The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View
Abstract
:1. Introduction
Food | Serving | Milligrams (mg) of Zinc | DRI% |
---|---|---|---|
Seafood | |||
Oysters | 85 g | 32 | 291 |
Shrimps | 85 g | 1.4 | 13 |
Sardines | 85 g | 1.1 | 10 |
Salmon | 85 g | 0.5 | 5 |
Meat | |||
Beef, bottom sirloin, roasted | 85 g | 3.8 | 35 |
Pork, chops | 85 g | 1.9 | 17 |
Turkey breast | 85 g | 1.5 | 14 |
Peanuts | 28 g | 0.8 | 7 |
Bread, cereals, legumes, and seeds | |||
Whole wheat bread | 1 slice | 0.6 | 5 |
White bread | 1 slice | 0.2 | 2 |
Cereals, unenriched oats cooked with water | 1 cup | 2.3 | 21 |
Brown rice, cooked | ½ cup | 0.7 | 6 |
White rice, cooked | ½ cup | 0.3 | 3 |
Lentils, boiled | ½ cup | 1.3 | 12 |
Kidney beans | ½ cup | 0.6 | 5 |
Pumpkin seeds | 28 g | 2.2 | 20 |
Milk and dairy products | |||
Milk | 1 cup | 1.0 | 9 |
Cheese, cheddar | 42.5 g | 1.5 | 14 |
Greek yogurt | 170 g | 1.0 | 9 |
Fruits and vegetables | |||
Broccoli | ½ cup | 0.4 | 4 |
Cherry tomatoes | ½ cup | 0.1 | 1 |
Blueberries | ½ cup | 0.1 | 1 |
Other | |||
Egg | 1 unit | 0.6 | 5 |
1.1. Role of Zinc in Human Biological Pathways
1.1.1. Anti-Inflammatory Role of Zinc
1.1.2. Antioxidant Role of Zinc
1.1.3. Anti-Apoptotic Role of Zinc
1.1.4. Role of Zinc in Immune Response
1.2. Role of Zinc in Human Organs and Systems
1.2.1. Respiratory Diseases
1.2.2. Gastroenterological and Liver Diseases
1.2.3. Otological Diseases
1.2.4. Kidney Diseases
1.2.5. Endocrine Disorders
1.2.6. Hematological Diseases
1.2.7. Neuropsychiatric Disorders
Organs and Systems | Role of Zinc |
---|---|
Respiratory system | |
SARS-CoV2 | Enhanced immune response, reduced risk of co-infections [145], increased susceptibility of bacteria to killing by neutrophils [147], inhibition of biofilm formation [149], increased ciliary length and beating [153,154], and regulation of tight junction (ZO-1 e Claudin1) [155]. Inhibited RNA polymerase activity [156], modulated ACE2 receptors [4,157,158], production of IFN-α by lymphocytes and antiviral enzymes [159]. |
Community-acquired pneumonia | Antibacterial and anti-inflammatory properties, regulated tissue growth, and reduced stimulus to the production of toxins by microorganisms [95,97]. |
Cystic fibrosis | Promoted growth, sexual maturation [109,110], immune response (enhanced IL-2 production, NK cells, and thymulin activity) [102,106], and appetite. Controversial improvement of lung function [108,111,117]. |
Chronic lung disease | Improved growth [136]. |
Gastrointestinal system | |
Growth | Increased ghrelin and IGF-1 secretion [167], hunger, and food intake [169,170]. Also, increased growth regardless of food intake (protein synthesis) [167,171,174]. |
Gastrointestinal infections | Increased mucosa regeneration, protein synthesis, and apoptosis inhibition [177,179]. Enhanced increased villus height, ratio of villus height to crypt depth, and decreased intestinal permeability [177,179]. Improved flora diversity and reduced proinflammatory cytokines and mediators (IFN-α, NO, IL-2, IL-6, and TNF) [180,181]. |
Kidney | |
Urinary tract infections | Reduced duration of dysuria, urinary frequency, urgency, and recovery time [188]. |
Nephrotic syndrome | Reduced relapse [198,202]. |
Chronic kidney disease | Reduced progression to ESRD [202]. Defense against phosphate-triggered calcification of the abdominal aorta [203,204]. Reduced fibrotic processes [208]. |
Endocrine system | |
Growth hormone deficiency | Improved growth velocity [209,210], action of vitamin D in bone formation, and effects of GH on bone [210,211], optimizing the body’s response to rh-GH therapy [209]. Stimulated collagen synthesis and inhibited effect on osteoclastic bone resorption. Enhanced effects of IGF-1 in osteoblastic cells [212]. |
Dysthyroidism | Involved in TRH, TSH, T3, and T4 synthesis [213,214]. |
Hematopoietic system | |
Anemia | Constituent of ZFP GFi-1B that regulates cell proliferation and differentiation in erythropoiesis [225,226]. |
Brain | |
Autism spectrum disorder | Increased IGF-1 levels reducing neuronal excitability and improving oligodendrocyte function in preventing myelination defects [236,237]. IGF-1 can also enhance oxytocin secretion, promote cell survival and growth, and regulate several cellular processes such as apoptosis [238,239]. Modulated social and behavioral effect of OXT and AVP [239]. Reduced OXT and AVP lifespan contributing to the function of LNPEP [230]. |
Febrile seizure | Modulated neuronal excitability [244]. |
Depression | Contributed to synthesis and metabolism of neurotransmitters. Modulated excitatory (glutamatergic) and inhibitory (GABAergic) amino acid neurotransmission [245,249]. Reduced proinflammatory cytokine relapse and changes in serotonin functions [257]. Enhanced BDNF production, which plays an important role in neuroplastic processes, neuronal tropism, memory, learning, and memories [259,260]. |
2. Future Directions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vreugdenhil, M.; Akkermans, M.D.; van der Merwe, L.F.; van Elburg, R.M.; van Goudoever, J.B.; Brus, F. Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries. Nutrients 2021, 13, 3713. [Google Scholar] [CrossRef]
- Panzeri, C.; Pecoraro, L.; Dianin, A.; Sboarina, A.; Arnone, O.C.; Piacentini, G.; Pietrobelli, A. Potential Micronutrient Deficiencies in the First 1000 Days of Life: The Pediatrician on the Side of the Weakest. Curr. Obes. Rep. 2024, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority), 2017. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef] [PubMed]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, P.D.; Forbes, I.J.; Betts, W.H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8- p -toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 1993, 296, 403–408. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Carter, J.; Ruffin, R.E.; Zalewski, P.D. The role of zinc in caspase activation and apoptotic cell death. BioMetals 2001, 14, 315–330. [Google Scholar] [CrossRef]
- Sapkota, M.; Knoell, D.L. Essential Role of Zinc and Zinc Transporters in Myeloid Cell Function and Host Defense against Infection. J. Immunol. Res. 2018, 2018, 4315140. [Google Scholar] [CrossRef] [PubMed]
- International Zinc Nutrition Consultative Group, (IZiNCG); Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25 (Suppl. S2), S99–S203. [Google Scholar] [PubMed]
- Saper, R.B.; Rash, R. Zinc: An essential micronutrient. Am. Fam. Physician 2009, 79, 768–772. [Google Scholar] [PubMed]
- Lowe, N.M.; Fekete, K.; Decsi, T. Methods of assessment of zinc status in humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2040S–2051S. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R. Principles of Nutritional Assessment; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Hambidge, K.; Chavez, M.; Brown, R.; Walravens, P. Zinc nutritional status of young middle-income children and effects of consuming zinc-fortified breakfast cereals. Am. J. Clin. Nutr. 1979, 32, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, V.K.; Burnett, F.R.; Cousins, R.J. Metallothionein Expression Is Increased in Monocytes and Erythrocytes of Young Men during Zinc Supplementation. J. Nutr. 1998, 128, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Likoswe, B.H.; Lark, R.M.; Phuka, J.; Maleta, K.; Joy, E.; Lowe, N.M. The potential of spot urine as a biomarker for zinc assessment in Malawian children and adults. Front. Nutr. 2022, 9, 890209. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J. Assessment of Marginal Zinc Status in Humans. J. Nutr. 2000, 130, 1350S–1354S. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.D.; Lam, J. Zinc deficiency and its management in the pediatric population: A literature review and proposed etiologic classification. J. Am. Acad. Dermatol. 2013, 69, 616–624.e1. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S–463S. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.; Hilas, O. Zinc and Taste Disturbances in Older Adults: A Review of the Literature. Consult. Pharm. 2016, 31, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet. 2020, 33, 624–643. [Google Scholar] [CrossRef] [PubMed]
- Guilbert, J.-J. The World Health Report 2002—Reducing Risks, Promoting Healthy Life. Educ. Health Chang. Learn. Pract. 2003, 16, 230. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Rogner, J.; Sherwani, R.N.; Sidhu, J.; Regan, A.; Haykal, M.R.; Tsistinas, O.; Smith, A.; Chan, X.H.S.; Mayo-Wilson, E.; et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years. Cochrane Database Syst. Rev. 2023, 2023, CD009384. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Ajami, M.; Abdollahi, Z.; Kalantari, N.; Houshiarrad, A.; Fozouni, F.; Fallahrokni, A.; Mazandarani, F.S. Zinc supplementation is an effective and feasible strategy to prevent growth retardation in 6 to 24 month children: A pragmatic double blind, randomized trial. Heliyon 2019, 5, e02581. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Garner, T.B.; Hester, J.M.; Carothers, A.; Diaz, F.J. Role of zinc in female reproduction. Biol. Reprod. 2021, 104, 976–994. [Google Scholar] [CrossRef] [PubMed]
- Nasiadek, M.; Stragierowicz, J.; Klimczak, M.; Kilanowicz, A. The Role of Zinc in Selected Female Reproductive System Disorders. Nutrients 2020, 12, 2464. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Ali, I. Effect of maternal zinc supplementation or zinc status on pregnancy complications and perinatal outcomes: An umbrella review of meta-analyses. Heliyon 2021, 7, e07540. [Google Scholar] [CrossRef] [PubMed]
- Yakoob, M.Y.; Theodoratou, E.; Jabeen, A.; Imdad, A.; Eisele, T.P.; Ferguson, J.; Jhass, A.; Rudan, I.; Campbell, H.; Black, R.E.; et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Heal. 2011, 11, S23. [Google Scholar] [CrossRef] [PubMed]
- Yeshaw, Y.; Worku, M.G.; Tessema, Z.T.; Teshale, A.B.; Tesema, G.A. Zinc utilization and associated factors among under-five children with diarrhea in East Africa: A generalized linear mixed modeling. PLoS ONE 2020, 15, e0243245. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 6 April 2024).
- Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and Controlling Zinc Deficiency across the Life Course: A Call to Action. Adv. Nutr. 2024, 15, 100181. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.G.; King, J.C. Zinc Fortification: Current Trends and Strategies. Nutrients 2022, 14, 3895. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.; Pecoraro, L.; Salvottini, C.; Piacentini, G.; Atkinson, R.; Pietrobelli, A. Appropriate and inappropriate vitamin supplementation in children. J. Nutr. Sci. 2020, 9, e20. [Google Scholar] [CrossRef] [PubMed]
- Persson, L.A.; Lundström, M.; Lönnerdal, B.; Hernell, O. Are weaning foods causing impaired iron and zinc status in 1-year-old Swedish infants? A cohort study. Acta Paediatr. 1998, 87, 618–622. [Google Scholar] [CrossRef]
- Kattelmann, K.K.; Ho, M.; Specker, B.L. Effect of Timing of Introduction of Complementary Foods on Iron and Zinc Status of Formula Fed Infants at 12, 24, and 36 Months of Age. J. Am. Diet. Assoc. 2001, 101, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Redworth, E.W.; Morgan, J.B. Influence of Diet on Iron, Copper, and Zinc Status in Children under 24 Months of Age. Biol. Trace Elem. Res. 2004, 97, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.J.; Heath, A.-L.M.; Szymlek-Gay, E.A.; Gibson, R.S.; Gray, A.R.; Bailey, K.B.; Ferguson, E.L. Red Meat and a Fortified Manufactured Toddler Milk Drink Increase Dietary Zinc Intakes without Affecting Zinc Status of New Zealand Toddlers1–4. J. Nutr. 2010, 140, 2221–2226. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.; Williams, S.; Gibson, R.; Taylor, R.; Samman, S.; Heath, A.-L. Modifiable ‘Predictors’ of Zinc Status in Toddlers. Nutrients 2018, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Kiouri, D.P.; Tsoupra, E.; Peana, M.; Perlepes, S.P.; Stefanidou, M.E.; Chasapis, C.T. Multifunctional role of zinc in human health: An update. EXCLI J. 2023, 22, 809–827. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Meguid, N.A.; Bjørklund, G.; Gebril, O.H.; Doşa, M.D.; Anwar, M.; Elsaeid, A.; Gaber, A.; Chirumbolo, S. The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol. Belg. 2019, 119, 577–583. [Google Scholar] [CrossRef]
- Wiethoff, H.; Mohr, I.; Fichtner, A.; Merle, U.; Schirmacher, P.; Weiss, K.H.; Longerich, T. Metallothionein: A game changer in histopathological diagnosis of Wilson disease. Histopathology 2023, 83, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Rowan, D.J.; Mangalaparthi, K.K.; Singh, S.; Moreira, R.K.; Mounajjed, T.; Lamps, L.; Westerhoff, M.; Cheng, J.; Bellizzi, A.M.; Allende, D.S.; et al. Metallothionein immunohistochemistry has high sensitivity and specificity for detection of Wilson disease. Mod. Pathol. 2022, 35, 946–955. [Google Scholar] [CrossRef]
- Leone, A. Metallothionein gene regulation in Menkes’ disease. Horiz. Biochem. Biophys. 1986, 8, 207–256. [Google Scholar]
- Nordberg, M.; Nordberg, G.F. Metallothionein and Cadmium Toxicology—Historical Review and Commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Subramanian Vignesh, K.; Deepe, G., Jr. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017, 18, 2197. [Google Scholar] [CrossRef]
- Gonzalez, D.; Luyten, A.; Bartholdy, B.; Zhou, Q.; Kardosova, M.; Ebralidze, A.; Swanson, K.D.; Radomska, H.S.; Zhang, P.; Kobayashi, S.S.; et al. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. J. Biol. Chem. 2017, 292, 18924–18936. [Google Scholar] [CrossRef]
- Tao, T.; Shi, H.; Mariani, L.; Abraham, B.J.; Durbin, A.D.; Zimmerman, M.W.; Powers, J.T.; Missios, P.; Ross, K.N.; Perez-Atayde, A.R.; et al. LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proc. Natl. Acad. Sci. USA 2020, 117, 16516–16526. [Google Scholar] [CrossRef] [PubMed]
- Shoichet, S.A.; Hoffmann, K.; Menzel, C.; Trautmann, U.; Moser, B.; Hoeltzenbein, M.; Echenne, B.; Partington, M.; van Bokhoven, H.; Moraine, C.; et al. Mutations in the ZNF41 Gene Are Associated with Cognitive Deficits: Identification of a New Candidate for X-Linked Mental Retardation. Am. J. Hum. Genet. 2003, 73, 1341–1354. [Google Scholar] [CrossRef]
- Stoll, R.; Lee, B.M.; Debler, E.W.; Laity, J.H.; Wilson, I.A.; Dyson, H.J.; Wright, P.E. Structure of the Wilms Tumor Suppressor Protein Zinc Finger Domain Bound to DNA. J. Mol. Biol. 2007, 372, 1227–1245. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.-I.; Jeong, J.-Y.; Jue, D.-M. Thiol-Reactive Metal Compounds Inhibit NF-κB Activation by Blocking IκB Kinase. J. Immunol. 2000, 164, 5981–5989. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- May, M.J.; Ghosh, S. Signal transduction through NF-κB. Immunol. Today 1998, 19, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Uzzo, R.G. Diverse effects of zinc on NF- B and AP-1 transcription factors: Implications for prostate cancer progression. Carcinogenesis 2006, 27, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kim, J.H.; Lee, J.; Ahn, Y.S. Zinc-induced NF-κB inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol. Appl. Pharmacol. 2003, 190, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.R. The Antioxidant Properties of Zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [PubMed]
- Marone, G.; Columbo, M.; Paulis, A.; Cirillo, R.; Giugliano, R.; Condorelli, M. Physiological concentrations of zinc inhibit the release of histamine from human basophils and lung mast cells. Agents Actions 1986, 18, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, P.D.; Truong-Tran, A.Q.; Grosser, D.; Jayaram, L.; Murgia, C.; Ruffin, R.E. Zinc metabolism in airway epithelium and airway inflammation: Basic mechanisms and clinical targets. A review. Pharmacol. Ther. 2005, 105, 127–149. [Google Scholar] [CrossRef] [PubMed]
- Riccioni, G.; D’Orazio, N. The role of selenium, zinc and antioxidant vitamin supplementation in the treatment of bronchial asthma: Adjuvant therapy or not? Expert. Opin. Investig. Drugs 2005, 14, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Bonneau, R.; Girard, M.-A.; Beaulieu, C.; Larivée, P. Zinc Status Modulates Bronchopulmonary Eosinophil Infiltration in a Murine Model of Allergic Inflammation. Chest 2003, 123, 446S. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.I.; Ledford, J.R.; Zhou, P.; Page, K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. J. Inflamm. 2011, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Chvapil, M.; Weldy, P.L.; Stankova, L.; Clark, D.S.; Zukoski, C.F. Inhibitory effect of zinc ions on platelet aggregation and serotonin release reaction. Life Sci. 1975, 16, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Chvapil, M.; Stankova, L.; Zukoski, C.; Zukoski, C. Inhibition of some functions of polymorphonuclear leukocytes by in vitro zinc. J. Lab. Clin. Med. 1977, 89, 135–146. [Google Scholar] [PubMed]
- Rao, K.M.K.; Schwartz, S.A.; Good, R.A. Age-dependent effects of zinc on the transformation response of human lymphocytes to mitogens. Cell Immunol. 1979, 42, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.D.; Langone, J.J.; Borsos, T. Studies on the terminal stages of immune hemolysis. IV. Effect of metal salts. J. Immunol. 1979, 122, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Rossow, K.L.; Bobilya, D.J. Zinc-induced metallothionein and copper metabolism in intestinal mucosa, liver, and kidney of rats. Nutr. Res. 1993, 13, 1419–1431. [Google Scholar] [CrossRef]
- Kimura, T.; Kambe, T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef] [PubMed]
- Bremner, I.; Beattie, J.H. Metallothionein and the Trace Minerals. Annu. Rev. Nutr. 1990, 10, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, J.; Tajima, Y.; Karasawa, M. Promotion of radioresistance by metallothionein induction prior to irradiation. Environ. Res. 1987, 43, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Satoh, M.; Kondo, Y.; Mita, M.; Nakagawa, I.; Naganuma, A.; Imura, N. Prevention of carcinogenicity of anticancer drugs by metallothionein induction. Cancer Res. 1993, 53, 4767–4768. [Google Scholar] [PubMed]
- Doz, F.; Roosen, N.; Rosenblum, M.L. Metallothionein and anticancer agents: The role of metallothionein in cancer chemotherapy. J. Neurooncol 1993, 17, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Rossman, T.G.; Goncharova, E.I. Spontaneous mutagenesis in mammalian cells is caused mainly by oxidative events and can be blocked by antioxidants and metallothionein. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1998, 402, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Benz, F.W.; Cai, J.; Pierce, W.M.; Kang, Y.J. Metallothionein Disulfides Are Present in Metallothionein-overexpressing Transgenic Mouse Heart and Increase under Conditions of Oxidative Stress. J. Biol. Chem. 2006, 281, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, P.N.B.; Gore, M.G.; Jordan, P.M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem. J. 1985, 225, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Kappus, H. Lipid Peroxidation: Analysis, Enzymology and Biological Relevance. In Oxidative Stress; Elsevier: Amsterdam, The Netherlands, 1985; pp. 273–310. [Google Scholar] [CrossRef]
- Stadtman, E.R. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic. Biol. Med. 1990, 9, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, L.A.; Saltman, P. The aerobic reduction of Fe(III) complexes by hemoglobin and myoglobin. J. Biol. Chem. 1984, 259, 14337–14338. [Google Scholar] [CrossRef]
- Spiro, T.G.; Pape, L.; Saltman, P. Hydrolytic polymerization of ferric citrate. I. Chemistry of the polymer. J. Am. Chem. Soc. 1967, 89, 5555–5559. [Google Scholar] [CrossRef]
- Valentine, J.S.; de Freitas, D.M. Copper-zinc superoxide dismutase: A unique biological ‘ligand’ for bioinorganic studies. J. Chem. Educ. 1985, 62, 990. [Google Scholar] [CrossRef]
- Marreiro, D.; Cruz, K.; Morais, J.; Beserra, J.; Severo, J.; de Oliveira, A. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-M.; MacFarlane, M.; Zhuang, J.; Wolf, B.B.; Green, D.R.; Cohen, G.M. Distinct Caspase Cascades Are Initiated in Receptor-mediated and Chemical-induced Apoptosis. J. Biol. Chem. 1999, 274, 5053–5060. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; O’Connor, L.; Dixit, V.M. Apoptosis Signaling. Annu. Rev. Biochem. 2000, 69, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Truong-Tran, A.Q.; Ruffin, R.E.; Zalewski, P.D. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L1172–L1183. [Google Scholar] [CrossRef] [PubMed]
- Ferenčík, M.; Ebringer, L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiol. 2003, 48, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts. J. Infect. Dis. 2000, 182, S62–S68. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.M.M.; Kassem, Y.T.; Fayed, H.K.; Solaiman, A.M. Serum zinc levels in hospitalized children with pneumonia: A hospital-based case–control study. Egypt. J. Bronchol. 2019, 13, 730–737. [Google Scholar] [CrossRef]
- Harel-Sterling, M.; Diallo, M.; Santhirakumaran, S.; Maxim, T.; Tessaro, M. Emergency Department Resource Use in Pediatric Pneumonia: Point-of-Care Lung Ultrasonography versus Chest Radiography. J. Ultrasound Med. 2019, 38, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Atta, A.; Aftab, A.; Shafqat, A.; Yousuf, M.H.; Ahmed, A.; Pirzada, H.; Khalid, H.; Hastings, N.E. Investigating the Efficacy of Zinc and Vitamin A in Treating Pediatric Community-Acquired Pneumonia. Cureus 2024, 16, e52197. [Google Scholar] [CrossRef] [PubMed]
- Saied, A.; El Borolossy, R.M.; Ramzy, M.A.; Sabri, N.A. Effect of zinc versus vitamin A supplementation on pediatric patients with community-acquired pneumonia. Front. Pharmacol. 2022, 13, 933998. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.; Ashraf, M.A.; Sajid, M.; Shahzad, A.; Rafique, A.; Mahmood, M.S. Evaluation of synergistic antimicrobial effect of vitamins (A, B1, B2, B6, B12, C, D, E and K) with antibiotics against resistant bacterial strains. J. Glob. Antimicrob. Resist. 2018, 13, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Khadim, R.M.; Al-Fartusie, F.S. Antioxidant vitamins and their effect on immune system. J. Phys. Conf. Ser. 2021, 1853, 012065. [Google Scholar] [CrossRef]
- Fraker, P.J.; King, L.E.; Laakko, T.; Vollmer, T.L. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 2000, 130 (Suppl. S5), 1399S–1406S. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.I.; Perri, R.T.; McClain, C.J.; Kay, N.E. Alterations in human natural killer cell activity and monocyte cytotoxicity induced by zinc deficiency. J. Lab. Clin. Med. 1983, 102, 577–589. [Google Scholar] [PubMed]
- Beck, F.W.; Prasad, A.S.; Kaplan, J.; Fitzgerald, J.T.; Brewer, G.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol.-Endocrinol. Metab. 1997, 272, E1002–E1007. [Google Scholar] [CrossRef]
- Yuan, X.; Qian, S.-Y.; Li, Z.; Zhang, Z.-Z. Effect of zinc supplementation on infants with severe pneumonia. World J. Pediatr. 2016, 12, 166–169. [Google Scholar] [CrossRef]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Fitzgerald, J.T.; Snell, D.C.; Steinberg, J.D.; Cardozo, L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007, 85, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.A.; Jernigan, J.A.; Bailey, L.B.; Nickens, C.; Brazzi, G.A. Zinc nutriture and cell-mediated immunity in the aged. Int. J. Vitam. Nutr. Res. 1983, 53, 94–101. [Google Scholar] [PubMed]
- Duchateau, J.; Delepesse, G.; Vrijens, R.; Collet, H. Beneficial effects of oral zinc supplementation on the immune response of old people. Am. J. Med. 1981, 70, 1001–1004. [Google Scholar] [CrossRef] [PubMed]
- Fortes, C.; Forastiere, F.; Agabiti, N.; Fano, V.; Pacifici, R.; Virgili, F.; Piras, G.; Guidi, L.; Bartoloni, C.; Tricerri, A.; et al. The Effect of Zinc and Vitamin A Supplementation on Immune Response in an Older Population. J. Am. Geriatr. Soc. 1998, 46, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S.; Meftah, S.; Abdallah, J.; Kaplan, J.; Brewer, G.J.; Bach, J.F.; Dardenne, M. Serum thymulin in human zinc deficiency. J. Clin. Investig. 1988, 82, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Ataee, P.; Najafi, M.; Gharagozlou, M.; Aflatounian, M.; Mahmoudi, M.; Khodadad, A.; Farahmand, F.; Motamed, F.; Fallahi, G.H.; Kalantari, N.; et al. Effect of supplementary zinc on body mass index, pulmonary function and hospitalization in children with cystic fibrosis. 2014, 56, 127–32. Turk. J. Pediatr. 2014, 56, 127–132. [Google Scholar]
- Krebs, N.F.; Sontag, M.; Accurso, F.J.; Hambidge, K.M. Low plasma zinc concentrations in young infants with cystic fibrosis. J. Pediatr. 1998, 133, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Nishito, Y.; Fukue, K. Zinc Transporters in Health and Disease. In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–291. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Van Biervliet, J.P.; Velde, S.V.; Robberecht, E. Serum Zinc Concentrations in Cystic Fibrosis Patients Aged Above 4 Years: A Cross-sectional Evaluation. Biol. Trace Elem. Res. 2007, 119, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Westcott, J.E.; Arnold, T.D.; Kluger, B.M.; Accurso, F.J.; Miller, L.V.; Hambidge, K.M. Abnormalities in Zinc Homeostasis in Young Infants with Cystic Fibrosis. Pediatr. Res. 2000, 48, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Akanli, L.; Lowenthal, D.B.; Gjonaj, S.; Dozor, A.J. Plasma and red blood cell zinc in cystic fibrosis. Pediatr. Pulmonol. 2003, 35, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Mocchegiani, E.; Provinciali, M.; Di Stefano, G.; Nobilini, A.; Caramia, G.; Santarelli, L.; Tibaldi, A.; Fabris, N. Role of the Low Zinc Bioavailability on Cellular Immune Effectiveness in Cystic Fibrosis. Clin. Immunol. Immunopathol. 1995, 75, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Schall, J.I.; Zemel, B.S.; Garcia-Espana, J.F.; Stallings, V.A. Plasma Zinc and Growth Status in Preadolescent Children with Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.; Desquilbet, N. Depressed plasma Vitamin A and retinol-binding protein in cystic fibrosis correlations with zinc deficiency. Am. J. Clin. Nutr. 1981, 34, 1439–1440. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Sandstead, H.; Solomons, N.; Rieger, C.; Rothberg, R. Zinc status and vitamin A transport in cystic fibrosis. Am. J. Clin. Nutr. 1978, 31, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Neve, J.; Geffel, R.V.A.; Hanocq, M.; Molle, L. Plasma and Erythrocyte Zinc, Copper and Selenium in Cystic Fibrosis. Acta Paediatr. 1983, 72, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Abdulhamid, I.; Beck, F.W.J.; Millard, S.; Chen, X.; Prasad, A. Effect of zinc supplementation on respiratory tract infections in children with cystic fibrosis. Pediatr. Pulmonol. 2008, 43, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Damphousse, V.; Mailhot, M.; Berthiaume, Y.; Rabasa-Lhoret, R.; Mailhot, G. Plasma zinc in adults with cystic fibrosis: Correlations with clinical outcomes. J. Trace Elem. Med. Biol. 2014, 28, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.E.; Lai, H.J.; McDonald, C.M.; Asfour, F.; Slaven, J.E.; Ren, C.L. Zinc status and growth in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 2021, 56, 3768–3776. [Google Scholar] [CrossRef] [PubMed]
- Fanaroff, A.A.; Stoll, B.J.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Stark, A.R.; Bauer, C.R.; Donovan, E.F.; Korones, S.B.; Laptook, A.R.; et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am. J. Obstet. Gynecol. 2007, 196, 147.e1–147.e8. [Google Scholar] [CrossRef] [PubMed]
- Brunton, J.A.; Saigal, S.; Atkinson, S.A. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: A randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J. Pediatr. 1998, 133, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Dusick, A.M.; Poindexter, B.B.; Ehrenkranz, R.A.; Lemons, J.A. Growth failure in the preterm infant: Can we catch up? Semin. Perinatol. 2003, 27, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.C. Trace elements in the fetus and young infant. I. Zinc. Am. J. Dis. Child. 1979, 133, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Altigani, M.; Murphy, J.F.; Gray, O.P. Plasma zinc concentration and catch up growth in preterm infants. Acta Paediatr. Scand. Suppl. 1989, 357, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Greene, H.L.; Hambidge, K.M.; Schanler, R.; Tsang, R.C. Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: Report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of the American Society for Clinical Nutrition. Am. J. Clin. Nutr. 1988, 48, 1324–1342. [Google Scholar] [CrossRef] [PubMed]
- Simmer, K.; Thompson, R.P. Zinc in the fetus and newborn. Acta Paediatr. Scand. Suppl. 1985, 319, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, S.H.; Cherian, M.G. Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr. Res. 1988, 24, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Wastney, M.E.; Angelus, P.; Barnes, R.M.; Subramanian, K.N. Zinc kinetics in preterm infants: A compartmental model based on stable isotope data. Am. J. Physiol. 1996, 271, R1452–R1459. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Andrews, W.L.; Matthew, J.D.; Long, D.R.; Cornel, A.M.; Cox, M.; McKim, E.; Zerbe, G.O. Zinc Supplementation in Very-Low-Birth-Weight Infants. J. Pediatr. Gastroenterol. Nutr. 1993, 17, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Friel, J.K.; Andrews, W.L. Zinc requirement of premature infants. Nutrition 1994, 10, 63–65. [Google Scholar] [PubMed]
- Casey, C.E.; Hambidge, K.M.; Neville, M.C. Studies in human lactation: Zinc, copper, manganese and chromium in human milk in the first month of lactation. Am. J. Clin. Nutr. 1985, 41, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F. Zinc transfer to the breastfed infant. J. Mammary Gland Biol. Neoplasia 1999, 4, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.; Hemell, O.; Dewey, K.G.; Cohen, R.J.; Lönnerdal, B. Factors influencing concentrations of iron, zinc, and copper in human milk. Adv. Exp. Med. Biol. 2004, 554, 355–358. [Google Scholar] [CrossRef]
- Shaikhkhalil, A.K.; Curtiss, J.; Puthoff, T.D.; Valentine, C.J. Enteral Zinc Supplementation and Growth in Extremely-Low-Birth-Weight Infants with Chronic Lung Disease. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Walravens, P.A.; Hambidge, K.M. Growth of infants fed a zinc supplemented formula. Am. J. Clin. Nutr. 1976, 29, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Ñamendys-Silva, S.A. Respiratory support for patients with COVID-19 infection. Lancet Respir. Med. 2020, 8, e18. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481, Erratum in Lancet Respir. Med. 2020, 8, e26. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943, Erratum in JAMA Intern. Med. 2020, 180, 1031. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhu, L.; Xue, L.; Liu, L.; Yan, X.; Wang, J.; Zhang, B.; Xu, T.; Ji, F.; Zhao, Y.; et al. Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: A retrospective, multi-center study. PLoS Neglected Trop. Dis. 2020, 14, e0008280. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [Google Scholar] [CrossRef]
- Zachariah, P. COVID-19 in Children. Infect. Dis. Clin. N. Am. 2022, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, F.E.; Kazmierczak, K.M.; Lisher, J.P.; Winkler, M.E.; Giedroc, D.P. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 2011, 3, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.E.; Lisher, J.P.; Winkler, M.E.; Giedroc, D.P. Perturbation of manganese metabolism disrupts cell division in Streptococcus pneumoniae. Mol. Microbiol. 2017, 104, 334–348. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, C.A.; Ogunniyi, A.D.; Valkov, E.; Lawrence, M.C.; Kobe, B.; McEwan, A.G.; Paton, J.C. A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathog. 2011, 7, e1002357. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek 2018, 111, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.S.; Nisha, M.M.; Joice, M.; Shilpa, P.N. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol. 2014, 52, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Kadiyala, U.; Turali-Emre, E.S.; Bahng, J.H.; Kotov, N.A.; VanEpps, J.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale 2018, 10, 4927–4939. [Google Scholar] [CrossRef] [PubMed]
- Ann, L.C.; Mahmud, S.; Bakhori, S.K.M.; Sirelkhatim, A.; Mohamad, D.; Hasan, H.; Seeni, A.; Rahman, R.A. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram. Int. 2014, 40, 2993–3001. [Google Scholar] [CrossRef]
- Darma, A.; Athiyyah, A.F.; Ranuh, R.G.; Merbawani, W.; Setyoningrum, R.A.; Hidajat, B.; Hidayati, S.N.; Endaryanto, A.; Sudarmo, S.M. Zinc Supplementation Effect on the Bronchial Cilia Length, the Number of Cilia, and the Number of Intact Bronchial Cell in Zinc Deficiency Rats. Indones. Biomed. J. 2020, 12, 78–84. [Google Scholar] [CrossRef]
- Woodworth, B.A.; Zhang, S.; Tamashiro, E.; Bhargave, G.; Palmer, J.N.; Cohen, N.A. Zinc Increases Ciliary Beat Frequency in a Calcium-Dependent Manner. Am. J. Rhinol. Allergy 2010, 24, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Roscioli, E.; Jersmann, H.P.; Lester, S.; Badiei, A.; Fon, A.; Zalewski, P.; Hodge, S. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 3503–3510. [Google Scholar] [CrossRef]
- Velthuis, A.J.W.T.; van den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef] [PubMed]
- Speth, R.; Carrera, E.; Jean-Baptiste, M.; Joachim, A.; Linares, A. Concentration-dependent effects of zinc on angiotensin-converting enzyme-2 activity (1067.4). FASEB J. 2014, 28. [Google Scholar] [CrossRef]
- Cakman, I.; Kirchner, H.; Rink, L. Zinc Supplementation Reconstitutes the Production of Interferon-α by Leukocytes from Elderly Persons. J. Interferon Cytokine Res. 1997, 17, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Sadeghsoltani, F.; Mohammadzadeh, I.; Safari, M.-M.; Hassanpour, P.; Izadpanah, M.; Qujeq, D.; Moein, S.; Vaghari-Tabari, M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol. Trace Element Res. 2021, 200, 2556–2571. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Liu, M.-J.; Lee, B.; Besecker, B.; Lai, J.-P.; Guttridge, D.C.; Knoell, D.L.; Li, M.S.; Adesina, S.E.; Ellis, C.L.; et al. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-κB. Am. J. Physiol. Cell. Mol. Physiol. 2010, 298, L744–L754. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Boerstra, B.V.; de Jong, N.; Meyer, R.; Agostoni, C.; De Cosmi, V.; Grimshaw, K.; Milani, G.P.; Muraro, A.; Elberink, H.O.; Schöll, I.P.; et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: A systematic review and meta-analysis. Allergy 2022, 77, 1373–1388. [Google Scholar] [CrossRef]
- Keleş, Y.E.; Çiftdoğan, D.Y.; Çolak, A.; Aksay, A.K.; Üstündag, G.; Şahin, A.; Yılmaz, N. Serum zinc levels in pediatric patients with COVID-19. Eur. J. Pediatr. 2022, 181, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Doğan, A.; Doğan, D.; Uyanık, M.; Köle, M.T.; Pişmişoğlu, K. The Clinical Significance of Vitamin D and Zinc Levels with Respect to Immune Response in COVID-19 Positive Children. J. Trop. Pediatr. 2022, 68. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.; Poulsen, H.D.; Vestergaard, M. Additional dietary zinc for weaning piglets is associated with elevated concentrations of serum IGF-I. J. Anim. Physiol. Anim. Nutr. 2004, 88, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, X.; Li, D.; Yue, T.; Fang, Q.; Ni, J.; Zhou, X.; Wu, G. Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs. J. Nutr. Biochem. 2009, 20, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Frayo, R.S.; Marmonier, C.; Aubert, R.; Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol.-Endocrinol. Metab. 2004, 287, E297–E304. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.D.; Baker, D.H. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 1993, 71, 3020–3024. [Google Scholar] [CrossRef] [PubMed]
- Rincker, M.J.; Hill, G.M.; Link, J.E.; Meyer, A.M.; Rowntree, J.E. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs1,2. J. Anim. Sci. 2005, 83, 2762–2774. [Google Scholar] [CrossRef] [PubMed]
- Ou, D.; Li, D.; Cao, Y.; Li, X.; Yin, J.; Qiao, S.; Wu, G. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J. Nutr. Biochem. 2007, 18, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Case, C.L.; Carlson, M.S. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs1. J. Anim. Sci. 2002, 80, 1917–1924. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, J.; Li, D.; Chen, X.; Zang, J.; Zhou, X. Dietary Supplementation with Zinc Oxide Increases IGF-I and IGF-I Receptor Gene Expression in the Small Intestine of Weanling Piglets. J. Nutr. 2006, 136, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Salfen, B.E.; Carroll, J.A.; Keisler, D.H.; Strauch, T.A. Effects of exogenous ghrelin on feed intake, weight gain, behavior, and endocrine responses in weanling pigs1. J. Anim. Sci. 2004, 82, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, M.; Wanzira, H. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. 2016, 2017, CD005436. [Google Scholar] [CrossRef] [PubMed]
- World Health Organizations. Zinc Supplementation in the Management of Diarrhoea. Available online: https://www.who.int/tools/elena/interventions/zinc-diarrhoea (accessed on 8 April 2024).
- Hu, C.; Song, J.; Li, Y.; Luan, Z.; Zhu, K. Diosmectite–zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br. J. Nutr. 2013, 110, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.N.; Sarker, S.A.; Wahed, M.A.; Khatun, M.; Rahaman, M.M. Enteric protein loss and intestinal permeability changes in children during acute shigellosis and after recovery: Effect of zinc supplementation. Gut 1994, 35, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Lei, Z.; Yuan, J.; Yang, Y.; Guo, Y.; Zhang, B. Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J. Microbiol. 2014, 52, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Milo, L.A.; Reardon, K.A.; Tappenden, K.A. Effects of Short-Chain Fatty Acid-Supplemented Total Parenteral Nutrition on Intestinal Pro-Inflammatory Cytokine Abundance. Dig. Dis. Sci. 2002, 47, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Wiggelinkhuizen, M.; Tilanus, M.E.C.; Bollen, C.W.; Houwen, R.H.J. Systematic review: Clinical efficacy of chelator agents and zinc in the initial treatment of Wilson disease. Aliment. Pharmacol. Ther. 2009, 29, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F. Update on Zinc Deficiency and Excess in Clinical Pediatric Practice. Ann. Nutr. Metab. 2013, 62 (Suppl. S1), 19–29. [Google Scholar] [CrossRef] [PubMed]
- Gulani, A.; Sachdev, H.S. Zinc supplements for preventing otitis media. Cochrane Database Syst. Rev. 2014, 2014, CD006639. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.M.; Glynn, L.G.; Dineen, B. A survey of the management of urinary tract infection in children in primary care and comparison with the NICE guidelines. BMC Fam. Pract. 2010, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Grossman, Z.; Miron, D. Imaging and follow-up of children with first febrile Urinary Tract Infection (UTI). Harefuah 2009, 148, 716–720. [Google Scholar] [PubMed]
- Merguerian, P.A.; Sverrisson, E.F.; Herz, D.B.; McQuiston, L.T. Urinary Tract Infections in Children: Recommendations for Antibiotic Prophylaxis and Evaluation. An Evidence-Based Approach. Curr. Urol. Rep. 2010, 11, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Yousefichaijan, P.; Naziri, M.; Taherahmadi, H.; Kahbazi, M.; Tabaei, A. Zinc Supplementation in Treatment of Children With Urinary Tract Infection. Iran. J. Kidney Dis. 2016, 10, 213–216. [Google Scholar] [PubMed]
- Mohsenpour, B.; Ahmadi, A.; Baneh, A.M.; Hajibagheri, K.; Ghaderi, E.; Afrasiabian, S.; Azizi, S. Relation between serum zinc levels and recurrent urinary tract infections in female patients: A case-control study. Med. J. Islam. Repub. Iran 2019, 33, 33. [Google Scholar] [PubMed]
- Eddy, A.A.; Symons, J.M. Nephrotic syndrome in childhood. Lancet 2003, 362, 629–639. [Google Scholar] [CrossRef] [PubMed]
- International Study of Kidney Disease in Children. Nephrotic syndrome in children: Prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. Kidney Int. 1978, 13, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.N. Steroid-sensitive nephrotic syndrome in children: Triggers of relapse and evolving hypotheses on pathogenesis. Ital. J. Pediatr. 2015, 41, 19. [Google Scholar] [CrossRef] [PubMed]
- Moorani, K.N.; Khan, K.M.A.; Ramzan, A. Infections in children with nephrotic syndrome. J. Coll. Physicians Surg. Pak. 2003, 13, 337–339. [Google Scholar] [PubMed]
- Gulati, A.; Sinha, A.; Sreenivas, V.; Math, A.; Hari, P.; Bagga, A. Daily Corticosteroids Reduce Infection-associated Relapses in Frequently Relapsing Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2011, 6, 63–69. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E.; Wolfish, N.; McLaine, P.; Phipps, P.; Rossier, E. Role of respiratory viruses in exacerbations of primary nephrotic syndrome. J. Pediatr. 1986, 108, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Indurkar, S.; Mohan, K.; Omar, B.; Chacham, S.; Kumar, M. Urinary tract infection in children with Nephrotic syndrome: One of the hurdles for primary care physician and pediatrician towards timely diagnosis and optimum management of the disease. J. Fam. Med. Prim. Care 2022, 11, 6801. [Google Scholar] [CrossRef] [PubMed]
- Mbanefo, N.R.; Uwaezuoke, S.N.; Eneh, C.I.; Odimegwu, C.L.; Chikani, U.N.; Muoneke, U.V.; Nwolisa, C.E.; Odo, K.E.; Ogbuka, F.N.; Akwue, A.T. Can Oral Zinc Supplementation Reduce Relapses in Childhood Steroid-Sensitive Nephrotic Syndrome? A Systematic Review. Int. J. Nephrol. Renov. Dis. 2023, ume 16, 143–153. [Google Scholar] [CrossRef]
- Sherali, A.R.; Moorani, K.N.; Chishty, S.H.; Khan, S.I. Zinc supplement in reduction of relapses in children with steroid sensitive nephrotic syndrome. J. Coll. Physicians Surg. Pak. 2014, 24, 110–113. [Google Scholar] [PubMed]
- Bhatt, G.C.; Jain, S.; Das, R.R. Zinc supplementation as an adjunct to standard therapy in childhood nephrotic syndrome—A systematic review. World J. Clin. Pediatr. 2016, 5, 383. [Google Scholar] [CrossRef] [PubMed]
- Damianaki, K.; Lourenco, J.M.; Braconnier, P.; Ghobril, J.-P.; Devuyst, O.; Burnier, M.; Lenglet, S.; Augsburger, M.; Thomas, A.; Pruijm, M. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol. Dial. Transplant. 2019, 35, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chiu, C.-H.; Wu, I.-W.; Hsu, H.-J.; Chen, Y.-T.; Hsu, C.-K.; Pan, H.-C.; Lee, C.-C.; Sun, C.-Y. Micronutrients and Renal Outcomes: A Prospective Cohort Study. Nutrients 2022, 14, 3063. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, A.; Kanda, E.; Itano, S.; Kondo, M.; Wada, Y.; Kadoya, H.; Kidokoro, K.; Nagasu, H.; Sasaki, T.; Kashihara, N. Effect of zinc deficiency on chronic kidney disease progression and effect modification by hypoalbuminemia. PLoS ONE 2021, 16, e0251554. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, J.; Tuffaha, R.; Luong, T.T.; Zickler, D.; Masyout, J.; Feger, M.; Verheyen, N.; Blaschke, F.; Kuro-O, M.; Tomaschitz, A.; et al. Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-κB. J. Am. Soc. Nephrol. 2018, 29, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Eisenberg, R.; Mowrey, W.B.; Wylie-Rosett, J.; Abramowitz, M.K.; Bushinsky, D.A.; Melamed, M.L. Association between dietary zinc intake and abdominal aortic calcification in US adults. Nephrol. Dial. Transplant. 2020, 35, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Panizo, S.; Martínez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martín-Carro, B.; Fernández-Martín, J.L.; Naves-Díaz, M.; Carrillo-López, N.; Cannata-Andía, J.B. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int. J. Mol. Sci. 2021, 22, 408. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Ayala-Macedo, G.; Sakihara, G.; Peralta, S.; Almaraz-Gómez, A.; Barrado, E.; Marugán-Miguelsanz, J.M. Effects of Zinc Supplementation on Nutritional Status in Children with Chronic Kidney Disease: A Randomized Trial. Nutrients 2019, 11, 2671. [Google Scholar] [CrossRef]
- Padoan, F.; Guarnaroli, M.; Brugnara, M.; Piacentini, G.; Pietrobelli, A.; Pecoraro, L. Role of Nutrients in Pediatric Non-Dialysis Chronic Kidney Disease: From Pathogenesis to Correct Supplementation. Biomedicines 2024, 12, 911. [Google Scholar] [CrossRef] [PubMed]
- Şıklar, Z.; Tuna, C.; Dallar, Y.; Tanyer, G. Zinc Deficiency: A Contributing Factor of Short Stature in Growth Hormone Deficient Children. J. Trop. Pediatr. 2003, 49, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Hamza, R.T.; Hamed, A.I.; Sallam, M.T. Effect of zinc supplementation on growth Hormone Insulin growth factor axis in short Egyptian children with zinc deficiency. Ital. J. Pediatr. 2012, 38, 21. [Google Scholar] [CrossRef] [PubMed]
- Ekbote, V.; Khadilkar, A.; Chiplonkar, S.; Mughal, Z.; Khadilkar, V. Enhanced effect of zinc and calcium supplementation on bone status in growth hormone-deficient children treated with growth hormone: A pilot randomized controlled trial. Endocrine 2013, 43, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Yamaguchi, M. Zinc modulation of insulin-like growth factor’s effect in osteoblastic MC3T3-E1 cells. Peptides 1995, 16, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Severo, J.S.; Morais, J.B.S.; de Freitas, T.E.C.; Andrade, A.L.P.; Feitosa, M.M.; Fontenelle, L.C.; de Oliveira, A.R.S.; Cruz, K.J.C.; Marreiro, D.D.N. The Role of Zinc in Thyroid Hormones Metabolism. Int. J. Vitam. Nutr. Res. 2019, 89, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Beserra, J.B.; Morais, J.B.S.; Severo, J.S.; Cruz, K.J.C.; de Oliveira, A.R.S.; Henriques, G.S.; Marreiro, D.D.N. Relation Between Zinc and Thyroid Hormones in Humans: A Systematic Review. Biol. Trace Element Res. 2021, 199, 4092–4100. [Google Scholar] [CrossRef] [PubMed]
- Licastro, F.; Mocchegiani, E.; Masi, M.; Fabris, N. Modulation of the neuroendocrine system and immune functions by zinc supplementation in children with Down’s syndrome. J. Trace Elem. Electrolytes Health Dis. 1993, 7, 237–239. [Google Scholar]
- Bucci, I.; Napolitano, G.; Giuliani, C.; Lio, S.; Minnucci, A.; Di Giacomo, F.; Calabrese, G.; Sabatino, G.; Palka, G.; Monaco, F. Zinc sulfate supplementation improves thyroid function in hypozincemic down children. Biol. Trace Element Res. 1999, 67, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Kandhro, G.A.; Kazi, T.G.; Afridi, H.I.; Kazi, N.; Baig, J.A.; Arain, M.B.; Sirajuddin; Shah, A.Q.; Sarfraz, R.A.; Jamali, M.K.; et al. Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin. Nutr. 2009, 28, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.; Singh, S.; Brito, M. Diet, and Alternative Approaches. J. Clin. Endocrinol. Metab. 2022, 107, 2973–2981. [Google Scholar] [CrossRef] [PubMed]
- Hartono, R.; Ipa, A.; Amir, A. Impact of zinc: Early prevention of obesity and fatty in children. Obes. Med. 2021, 21, 100313. [Google Scholar] [CrossRef]
- Pecoraro, L.; Zoller, T.; Atkinson, R.L.; Nisi, F.; Antoniazzi, F.; Cavarzere, P.; Piacentini, G.; Pietrobelli, A. Supportive treatment of vascular dysfunction in pediatric subjects with obesity: The OBELIX study. Nutr. Diabetes 2022, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Fearnbach, N.; Ferruzzi, A.; Vrech, M.; Heo, M.; Faith, M.; Pecoraro, L.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; et al. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity: Longitudinal study update. Obes. Sci. Pr. 2021, 8, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, L.; Carbonare, L.D.; De Franceschi, L.; Piacentini, G.; Pietrobelli, A. The psychophysical impact that COVID-19 has on children must not be underestimated. Acta Paediatr. 2020, 109, 1679–1680. [Google Scholar] [CrossRef] [PubMed]
- Jeng, S.-S.; Chen, Y.-H. Association of Zinc with Anemia. Nutrients 2022, 14, 4918. [Google Scholar] [CrossRef] [PubMed]
- Abdelhaleim, A.F.; Amer, A.Y.; Soliman, J.S.A. Association of Zinc Deficiency with Iron Deficiency Anemia and its Symptoms: Results from a Case-control Study. Cureus 2019, 11, e3811. [Google Scholar] [CrossRef] [PubMed]
- Osawa, M. Erythroid expansion mediated by the Gfi-1B zinc finger protein: Role in normal hematopoiesis. Blood 2002, 100, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Angelova, M.G.; Petkova-Marinova, T.V.; Pogorielov, M.V.; Loboda, A.N.; Nedkova-Kolarova, V.N.; Bozhinova, A.N. Trace Element Status (Iron, Zinc, Copper, Chromium, Cobalt, and Nickel) in Iron-Deficiency Anaemia of Children under 3 Years. Anemia 2014, 2014, 718089. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology; pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
- Namazzi, R.; Opoka, R.; Conroy, A.L.; Datta, D.; Tagoola, A.; Bond, C.; Goings, M.J.; Ryu, M.-S.; Cusick, S.E.; Krebs, N.F.; et al. Zinc for infection prevention in children with sickle cell anemia: A randomized double-blind placebo-controlled trial. Blood Adv. 2023, 7, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.B.; Yazbek, J.C. Potential importance of supplementation with zinc for autism spectrum disorder. Encephale 2021, 47, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Swarnim, S.; Khanam, S. Zinc Supplementation for Prevention of Febrile Seizures Recurrences in Children: A Systematic Review and Meta-Analysis. Indian. Pediatr. 2021, 58, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.E.M.; de Santana, M.L.P.; Costa, P.R.d.F.; Pereira, E.M.; Nepomuceno, C.M.M.; Queiroz, V.A.d.O.; de Oliveira, L.P.M.; Machado, M.E.P.d.C.; de Sena, E.P. Zinc supplementation combined with antidepressant drugs for treatment of patients with depression: A systematic review and meta-analysis. Nutr. Rev. 2020, 79, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.-C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.P.A.; Basson, M.A. The neuroanatomy of autism—A developmental perspective. J. Anat. 2017, 230, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Vahdatpour, C.; Dyer, A.H.; Tropea, D. Insulin-Like Growth Factor 1 and Related Compounds in the Treatment of Childhood-Onset Neurodevelopmental Disorders. Front. Neurosci. 2016, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Cesur, Y.; Yordam, N.; Doğan, M. Serum Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-3 Levels in Children with Zinc Deficiency and the Effect of Zinc Supplementation on these Parameters. J. Pediatr. Endocrinol. Metab. 2009, 22, 1137–1144. [Google Scholar] [CrossRef]
- Yu, Z.-P.; Le, G.-W.; Shi, Y.-H. Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice. Clin. Exp. Pharmacol. Physiol. 2005, 32, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.B. Is insulin growth factor-1 the future for treating autism spectrum disorder and/or schizophrenia? Med. Hypotheses 2017, 99, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, I.; Azhari, A.; Esposito, G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front. Mol. Neurosci. 2018, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, H.-F.; Han, J.-S.; Han, S.-P. Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci. Bull. 2017, 33, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, D.U.; O’Donnell, S.M.; Lalor, A.; Grant, T.; Greaney, H. Zinc and vitamin A deficiency in a cohort of children with autism spectrum disorder. Child. Care Health Dev. 2019, 45, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Choi, J.; Lee, W.; Do, J. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J. Clin. Med. 2020, 9, 966. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.; Nikkhah, A.; Goli, M.A. Serum Zinc Level in Children with Febrile Seizure. Iran. J. Child. Neurol. 2020, 14, 43–47. [Google Scholar] [PubMed]
- Fallah, R.; Sabbaghzadegan, S.; Karbasi, S.A.; Binesh, F. Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial. Nutrition 2015, 31, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Takeda, A.; Tamano, H. Insight into zinc signaling from dietary zinc deficiency. Brain Res. Rev. 2009, 62, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Nowak, G.; Kubera, M.; Maes, M. Neuroimmunological aspects of the alterations in zinc homeostasis in the pathophysiology and treatment of depression. Acta Neuropsychiatr. 2000, 12, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Sanacora, G.; Blumberg, H.; Anand, A.; Charney, D.S.; Marek, G.; Epperson, C.N.; Goddard, A.; Mason, G.F. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol. Psychiatry 2002, 7, S71–S80. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Vergnano, A.M.; Barbour, B.; Casado, M. Zinc at glutamatergic synapses. Neuroscience 2009, 158, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Bitanihirwe, B.K.Y.; Cunningham, M.G. Zinc: The brain’s dark horse. Synapse 2009, 63, 1029–1049. [Google Scholar] [CrossRef]
- Sen, S.; Sanacora, G. Major depression: Emerging therapeutics. Mt. Sinai J. Med. J. Transl. Pers. Med. J. Transl. Pers. Med. 2008, 75, 204–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Um, P.; Dickerman, B.; Liu, J. Zinc, Magnesium, Selenium and Depression: A Review of the Evidence, Potential Mechanisms and Implications. Nutrients 2018, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, C.; Sanacora, G.; Krystal, J. The NMDA Receptor as a Therapeutic Target in Major Depressive Disorder. CNS Neurol. Disord. Drug Targets 2007, 6, 101–115. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Pfaender, S.; Föhr, K.; Lutz, A.-K.; Putz, S.; Achberger, K.; Linta, L.; Liebau, S.; Boeckers, T.M.; Grabrucker, A.M. Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plast. 2016, 2016, 3760702. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, B.; Kubera, M.; Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.C.; Rand, K.L.; Muldoon, M.F.; Kamarck, T.W. A prospective evaluation of the directionality of the depression–inflammation relationship. Brain Behav. Immun. 2009, 23, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; De Vos, N.; Demedts, P.; Wauters, A.; Neels, H. Lower serum zinc in major depression in relation to changes in serum acute phase proteins. J. Affect. Disord. 1999, 56, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef]
- Frey, B.N.; Andreazza, A.C.; Ceresér, K.M.; Martins, M.R.; Valvassori, S.S.; Réus, G.Z.; Quevedo, J.; Kapczinski, F. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci. 2006, 79, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Perito, M.E.S.; Fortunato, J.J. Marcadores Biológicos da Depressão. Rev. Neurociênc. 2001, 20, 597–603. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Song, X.; Zhang, D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Amani, R.; Saeidi, S.; Nazari, Z.; Nematpour, S. Correlation Between Dietary Zinc Intakes and Its Serum Levels with Depression Scales in Young Female Students. Biol. Trace Elem. Res. 2010, 137, 150–158. [Google Scholar] [CrossRef] [PubMed]
- DiGirolamo, A.M.; Ramirez-Zea, M.; Wang, M.; Flores-Ayala, R.; Martorell, R.; Neufeld, L.M.; Ramakrishnan, U.; Sellen, D.; Black, M.M.; Stein, A.D. Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala. Am. J. Clin. Nutr. 2010, 92, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padoan, F.; Piccoli, E.; Pietrobelli, A.; Moreno, L.A.; Piacentini, G.; Pecoraro, L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules 2024, 14, 718. https://doi.org/10.3390/biom14060718
Padoan F, Piccoli E, Pietrobelli A, Moreno LA, Piacentini G, Pecoraro L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules. 2024; 14(6):718. https://doi.org/10.3390/biom14060718
Chicago/Turabian StylePadoan, Flavia, Elena Piccoli, Angelo Pietrobelli, Luis A. Moreno, Giorgio Piacentini, and Luca Pecoraro. 2024. "The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View" Biomolecules 14, no. 6: 718. https://doi.org/10.3390/biom14060718
APA StylePadoan, F., Piccoli, E., Pietrobelli, A., Moreno, L. A., Piacentini, G., & Pecoraro, L. (2024). The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules, 14(6), 718. https://doi.org/10.3390/biom14060718