535, TA1537 | ± | 2-Aminoanthracene | 2.0 μg/plate |
WP2 uvrA | ± | 2-Aminoanthracene | 20.0 μg/plate |
TA98 | − | 2-Nitrofluorene | 10.0 μg/plate |
TA100, TA1535 | − | Sodium Azide | 1.0 μg/plate |
TA1537 | − | Acridine Mutagen ICR-191 | 1.0 μg/plate |
WP2 uvrA | − | Methyl Methanesulfonate | 2.5 μL/plate |
Treatment Condition | Treatment Time | Harvest Time | Concentrations (μg/mL) |
---|---|---|---|
S9-activated | 3 h | 24 h | 275, 550, 1100, 2212.1 |
Non-activated | 3 h | 275, 550, 1100, 2212.1 | |
24 h | 275, 550, 1100, 2212.1 |
Groups | TA98 | TA100 | TA1535 | TA1537 | WP2 uvrA | |
---|---|---|---|---|---|---|
PC (+S9) | 620.0 ± 80.9 | 649.3 ± 167.4 | 81.3 ± 8.5 | 72.7 ± 21.1 | 120.0 ± 8.2 | |
NC (+S9) | 45.7 ± 5.7 | 119.7 ± 18.0 | 10.3 ± 3.5 | 10.7 ± 0.6 | 25.0 ± 3.5 | |
GlcNAc (+S9) μg/plate | 50 | 48.3 ± 5.0 | 114.0 ± 9.8 | 10.3 ± 1.5 | 10.3 ± 3.8 | 23.3 ± 2.5 |
100 | 47.7 ± 4.7 | 125.7 ± 6.8 | 12.3 ± 0.6 | 8.0 ± 2.6 | 22.3 ± 3.2 | |
250 | 49.7 ± 5.7 | 117.3 ± 4.7 | 11.3 ± 2.9 | 9.7 ± 2.5 | 23.3 ± 4.2 | |
500 | 50.7 ± 3.8 | 121.0 ± 11.0 | 10.3 ± 3.5 | 11.7 ± 3.1 | 22.3 ± 2.9 | |
1000 | 48.7 ± 1.2 | 131.3 ± 4.7 | 11.0 ± 3.6 | 11.7 ± 3.1 | 21.7 ± 5.7 | |
2500 | 42.7 ± 1.5 | 130.0 ± 23.4 | 8.0 ± 1.7 | 9.0 ± 1.0 | 18.7 ± 1.5 * | |
5000 | 45.7 ± 14.6 | 115.3 ± 13.3 | 10.7 ± 0.6 | 9.7 ± 1.2 | 20.0 ± 5.3 | |
PC (−S9) | 841.3 ± 50.0 | 485.3 ± 4.6 | 553.3 ± 148.4 | 233.3 ± 6.7 | 455.3 ± 103.9 | |
NC (−S9) | 35.0 ± 3.6 | 151.0 ± 7.0 | 12.7 ± 5.9 | 9.7 ± 2.9 | 18.3 ± 2.3 | |
GlcNAc (−S9) μg/plate | 50 | 38.0 ± 7.0 | 148.7 ± 22.3 | 10.7 ± 3.5 | 10.0 ± 3.5 | 18.0 ± 7.5 |
100 | 37.0 ± 7.0 | 140.0 ± 16.5 | 15.0 ± 2.6 | 7.0 ± 0.0 | 18.7 ± 3.8 | |
250 | 32.7 ± 5.9 | 127.3 ± 9.1 * | 10.7 ± 4.2 | 9.3 ± 0.6 | 23.0 ± 1.0 | |
500 | 34.3 ± 4.6 | 111.7 ± 10.7 * | 11.3 ± 6.1 | 13.0 ± 1.7 | 22.7 ± 1.2 | |
1000 | 43.3 ± 5.0 | 111.0 ± 6.9 * | 8.0 ± 1.0 | 8.3 ± 0.6 | 17.7 ± 3.1 | |
2500 | 31.7 ± 5.7 | 116.3 ± 9.7 * | 11.7 ± 1.5 | 10.7 ± 2.1 | 19.0 ± 2.0 | |
5000 | 36.7 ± 11.0 | 108.0 ± 19.3 * | 9.7 ± 5.1 | 9.3 ± 1.5 | 16.3 ± 4.2 |
Group | Dose Level (μg/mL) | Cytotoxicity (%) | Micronucleated Cells (%) | ||||
---|---|---|---|---|---|---|---|
3 h + S9 | 3 h − S9 | 24 h − S9 | 3 h + S9 | 3 h − S9 | 24 h − S9 | ||
NC | 0 | 0 | 0 | 0 | 1.00 | 0.95 | 1.10 |
PC | - | 31 | 32 | 43 | 8.95 | 11.95 | 4.80 |
GlcNAc | 550 | 0 | 2 | 3 | 1.10 | 0.80 | 0.75 |
1100 | 2 | −1 | −1 | 1.40 | 0.55 | 0.80 | |
2212.1 | 3 | −1 | 2 | 1.20 | 0.90 | 1.20 |
Group | Dose Level (g/kg) | Number of Cells Observed | Number of Sex Chromosome Monosomy | Number of Autosomal Monosomy | Number of Chromosome Aberration | Number of Chromosomal Abnormal Cells | Rate of Chromosomal Abnormal Cells (%) |
---|---|---|---|---|---|---|---|
NC | 0.0 | 500 | 0 | 3 | 6 | 5 | 1.0 |
PC | - | 500 | 0 | 13 | 65 | 53 | 10.6 |
GlcNAc | 2.5 | 500 | 0 | 2 | 6 | 4 | 0.8 |
5.0 | 500 | 0 | 2 | 7 | 5 | 1.0 | |
10.0 | 500 | 0 | 4 | 7 | 4 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Hao, J.; Liu, X.; Yang, K.; Bai, L.; Hu, Q.; Feng, S. A Safety Evaluation of N-Acetylglucosamine Produced by Bacillus subtilis BNZR 2-7: A Comprehensive In Vitro and In Vivo Genotoxicity Assessment. Biomolecules 2025, 15, 1368. https://doi.org/10.3390/biom15101368
Zhang L, Hao J, Liu X, Yang K, Bai L, Hu Q, Feng S. A Safety Evaluation of N-Acetylglucosamine Produced by Bacillus subtilis BNZR 2-7: A Comprehensive In Vitro and In Vivo Genotoxicity Assessment. Biomolecules. 2025; 15(10):1368. https://doi.org/10.3390/biom15101368
Chicago/Turabian StyleZhang, Liangliang, Jiahui Hao, Xuefang Liu, Kualian Yang, Lina Bai, Qingping Hu, and Saisai Feng. 2025. "A Safety Evaluation of N-Acetylglucosamine Produced by Bacillus subtilis BNZR 2-7: A Comprehensive In Vitro and In Vivo Genotoxicity Assessment" Biomolecules 15, no. 10: 1368. https://doi.org/10.3390/biom15101368
APA StyleZhang, L., Hao, J., Liu, X., Yang, K., Bai, L., Hu, Q., & Feng, S. (2025). A Safety Evaluation of N-Acetylglucosamine Produced by Bacillus subtilis BNZR 2-7: A Comprehensive In Vitro and In Vivo Genotoxicity Assessment. Biomolecules, 15(10), 1368. https://doi.org/10.3390/biom15101368