Association of Plasma Placental Growth Factor with White Matter Hyperintensities in Alzheimer’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. CSF Collection and Analysis
2.3. Plasma Collection and Analysis
2.4. Magnetic Resonance Imaging (MRI)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | Alzheimer’s clinical syndrome |
AD | Alzheimer’s disease |
BBB | Blood–brain barrier |
BMI | Body mass index |
CAA | Cerebral amyloid angiopathy |
FLAIR | Fluid-attenuated inversion recovery |
MMSE | Mini-Mental State Examination |
MRI | Magnetic resonance imaging |
PlGF | Placental growth factor |
WMH | White matter hyperintensity |
References
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Beach, T.G.; Malek-Ahmadi, M. Alzheimer’s Disease Neuropathological Comorbidities are Common in the Younger-Old. J. Alzheimer’s Dis. 2021, 79, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front. Aging Neurosci. 2013, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Corrada, M.M.; Kovacs, G.G.; Dominique, M.; Caswell, C.; Xie, S.X.; Lee, V.M.; Kawas, C.H.; Trojanowski, J.Q. Non-Alzheimer’s contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathol. 2018, 136, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Arnold, S.E.; Raible, K.; Brettschneider, J.; Xie, S.X.; Grossman, M.; Monsell, S.E.; Kukull, W.A.; Trojanowski, J.Q. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013, 136, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Frank, B.; Ally, M.; Tripodis, Y.; Puzo, C.; Labriola, C.; Hurley, L.; Martin, B.; Palmisano, J.; Chan, L.; Steinberg, E.; et al. Trajectories of Cognitive Decline in Brain Donors with Autopsy-Confirmed Alzheimer Disease and Cerebrovascular Disease. Neurology 2022, 98, e2454–e2464. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, D.A.; Greiner, L.H.; Mortimer, J.A.; Riley, K.P.; Greiner, P.A.; Markesbery, W.R. Brain infarction and the clinical expression of Alzheimer disease: The Nun Study. JAMA 1997, 277, 813–817. [Google Scholar] [CrossRef]
- Brenowitz, W.D.; Hubbard, R.A.; Keene, C.D.; Hawes, S.E.; Longstreth, W.T., Jr.; Woltjer, R.L.; Kukull, W.A. Mixed neuropathologies and associations with domain-specific cognitive decline. Neurology 2017, 89, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Brenowitz, W.D.; Hubbard, R.A.; Keene, C.D.; Hawes, S.E.; Longstreth, W.T., Jr.; Woltjer, R.L.; Kukull, W.A. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimer’s Dement. 2017, 13, 654–662. [Google Scholar] [CrossRef]
- Pillai, J.A.; Butler, R.S.; Bonner-Jackson, A.; Leverenz, J.B. Impact of Alzheimer’s Disease, Lewy Body and Vascular Co-Pathologies on Clinical Transition to Dementia in a National Autopsy Cohort. Dement. Geriatr. Cogn. Disord. 2016, 42, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Rabinovici, G.D.; Carrillo, M.C.; Forman, M.; DeSanti, S.; Miller, D.S.; Kozauer, N.; Petersen, R.C.; Randolph, C.; Knopman, D.S.; Smith, E.E.; et al. Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development. Alzheimer’s Dement. 2017, 3, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Arfanakis, K.; Evia, A.M.; Leurgans, S.E.; Cardoso, L.F.C.; Kulkarni, A.; Alqam, N.; Lopes, L.F.; Vieira, D.; Bennett, D.A.; Schneider, J.A. Neuropathologic Correlates of White Matter Hyperintensities in a Community-Based Cohort of Older Adults. J. Alzheimer’s Dis. 2020, 73, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Cruz, D.; Rabano, A.; Strange, B.A. Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia. Alzheimer’s Res. Ther. 2025, 17, 16. [Google Scholar] [CrossRef]
- Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165. [Google Scholar] [CrossRef]
- Hosoki, S.; Hansra, G.K.; Jayasena, T.; Poljak, A.; Mather, K.A.; Catts, V.S.; Rust, R.; Sagare, A.; Kovacic, J.C.; Brodtmann, A.; et al. Molecular biomarkers for vascular cognitive impairment and dementia. Nat. Rev. Neurol. 2023, 19, 737–753. [Google Scholar] [CrossRef]
- Meeker, K.L.; Butt, O.H.; Gordon, B.A.; Fagan, A.M.; Schindler, S.E.; Morris, J.C.; Benzinger, T.L.S.; Ances, B.M. Cerebrospinal fluid neurofilament light chain is a marker of aging and white matter damage. Neurobiol. Dis. 2022, 166, 105662. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Przybelski, S.A.; Lesnick, T.G.; Fought, A.J.; Reid, R.I.; Gebre, R.K.; Windham, B.G.; Algeciras-Schimnich, A.; Machulda, M.M.; Vassilaki, M.; et al. Vascular risk, gait, behavioral, and plasma indicators of VCID. Alzheimer’s Dement. 2024, 20, 1201–1213. [Google Scholar] [CrossRef]
- Sjogren, M.; Blomberg, M.; Jonsson, M.; Wahlund, L.O.; Edman, A.; Lind, K.; Rosengren, L.; Blennow, K.; Wallin, A. Neurofilament protein in cerebrospinal fluid: A marker of white matter changes. J. Neurosci. Res. 2001, 66, 510–516. [Google Scholar] [CrossRef]
- Ihara, M.; Yamamoto, Y. Emerging Evidence for Pathogenesis of Sporadic Cerebral Small Vessel Disease. Stroke 2016, 47, 554–560. [Google Scholar] [CrossRef]
- Dewerchin, M.; Carmeliet, P. PlGF: A multitasking cytokine with disease-restricted activity. Cold Spring Harb. Perspect. Med. 2012, 2, a011056. [Google Scholar] [CrossRef] [PubMed]
- Gertje, E.C.; Janelidze, S.; van Westen, D.; Cullen, N.; Stomrud, E.; Palmqvist, S.; Hansson, O.; Mattsson-Carlgren, N. Associations Between CSF Markers of Inflammation, White Matter Lesions, and Cognitive Decline in Individuals Without Dementia. Neurology 2023, 100, e1812–e1824. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhan, Y.; Wang, Q.; Zhang, M.; Dai, L.; Shen, Y. Pathological angiogenesis was associated with cerebrovascular lesion and neurodegeneration in Alzheimer’s disease. Alzheimer’s Dement. 2025, 21, e14521. [Google Scholar] [CrossRef]
- Hinman, J.D.; Elahi, F.; Chong, D.; Radabaugh, H.; Ferguson, A.; Maillard, P.; Thompson, J.F.; Rosenberg, G.A.; Sagare, A.; Moghekar, A.; et al. Placental growth factor as a sensitive biomarker for vascular cognitive impairment. Alzheimer’s Dement. 2023, 19, 3519–3527. [Google Scholar] [CrossRef]
- Kern, K.C.; Vohra, M.; Thirion, M.L.; Wang, D.J.J.; Wilcock, D.M.; Thompson, J.F.; Rosenberg, G.A.; Sagare, A.; Moghekar, A.; Lu, H.; et al. White matter free water mediates the associations between placental growth factor, white matter hyperintensities, and cognitive status. Alzheimer’s Dement. 2025, 21, e14408. [Google Scholar] [CrossRef]
- Wu, L.Y.; Chong, J.R.; Chong, J.P.C.; Hilal, S.; Venketasubramanian, N.; Tan, B.Y.; Richards, A.M.; Chen, C.P.; Lai, M.K.P. Serum Placental Growth Factor as a Marker of Cerebrovascular Disease Burden in Alzheimer’s Disease. J. Alzheimer’s Dis. 2024, 97, 1289–1298. [Google Scholar] [CrossRef]
- Jaime Garcia, D.; Clancy, U.; Arteaga, C.; Valdes-Hernandez, M.C.; Chappell, F.M.; Jochems, A.C.C.; Cheng, Y.; Zhang, J.; Thrippleton, M.J.; Stringer, M.S.; et al. Blood biomarkers of vascular dysfunction in small vessel disease progression: Insights from a longitudinal neuroimaging study. Alzheimer’s Dement. 2025, 21, e70152. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, K.; Tsukie, T.; Kikuchi, M.; Tokutake, T.; Washiyama, K.; Shimizu, S.; Yoshizawa, H.; Kuroha, Y.; Yajima, R.; Mori, H.; et al. The clinical application of optimized AT(N) classification in Alzheimer’s clinical syndrome (ACS) and non-ACS conditions. Neurobiol. Aging 2023, 127, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, Y.; Tohgi, H.; Hirai, S.; Terashi, A.; Fukuuchi, Y.; Yamaguchi, T.; Okudera, T. Effect of the Ca antagonist nilvadipine on stroke occurrence or recurrence and extension of asymptomatic cerebral infarction in hypertensive patients with or without history of stroke (PICA Study). 1. Design and results at enrollment. Cerebrovasc. Dis. 2007, 24, 202–209. [Google Scholar] [CrossRef]
- Kester, M.I.; Goos, J.D.; Teunissen, C.E.; Benedictus, M.R.; Bouwman, F.H.; Wattjes, M.P.; Barkhof, F.; Scheltens, P.; van der Flier, W.M. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers. JAMA Neurol. 2014, 71, 855–862. [Google Scholar] [CrossRef]
- Kapasi, A.; DeCarli, C.; Schneider, J.A. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017, 134, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Milenkovic, I.; Wohrer, A.; Hoftberger, R.; Gelpi, E.; Haberler, C.; Honigschnabl, S.; Reiner-Concin, A.; Heinzl, H.; Jungwirth, S.; et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: A community-based autopsy series. Acta Neuropathol. 2013, 126, 365–384. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, K.; Wu, W.; Zhou, D.; Lu, H.; Du, J.; Cai, L.; Yan, X.; Li, W.; Qian, X.; et al. Prevalence of mixed neuropathologies in age-related neurodegenerative diseases: A community-based autopsy study in China. Alzheimer’s Dement. 2025, 21, e14369. [Google Scholar] [CrossRef] [PubMed]
- Montoliu-Gaya, L.; Alosco, M.L.; Yhang, E.; Tripodis, Y.; Sconzo, D.; Ally, M.; Grotschel, L.; Ashton, N.J.; Lantero-Rodriguez, J.; Sauer, M.; et al. Optimal blood tau species for the detection of Alzheimer’s disease neuropathology: An immunoprecipitation mass spectrometry and autopsy study. Acta Neuropathol. 2023, 147, 5. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Kolster, R.; Triana-Baltzer, G.; Janelidze, S.; Zetterberg, H.; Kolb, H.C. Plasma p-tau immunoassays in clinical research for Alzheimer’s disease. Alzheimer’s Dement. 2025, 21, e14397. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Strom, A.; Fonseca, C.; Iaccarino, L.; Wolf, A.; Spina, S.; Allen, I.E.; Cobigo, Y.; Heuer, H.; et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021, 20, 739–752. [Google Scholar] [CrossRef]
- Murray, M.E.; Moloney, C.M.; Kouri, N.; Syrjanen, J.A.; Matchett, B.J.; Rothberg, D.M.; Tranovich, J.F.; Sirmans, T.N.H.; Wiste, H.J.; Boon, B.D.C.; et al. Global neuropathologic severity of Alzheimer’s disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol. Neurodegener. 2022, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Boyle, P.A.; Janelidze, S.; Petyuk, V.A.; Wang, T.; Bennett, D.A.; Hansson, O.; Schneider, J.A. Plasma p-tau181 and p-tau217 in discriminating PART, AD and other key neuropathologies in older adults. Acta Neuropathol. 2023, 146, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Garnier-Crussard, A.; Bougacha, S.; Wirth, M.; Dautricourt, S.; Sherif, S.; Landeau, B.; Gonneaud, J.; De Flores, R.; de la Sayette, V.; Vivien, D.; et al. White matter hyperintensity topography in Alzheimer’s disease and links to cognition. Alzheimer’s Dement. 2022, 18, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.P.; Shen, J.Y.; Chiew, H.J.; Ng, A.S.L.; Kandiah, N.; Rosa-Neto, P.; Gauthier, S. White Matter Hyperintensity as a Vascular Contribution to the AT(N) Framework. J. Prev. Alzheimer’s Dis. 2023, 10, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.; Raghavan, S.; Przybelski, S.A.; Preboske, G.M.; Schwarz, C.G.; Lowe, V.J.; Knopman, D.S.; Petersen, R.C.; Jack, C.R., Jr.; Graff-Radford, J.; et al. Can white matter hyperintensities based Fazekas visual assessment scales inform about Alzheimer’s disease pathology in the population? Alzheimer’s Res. Ther. 2024, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Charidimou, A.; Boulouis, G. Core CSF Biomarker Profile in Cerebral Amyloid Angiopathy: Updated Meta-Analysis. Neurology 2024, 103, e209795. [Google Scholar] [CrossRef]
- De Kort, A.M.; Kuiperij, H.B.; Marques, T.M.; Jakel, L.; van den Berg, E.; Kersten, I.; van Berckel-Smit, H.E.P.; Duering, M.; Stoops, E.; Abdo, W.F.; et al. Decreased Cerebrospinal Fluid Amyloid beta 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Ann. Neurol. 2023, 93, 1173–1186. [Google Scholar] [CrossRef]
- Dewenter, A.; Jacob, M.A.; Cai, M.; Gesierich, B.; Hager, P.; Kopczak, A.; Biel, D.; Ewers, M.; Tuladhar, A.M.; de Leeuw, F.E.; et al. Disentangling the effects of Alzheimer’s and small vessel disease on white matter fibre tracts. Brain 2023, 146, 678–689. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Zeestraten, E.A.; Benjamin, P.; Lambert, C.P.; Morris, R.G.; Barrick, T.R.; Markus, H.S. Longitudinal decline in structural networks predicts dementia in cerebral small vessel disease. Neurology 2018, 90, e1898–e1910. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Bennett, D.A.; Schneider, J.A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. Lancet Neurol. 2016, 15, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.A.; Wilson, R.S.; Yu, L.; Barr, A.M.; Honer, W.G.; Schneider, J.A.; Bennett, D.A. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann. Neurol. 2013, 74, 478–489. [Google Scholar] [CrossRef]
- Dodge, H.H.; Zhu, J.; Woltjer, R.; Nelson, P.T.; Bennett, D.A.; Cairns, N.J.; Fardo, D.W.; Kaye, J.A.; Lyons, D.E.; Mattek, N.; et al. Risk of incident clinical diagnosis of Alzheimer’s disease-type dementia attributable to pathology-confirmed vascular disease. Alzheimer’s Dement. 2017, 13, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Bangen, K.J.; Nation, D.A.; Delano-Wood, L.; Weissberger, G.H.; Hansen, L.A.; Galasko, D.R.; Salmon, D.P.; Bondi, M.W. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimer’s Dement. 2015, 11, 394–403.e1. [Google Scholar] [CrossRef] [PubMed]
Whole | AD+ | Non-AD | |
---|---|---|---|
n = 99 | n = 79 | n = 20 | |
Age, years | 76 (10) | 75 (10) | 80 (9) |
Female/Male | 58/41 | 50/29 | 8/12 |
Clinical diagnosis | |||
AD | 83 | 79 | 4 |
DLB | 1 | 0 | 1 |
FTD | 4 | 0 | 4 |
iNPH | 11 | 0 | 11 |
CDR score | |||
0.5 | 64 | 48 | 16 |
1 | 22 | 19 | 3 |
2 | 7 | 6 | 1 |
3 | 2 | 2 | 0 |
NA | 4 | 4 | 0 |
MMSE score | 24 (5) | 24 (4) | 24 (4) |
DSWMH grading | |||
0 | 17 | 14 | 3 |
1 | 30 | 26 | 4 |
2 | 28 | 21 | 7 |
3 | 21 | 16 | 5 |
4 | 3 | 2 | 1 |
WMH volume, mL | 12.0 (20.9) | 9.3 (20.2) | 17.0 (24.9) |
CSF Aβ42/Aβ40 | 0.046 (0.018) | 0.044 (0.015) | 0.069 (0.028) |
CSF p-tau181, pg/mL | 50.1 (29.8) | 56.7 (24.0) | 25.0 (19.7) |
CSF NfL, pg/mL | 4501.6 (3115.2) | 4501.6 (3069.6) | 4733.4 (2870.6) |
Plasma PlGF, pg/mL | 6.4 (1.8) | 6.5 (2.2) | 6.4 (1.1) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Whole | |||||||
NfL | 5.74 × 10−4 (2.04 × 10−4 to 9.43 × 10−4) p = 0.003 | 4.60 × 10−4 (1.41 × 10−4 to 7.79 × 10−4) p = 0.005 | 3.98 × 10−4 (9.86 × 10−5 to 6.98 × 10−4) p = 0.010 | 3.55 × 10−4 (5.49 × 10−5 to 6.54 × 10−4) p = 0.021 | 4.04 × 10−4 (1.01 × 10−4 to 7.07 × 10−4) p = 0.010 | 3.73 × 10−4 (7.05 × 10−4 to 6.75 × 10−4) p = 0.016 | 4.28 × 10−4 (1.31 × 10−4 to 7.24 × 10−4) p = 0.005 |
Age | – | 0.87 (0.60 to 1.14) p < 0.001 | 0.87 (0.62 to 1.13) p < 0.001 | 0.89 (0.64 to 1.15) p < 0.001 | 0.88 (0.62 to 1.14) p < 0.001 | 0.82 (0.55 to 1.09) p < 0.001 | 0.74 (0.46 to 1.02) p < 0.001 |
Sex (Male) | – | 1.60 (−3.34 to 6.55) p = 0.521 | 3.50 (−1.21 to 8.22) p = 0.144 | 3.57 (−1.09 to 8.23) p = 0.132 | 3.59 (−1.18 to 8.35) p = 0.139 | 3.22 (−1.51 to 7.95) p = 0.180 | 3.81 (−0.84 to 8.46) p = 0.107 |
MMSE | – | – | −0.90 (−1.36 to −0.44) p < 0.001 | −0.84 (−1.30 to −0.38) p < 0.001 | −0.90 (−1.36 to −0.43) p = 0.010 | −0.91 (−1.37 to −0.45) p < 0.001 | −0.88 (−1.33 to −0.42) p < 0.001 |
Aβ42 | – | – | – | −0.03 (−0.06 to 0.00) p = 0.070 | – | – | – |
Aβ ratio | – | – | – | – | −24.3 (−171.2 to 122.5) p = 0.743 | – | – |
p-tau | – | – | – | – | – | −0.057 (−0.15 to 0.037) p = 0.232 | – |
PlGF | – | – | – | – | – | – | 1.66 (0.04 to 3.27) p = 0.045 |
PlGF | 3.50 (1.71 to 5.29) p < 0.001 | 1.56 (−0.23 to 3.36) p = 0.087 | – | – | – | – | – |
Age | 0.79 (0.48 to 1.10) p < 0.001 | – | – | – | – | – | |
Sex (Male) | 3.21 (−1.81 to 8.23) p = 0.207 | – | – | – | – | – | |
AD+ | |||||||
NfL | 1.36 × 10−3 (2.22 × 10−4 to 2.50 × 10−3) p = 0.020 | 1.10 × 10−3 (1.27 × 10−4 to 2.06 × 10−3) p = 0.027 | 6.78 × 10−4 (−2.38 × 10−4 to 1.59 × 10−3) p = 0.145 | – | – | – | – |
Age | – | 0.85 (0.56 to 1.15) p < 0.001 | 0.86 (0.59 to 1.13) p < 0.001 | – | – | – | – |
Sex (Male) | – | 2.99 (−2.55 to 8.52) p = 0.286 | 4.53 (−0.63 to 9.68) p = 0.084 | – | – | – | – |
MMSE | – | – | −0.94 (−1.43 to −0.45) p < 0.001 | – | – | – | – |
PlGF | 3.70 (1.94 to 5.47) p < 0.001 | 1.95 (0.14 to 3.76) p = 0.035 | 1.67 (0.02 to 3.31) p = 0.048 | 1.69 (0.10 to 3.28) p = 0.037 | 1.62 (−0.03 to 3.28) p = 0.054 | 1.71 (0.08 to 3.35) p = 0.040 | 1.67 (0.04 to 3.31) p = 0.045 |
Age | – | 0.72 (0.38 to 1.05) p < 0.001 | 0.74 (0.43 to 1.04) p < 0.001 | 0.80 (0.50 to 1.10) p < 0.001 | 0.75 (0.45 to 1.06) p < 0.001 | 0.67 (0.35 to 0.98) p < 0.001 | 0.71 (0.41 to 1.02) p < 0.001 |
Sex (Male) | – | 3.09 (−2.46 to 8.64) p = 0.271 | 4.71 (−0.38 to 9.80) p = 0.069 | 4.97 (0.05 to 9.88) p = 0.048 | 4.76 (−0.35 to 9.87) p = 0.067 | 4.82 (−0.23 to 9.88) p = 0.061 | 4.61 (−0.43 to 9.66) p = 0.073 |
MMSE | – | – | −0.99 (−1.46 to −0.52) p < 0.001 | −0.92 (−1.38 to −0.46) p < 0.001 | −1.00 (−1.48 to −0.53) p < 0.001 | −0.98 (−1.45 to −0.51) p < 0.001 | −0.90 (−1.38 to −0.42) p < 0.001 |
Aβ42 | – | – | – | −0.05 (−0.09 to −0.01) p = 0.012 | – | – | – |
Aβ ratio | – | – | – | – | −84.2 (−316.9 to 148.5) p = 0.473 | – | – |
p-tau | – | – | – | – | – | −0.08 (−0.18 to 0.03) p = 0.150 | – |
NfL | – | – | – | – | – | – | 6.84 × 10−4 (−2.13 × 10−4 to 15.8 × 10−4) p = 0.133 |
Whole | Low DSWMH | High DSWMH | |
---|---|---|---|
n = 54 | n = 18 | n = 36 | |
Age, years | 79 (9) | 77 (8) | 81 (9) |
Female/Male | 33/21 | 10/8 | 23/13 |
BMI | 21.7 (4.7) | 22.3 (4.9) | 21.6 (4.4) |
CDR score | |||
0 | 2 | 1 | 1 |
0.5 | 31 | 13 | 18 |
1 | 19 | 4 | 15 |
2 | 2 | 0 | 2 |
MMSE score | 23 (5) | 24 (4) | 22 (5) |
DSWMH grading | |||
0 | 1 | 1 | 0 |
1 | 17 | 17 | 0 |
2 | 23 | 0 | 23 |
3 | 13 | 0 | 13 |
Serum Cre, mg/dL | 0.74 (0.22) | 0.72 (0.20) | 0.78 (0.21) |
CSF Aβ42/Aβ40 | 0.044 (0.014) | 0.051 (0.014) | 0.044 (0.015) |
CSF p-tau181, pg/mL | 51.8 (31.3) | 47.2 (32.1) | 52.3 (31.2) |
CSF NfL, pg/mL * | 5067.1 (3891.0) | 5036.4 (1481.4) | 5436.0 (4572.9) |
Plasma PlGF, pg/mL | 6.8 (2.2) | 5.9 (1.8) | 7.2 (1.8) ** |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
PlGF (high) | 4.09 (1.25–15.13) p = 0.025 | 3.97 (1.16–15.36) p = 0.034 | 3.70 (1.07–14.38) p = 0.045 | 3.85 (1.10–15.35) p = 0.042 |
Age | – | 1.08 (0.99–1.19) p = 0.107 | 1.08 (0.98–1.19) p = 0.133 | 1.07 (0.98–1.19) p = 0.157 |
Sex (Male) | – | 1.07 (0.30–4.20) p = 0.919 | 0.91 (0.23–3.74) p = 0.889 | 0.89 (0.18–4.50) p = 0.884 |
MMSE score | – | – | 0.92 (0.76–1.09) p = 0.357 | 0.94 (0.77–1.14) p = 0.529 |
BMI | – | – | – | 0.93 (0.77–1.13) p = 0.475 |
Creatinine | – | – | – | 2.48 (0.06–166.4) p = 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igarashi, K.; Tsukie, T.; Washiyama, K.; Onda, K.; Miyagi, Y.; Inagawa, S.; Shimizu, S.; Miyashita, A.; Onodera, O.; Ikeuchi, T.; et al. Association of Plasma Placental Growth Factor with White Matter Hyperintensities in Alzheimer’s Disease. Biomolecules 2025, 15, 1367. https://doi.org/10.3390/biom15101367
Igarashi K, Tsukie T, Washiyama K, Onda K, Miyagi Y, Inagawa S, Shimizu S, Miyashita A, Onodera O, Ikeuchi T, et al. Association of Plasma Placental Growth Factor with White Matter Hyperintensities in Alzheimer’s Disease. Biomolecules. 2025; 15(10):1367. https://doi.org/10.3390/biom15101367
Chicago/Turabian StyleIgarashi, Kazuya, Tamao Tsukie, Kazuo Washiyama, Kiyoshi Onda, Yuki Miyagi, Shoya Inagawa, Soichiro Shimizu, Akinori Miyashita, Osamu Onodera, Takeshi Ikeuchi, and et al. 2025. "Association of Plasma Placental Growth Factor with White Matter Hyperintensities in Alzheimer’s Disease" Biomolecules 15, no. 10: 1367. https://doi.org/10.3390/biom15101367
APA StyleIgarashi, K., Tsukie, T., Washiyama, K., Onda, K., Miyagi, Y., Inagawa, S., Shimizu, S., Miyashita, A., Onodera, O., Ikeuchi, T., & Kasuga, K. (2025). Association of Plasma Placental Growth Factor with White Matter Hyperintensities in Alzheimer’s Disease. Biomolecules, 15(10), 1367. https://doi.org/10.3390/biom15101367