An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drug Screen
2.3. Treatments with Specific Drugs in Whole Larvae
2.4. Behavioural Analyses
2.5. Whole-Mount Anti-Serotonin Immunofluorescence
2.6. Cryostat Sections
2.7. TUNEL Labelling on Cryostat Sections
2.8. Immunofluorescence on Cryostat Sections
2.9. Imaging and Cell Counting of Whole-Mounted Larvae and Spinal Cord Sections
2.10. Statistical Analysis
3. Results and Discussion
3.1. An Unbiased Drug Screen Reveals That a SIRT2 Inhibitor Reduces the Number of Serotonergic Cells in the Developing Spinal Cord
3.2. Pharmacological Experiments Confirm That SIRT2 Activity Regulates Spinal Cord Neurogenesis
3.3. Inhibition of Neurogenesis with SirReal2 Leads to Locomotor Deficits in 4 dpf Larvae
3.4. SIRT2 Promotes Spinal Cord Neurogenesis by Regulating the Mitotic Activity of Progenitor Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gosgnach, S. The mammalian locomotor CPG: Revealing the contents of the black box. J. Neurophysiol. 2025, 133, 472–478. [Google Scholar] [CrossRef]
- Hilinski, W.C.; Bostrom, J.R.; England, S.J.; Juárez-Morales, J.L.; de Jager, S.; Armant, O.; Legradi, J.; Strähle, U.; Link, B.A.; Lewis, K.E. Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons. Neural Dev. 2016, 11, 16. [Google Scholar] [CrossRef]
- Gerber, V.; Yang, L.; Takamiya, M.; Ribes, V.; Gourain, V.; Peravali, R.; Stegmaier, J.; Mikut, R.; Reischl, M.; Ferg, M.; et al. The HMG box transcription factors Sox1a and Sox1b specify a new class of glycinergic interneuron in the spinal cord of zebrafish embryos. Development 2019, 146, dev172510. [Google Scholar] [CrossRef]
- Gao, T.; Li, J.; Li, N.; Gao, Y.; Yu, L.; Zhuang, S.; Zhao, Y.; Dong, X. lncrps25 play an essential role in motor neuron development through controlling the expression of olig2 in zebrafish. J. Cell. Physiol. 2020, 235, 3485–3496. [Google Scholar] [CrossRef]
- Gong, J.; Hu, S.; Huang, Z.; Hu, Y.; Wang, X.; Zhao, J.; Qian, P.; Wang, C.; Sheng, J.; Lu, X.; et al. The Requirement of Sox2 for the Spinal Cord Motor Neuron Development of Zebrafish. Front. Mol. Neurosci. 2020, 13, 34. [Google Scholar] [CrossRef]
- Chen, F.; Köhler, M.; Cucun, G.; Takamiya, M.; Kizil, C.; Cosacak, M.I.; Rastegar, S. sox1a: eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons. iScience 2023, 26, 107342. [Google Scholar]
- Cucun, G.; Köhler, M.; Pfitsch, S.; Rastegar, S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J. 2024, 291, 646–662. [Google Scholar]
- González-Llera, L.; Sobrido-Cameán, D.; Quelle-Regaldie, A.; Sánchez, L.; Barreiro-Iglesias, A. An in vivo drug screen in zebrafish reveals that cyclooxygenase 2-derived prostaglandin D2promotes spinal cord neurogenesis. Cell Prolif. 2024, 57, e13594. [Google Scholar] [CrossRef]
- Montgomery, J.E.; Wiggin, T.D.; Rivera-Perez, L.M.; Lillesaar, C.; Masino, M.A. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish. Dev. Neurobiol. 2016, 76, 673–687. [Google Scholar]
- Vaquero, A.; Scher, M.B.; Lee, D.H.; Sutton, A.; Cheng, H.L.; Alt, F.W.; Serrano, L.; Sternglanz, R.; Reinberg, D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006, 20, 1256–1261. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Hong, T.; Chen, X.; Cui, L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019, 55, 100961. [Google Scholar]
- Maxwell, M.M.; Tomkinson, E.M.; Nobles, J.; Wizeman, J.W.; Amore, A.M.; Quinti, L.; Chopra, V.; Hersch, S.M.; Kazantsev, A.G. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol. Genet. 2011, 20, 3986–3996. [Google Scholar]
- Szegő, É.M.; Gerhardt, E.; Outeiro, T.F. Sirtuin 2 enhances dopaminergic differentiation via the AKT/GSK-3β/β-catenin pathway. Neurobiol. Aging 2017, 56, 7–16. [Google Scholar]
- Takahashi, K.; Kurokawa, K.; Hong, L.; Miyagawa, K.; Mochida-Saito, A.; Takeda, H.; Tsuji, M. Correlation between the reduction in hippocampal SirT2 expression and depressive-like behaviors and neurological abnormalities in olfactory bulbectomized mice. Neurosci. Res. 2022, 182, 76–80. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, X.H.; Xu, S.X.; Wang, C.; Sun, S.; Song, X.; Li, R.; Li, N.; Feng, Y.; Duan, H.; et al. Oligodendrocyte-derived exosomes-containing SIRT2 ameliorates depressive-like behaviors and restores hippocampal neurogenesis and synaptic plasticity via the AKT/GSK-3β pathway in depressed mice. CNS Neurosci. Ther. 2024, 30, e14661. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, ON, USA, 2000. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar]
- Nur, S.; Adams, C.E. Chlorpromazine versus reserpine for schizophrenia. Cochrane Database Syst. Rev. 2016, 4, CD012122. [Google Scholar] [CrossRef]
- Łysyganicz, P.K.; Pooranachandran, N.; Liu, X.; Adamson, K.I.; Zielonka, K.; Elworthy, S.; van Eeden, F.J.; Grierson, A.J.; Malicki, J.J. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front. Cell Dev. Biol. 2021, 9, 676214. [Google Scholar] [CrossRef]
- Montgomery, J.E.; Wahlstrom-Helgren, S.; Wiggin, T.D.; Corwin, B.M.; Lillesaar, C.; Masino, M.A. Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish. Dev. Neurobiol. 2018, 78, 807–827. [Google Scholar] [CrossRef]
- Czopka, T.; Ffrench-Constant, C.; Lyons, D.A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 2013, 25, 599–609. [Google Scholar] [CrossRef]
- Park, H.C.; Boyce, J.; Shin, J.; Appel, B. Oligodendrocyte specification in zebrafish requires notch-regulated cyclin-dependent kinase inhibitor function. J. Neurosci. 2005, 25, 6836–6844. [Google Scholar] [CrossRef]
- Ravanelli, A.M.; Appel, B. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev. 2015, 29, 2504–2515. [Google Scholar] [CrossRef]
- Dugas, J.C.; Tai, Y.C.; Speed, T.P.; Ngai, J.; Barres, B.A. Functional genomic analysis of oligodendrocyte differentiation. J. Neurosci. 2006, 26, 10967–10983. [Google Scholar] [CrossRef]
- Li, W.; Zhang, B.; Tang, J.; Cao, Q.; Wu, Y.; Wu, C.; Guo, J.; Ling, E.A.; Liang, F. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J. Neurosci. 2007, 27, 2606–2616. [Google Scholar]
- Werner, H.B.; Kuhlmann, K.; Shen, S.; Uecker, M.; Schardt, A.; Dimova, K.; Orfaniotou, F.; Dhaunchak, A.; Brinkmann, B.G.; Möbius, W.; et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 2007, 27, 7717–7730. [Google Scholar] [CrossRef]
- Ji, S.; Doucette, J.R.; Nazarali, A.J. Sirt2 is a novel in vivo downstream target of Nkx2.2 and enhances oligodendroglial cell differentiation. J. Mol. Cell Biol. 2011, 3, 351–359. [Google Scholar] [CrossRef]
- Farrell, J.A.; Wang, Y.; Riesenfeld, S.J.; Shekhar, K.; Regev, A.; Schier, A.F. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 2018, 360, eaar3131. [Google Scholar] [CrossRef]
- Sur, A.; Wang, Y.; Capar, P.; Margolin, G.; Prochaska, M.K.; Farrell, J.A. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev. Cell 2023, 58, 3028–3047.e12. [Google Scholar] [CrossRef]
- Pose-Méndez, S.; Rehbock, M.; Wolf-Asseburg, A.; Köster, R.W. In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells 2024, 13, 1138. [Google Scholar] [CrossRef]
- North, B.J.; Marshall, B.L.; Borra, M.T.; Denu, J.M.; Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003, 11, 437–444. [Google Scholar]
- Piperno, G.; LeDizet, M.; Chang, X.J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 1987, 104, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Rasamizafy, S.F.; Delsert, C.; Rabeharivelo, G.; Cau, J.; Morin, N.; van Dijk, J. Mitotic Acetylation of Microtubules Promotes Centrosomal PLK1 Recruitment and Is Required to Maintain Bipolar Spindle Homeostasis. Cells 2021, 10, 1859. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, H.; Zhan, Y.Q.; Yin, R.H.; Li, C.Y.; Ge, C.H.; Yu, M.; Yang, X.M. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation. Cell Cycle 2016, 15, 2202–2215. [Google Scholar] [CrossRef]
- Zou, Y.J.; Shan, M.M.; Wan, X.; Liu, J.C.; Zhang, K.H.; Ju, J.Q.; Xing, C.H.; Sun, S.C. Kinesin KIF15 regulates tubulin acetylation and spindle assembly checkpoint in mouse oocyte meiosis. Cell. Mol. Life Sci. 2022, 79, 422. [Google Scholar] [CrossRef]
- Tan, H.-F.; Tan, S.-M. The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation. J. Biol. Chem. 2020, 295, 5928–5943. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Stavrou, I.; Shrestha, R.L.; Draviam, V.; Frame, M.C.; Brunton, V.G. Kindlin1 regulates microtubule function to ensure normal mitosis. J. Mol. Cell Biol. 2016, 8, 338–348. [Google Scholar] [CrossRef]
- Steinhaeuser, K.; Klöble, P.; Kreis, N.N.; Ritter, A.; Friemel, A.; Roth, S.; Reichel, J.M.; Michaelis, J.; Rieger, M.A.; Louwen, F.; et al. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene 2016, 36, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Brachner, A.; Kukolj, E.; Slade, D.; Wang, Y. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. J. Cell Sci. 2019, 132, jcs232389. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, Y.; Wang, Z.; Wang, Z.; Li, Z.; Zhou, T.; Xu, H.; Liu, J.; Jiang, B.; Li, X.; et al. The deacetylation-phosphorylation regulation of SIRT2-SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Sci. Adv. 2021, 7, eabe5518. [Google Scholar] [CrossRef]
Drug | p-Value | Application |
---|---|---|
SirReal2 | <0.0001 | Potent and selective inhibitor of SIRT2 |
Reserpine | <0.0001 | Inhibits vesicular uptake of catecholamines and serotonin |
YM 976 | 0.0001 | Phosphodiesterase type IV inhibitor |
Atreleuton | 0.0002 | Reversible 5-lipoxygenase inhibitor |
Arcaine sulfate | 0.0011 | N-methyl-D-aspartate receptor effector/antagonist |
L-732,138 | 0.0029 | Competitive substance P receptor antagonist |
Acetylthiocholine chloride | 0.0029 | Acetylcholinesterase substrate and nicotinic acetylcholine receptor agonist |
Actinonin | 0.0135 | Inhibitory action against peptide deformylase |
UNC0379 trifluoroacetate salt | 0.0156 | First substrate-competitive inhibitor of the lysine methyltransferase SETD8 |
Azelaic acid | 0.0215 | Antibacterial, anti-keratinising, antimelanogenic, antioxidant, and anti-inflammatory agent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Llera, L.; Arana, Á.J.; Sánchez, L.; Barreiro-Iglesias, A. An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish. Biomolecules 2025, 15, 1359. https://doi.org/10.3390/biom15101359
González-Llera L, Arana ÁJ, Sánchez L, Barreiro-Iglesias A. An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish. Biomolecules. 2025; 15(10):1359. https://doi.org/10.3390/biom15101359
Chicago/Turabian StyleGonzález-Llera, Laura, Álvaro J. Arana, Laura Sánchez, and Antón Barreiro-Iglesias. 2025. "An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish" Biomolecules 15, no. 10: 1359. https://doi.org/10.3390/biom15101359
APA StyleGonzález-Llera, L., Arana, Á. J., Sánchez, L., & Barreiro-Iglesias, A. (2025). An In Vivo Drug Screen Reveals That Sirtuin 2 Activity Promotes Spinal Cord Neurogenesis in Developing Zebrafish. Biomolecules, 15(10), 1359. https://doi.org/10.3390/biom15101359