Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer
Abstract
1. Introduction
2. Research Progress of eccDNA in Cancer
3. Formation of eccDNA
4. Detection and Quantification of eccDNA
5. EccDNA-Related Alterations in Cancer
6. Relationship between EccDNA and Tumor Progression
7. Noninvasive Diagnostic Potential of eccDNA
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Y.; Yu, L.; Zhang, S.; Su, X.; Zhou, X. Extrachromosomal Circular DNA: Current Status and Future Prospects. eLife 2022, 11, e81412. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jia, R.; Ge, T.; Ge, S.; Zhuang, A.; Chai, P.; Fan, X. Extrachromosomal Circular DNA: Biogenesis, Structure, Functions and Diseases. Sig. Transduct. Target. Ther. 2022, 7, 342. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Kumar, P.; Layer, R.; Willcox, S.; Gagan, J.R.; Griffith, J.D.; Dutta, A. Extrachromosomal MicroDNAs and Chromosomal Microdeletions in Normal Tissues. Science 2012, 336, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Van Leen, E.; Brückner, L.; Henssen, A.G. The Genomic and Spatial Mobility of Extrachromosomal DNA and Its Implications for Cancer Therapy. Nat. Genet. 2022, 54, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.T.; Rose, J.C.; Chen, C.Y.; Pichugin, Y.; Xie, L.; Tang, J.; Hung, K.L.; Yost, K.E.; Shi, Q.; Erb, M.L.; et al. The Evolutionary Dynamics of Extrachromosomal DNA in Human Cancers. Nat. Genet. 2022, 54, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Koche, R.P.; Rodriguez-Fos, E.; Helmsauer, K.; Burkert, M.; MacArthur, I.C.; Maag, J.; Chamorro, R.; Munoz-Perez, N.; Puiggròs, M.; Dorado Garcia, H.; et al. Extrachromosomal Circular DNA Drives Oncogenic Genome Remodeling in Neuroblastoma. Nat. Genet. 2020, 52, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Garsed, D.W.; Marshall, O.J.; Corbin, V.D.A.; Hsu, A.; Di Stefano, L.; Schröder, J.; Li, J.; Feng, Z.-P.; Kim, B.W.; Kowarsky, M.; et al. The Architecture and Evolution of Cancer Neochromosomes. Cancer Cell 2014, 26, 653–667. [Google Scholar] [CrossRef]
- Cen, Y.; Fang, Y.; Ren, Y.; Hong, S.; Lu, W.; Xu, J. Global Characterization of Extrachromosomal Circular DNAs in Advanced High Grade Serous Ovarian Cancer. Cell Death Dis. 2022, 13, 342. [Google Scholar] [CrossRef]
- Hung, K.L.; Mischel, P.S.; Chang, H.Y. Gene Regulation on Extrachromosomal DNA. Nat. Struct. Mol. Biol. 2022, 29, 736–744. [Google Scholar] [CrossRef]
- Zuo, S.; Yi, Y.; Wang, C.; Li, X.; Zhou, M.; Peng, Q.; Zhou, J.; Yang, Y.; He, Q. Extrachromosomal Circular DNA (eccDNA): From Chaos to Function. Front. Cell Dev. Biol. 2022, 9, 792555. [Google Scholar] [CrossRef]
- Ling, X.; Han, Y.; Meng, J.; Zhong, B.; Chen, J.; Zhang, H.; Qin, J.; Pang, J.; Liu, L. Small Extrachromosomal Circular DNA (eccDNA): Major Functions in Evolution and Cancer. Mol. Cancer 2021, 20, 113. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2023, 24, 37. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qiao, G.; Xu, E.; Xuan, Y.; Liao, M.; Yin, G. Biomarkers for Early Diagnosis, Prognosis, Prediction, and Recurrence Monitoring of Non-Small Cell Lung Cancer. OTT 2017, 10, 4527–4534. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Mizuno, Y.; Shibata, S.; Miyagaki, T.; Ito, Y.; Taira, H.; Omori, I.; Hisamoto, T.; Oka, K.; Matsuda, K.M.; Boki, H.; et al. Serum Cell-free DNA as a New Biomarker in Cutaneous T-cell Lymphoma. J. Dermatol. 2022, 49, 1124–1130. [Google Scholar] [CrossRef]
- Gormally, E.; Caboux, E.; Vineis, P.; Hainaut, P. Circulating Free DNA in Plasma or Serum as Biomarker of Carcinogenesis: Practical Aspects and Biological Significance. Mutat. Res./Rev. Mutat. Res. 2007, 635, 105–117. [Google Scholar] [CrossRef]
- Vizza, E.; Corrado, G.; De Angeli, M.; Carosi, M.; Mancini, E.; Baiocco, E.; Chiofalo, B.; Patrizi, L.; Zampa, A.; Piaggio, G.; et al. Serum DNA Integrity Index as a Potential Molecular Biomarker in Endometrial Cancer. J. Exp. Clin. Cancer Res. 2018, 37, 16. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tao, T.; Zhang, L.; Zhu, X.; Zhou, X. Extrachromosomal DNA (ecDNA): Unveiling Its Role in Cancer Progression and Implications for Early Detection. Heliyon 2023, 9, e21327. [Google Scholar] [CrossRef]
- Hotta, Y.; Bassel, A. Molecular size and circularity of DNA in cells of mammals and higher plants. Proc. Natl. Acad. Sci. USA 1965, 53, 356–362. [Google Scholar] [CrossRef]
- Smith, C.A.; Vinograd, J. Small Polydisperse Circular DNA of HeLa Cells. J. Mol. Biol. 1972, 69, 163–178. [Google Scholar] [CrossRef]
- Krolewski, J.J.; Schindler, C.W.; Rush, M.G. Structure of Extrachromosomal Circular DNAs Containing Both the Alu Family of Dispersed Repetitive Sequences and Other Regions of Chromosomal DNA. J. Mol. Biol. 1984, 174, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.W.; Bafna, V.; Mischel, P.S. Extrachromosomal Oncogene Amplification in Tumour Pathogenesis and Evolution. Nat. Rev. Cancer 2019, 19, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Alt, F.W.; Kellems, R.E.; Bertino, J.R.; Schimke, R.T. Selective Multiplication of Dihydrofolate Reductase Genes in Methotrexate-Resistant Variants of Cultured Murine Cells. J. Biol. Chem. 1978, 253, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Nguyen, N.-P.; Turner, K.; Wu, S.; Gujar, A.D.; Luebeck, J.; Liu, J.; Deshpande, V.; Rajkumar, U.; Namburi, S.; et al. Extrachromosomal DNA Is Associated with Oncogene Amplification and Poor Outcome across Multiple Cancers. Nat. Genet. 2020, 52, 891–897. [Google Scholar] [CrossRef]
- Turner, K.M.; Deshpande, V.; Beyter, D.; Koga, T.; Rusert, J.; Lee, C.; Li, B.; Arden, K.; Ren, B.; Nathanson, D.A.; et al. Extrachromosomal Oncogene Amplification Drives Tumour Evolution and Genetic Heterogeneity. Nature 2017, 543, 122–125. [Google Scholar] [CrossRef]
- Nathanson, D.A.; Gini, B.; Mottahedeh, J.; Visnyei, K.; Koga, T.; Gomez, G.; Eskin, A.; Hwang, K.; Wang, J.; Masui, K.; et al. Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA. Science 2014, 343, 72–76. [Google Scholar] [CrossRef]
- Kohl, N.E.; Kanda, N.; Schreck, R.R.; Bruns, G.; Latt, S.A.; Gilbert, F.; Alt, F.W. Transposition and Amplification of Oncogene-Related Sequences in Human Neuroblastomas. Cell 1983, 35, 359–367. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Needham-VanDevanter, D.R.; Yucel, J.; Windle, B.E.; Wahl, G.M. Amplified Human MYC Oncogenes Localized to Replicating Submicroscopic Circular DNA Molecules. Proc. Natl. Acad. Sci. USA 1988, 85, 4804–4808. [Google Scholar] [CrossRef]
- Wu, S.; Turner, K.M.; Nguyen, N.; Raviram, R.; Erb, M.; Santini, J.; Luebeck, J.; Rajkumar, U.; Diao, Y.; Li, B.; et al. Circular ecDNA Promotes Accessible Chromatin and High Oncogene Expression. Nature 2019, 575, 699–703. [Google Scholar] [CrossRef]
- Sinclair, D.A.; Guarente, L. Extrachromosomal rDNA Circles—A Cause of Aging in Yeast. Cell 1997, 91, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, F.; Du, M.; Zhang, P.; Fu, S.; Wang, L. Molecular Characterization of Cell-Free eccDNAs in Human Plasma. Sci. Rep. 2017, 7, 10968. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.D.; Mohiyuddin, M.; Prada-Luengo, I.; Sailani, M.R.; Halling, J.F.; Plomgaard, P.; Maretty, L.; Hansen, A.J.; Snyder, M.P.; Pilegaard, H.; et al. Circular DNA Elements of Chromosomal Origin Are Common in Healthy Human Somatic Tissue. Nat. Commun. 2018, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, B.; Liang, H.; Han, L. Pioneering Insights of Extrachromosomal DNA (ecDNA) Generation, Action and Its Implications for Cancer Therapy. Int. J. Biol. Sci. 2022, 18, 4006–4025. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, E.N.; Luebeck, J.; Petljak, M.; Khandekar, A.; Barnes, M.; Zhang, T.; Steele, C.D.; Pillay, N.; Landi, M.T.; Bafna, V.; et al. Mapping Clustered Mutations in Cancer Reveals APOBEC3 Mutagenesis of ecDNA. Nature 2022, 602, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gujar, A.D.; Wong, C.-H.; Tjong, H.; Ngan, C.Y.; Gong, L.; Chen, Y.-A.; Kim, H.; Liu, J.; Li, M.; et al. Oncogenic Extrachromosomal DNA Functions as Mobile Enhancers to Globally Amplify Chromosomal Transcription. Cancer Cell 2021, 39, 694–707.e7. [Google Scholar] [CrossRef] [PubMed]
- Korbel, J.O.; Campbell, P.J. Criteria for Inference of Chromothripsis in Cancer Genomes. Cell 2013, 152, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Guérin, T.M.; Marcand, S. Breakage in Breakage–Fusion–Bridge Cycle: An 80-Year-Old Mystery. Trends Genet. 2022, 38, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Arrey, G.; Keating, S.T.; Regenberg, B. A Unifying Model for Extrachromosomal Circular DNA Load in Eukaryotic Cells. Semin. Cell Dev. Biol. 2022, 128, 40–50. [Google Scholar] [CrossRef]
- Cox, D.; Yuncken, C.; Spriggs, A. Minute chromatin bodies in malignant tumours of childhood. Lancet 1965, 286, 55–58. [Google Scholar] [CrossRef]
- Henriksen, R.A.; Jenjaroenpun, P.; Sjøstrøm, I.B.; Jensen, K.R.; Prada-Luengo, I.; Wongsurawat, T.; Nookaew, I.; Regenberg, B. Circular DNA in the Human Germline and Its Association with Recombination. Mol. Cell 2022, 82, 209–217.e7. [Google Scholar] [CrossRef]
- Pyne, A.L.B.; Noy, A.; Main, K.H.S.; Velasco-Berrelleza, V.; Piperakis, M.M.; Mitchenall, L.A.; Cugliandolo, F.M.; Beton, J.G.; Stevenson, C.E.M.; Hoogenboom, B.W.; et al. Base-Pair Resolution Analysis of the Effect of Supercoiling on DNA Flexibility and Major Groove Recognition by Triplex-Forming Oligonucleotides. Nat. Commun. 2021, 12, 1053. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.; Gujar, A.D.; Guthrie, M.; Kim, H.; Zhao, D.; Johnson, K.C.; Amin, S.B.; Costa, M.L.; Yu, Q.; Das, S.; et al. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discov. 2022, 12, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Luebeck, J.; Coruh, C.; Dehkordi, S.R.; Lange, J.T.; Turner, K.M.; Deshpande, V.; Pai, D.A.; Zhang, C.; Rajkumar, U.; Law, J.A.; et al. AmpliconReconstructor Integrates NGS and Optical Mapping to Resolve the Complex Structures of Focal Amplifications. Nat. Commun. 2020, 11, 4374. [Google Scholar] [CrossRef] [PubMed]
- Wanchai, V.; Jenjaroenpun, P.; Leangapichart, T.; Arrey, G.; Burnham, C.M.; Tümmler, M.C.; Delgado-Calle, J.; Regenberg, B.; Nookaew, I. CReSIL: Accurate Identification of Extrachromosomal Circular DNA from Long-Read Sequences. Brief. Bioinform. 2022, 23, bbac422. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kiran, S.; Saha, S.; Su, Z.; Paulsen, T.; Chatrath, A.; Shibata, Y.; Shibata, E.; Dutta, A. ATAC-Seq Identifies Thousands of Extrachromosomal Circular DNA in Cancer and Cell Lines. Sci. Adv. 2020, 6, eaba2489. [Google Scholar] [CrossRef] [PubMed]
- Helmsauer, K.; Valieva, M.E.; Ali, S.; Chamorro González, R.; Schöpflin, R.; Röefzaad, C.; Bei, Y.; Dorado Garcia, H.; Rodriguez-Fos, E.; Puiggròs, M.; et al. Enhancer Hijacking Determines Extrachromosomal Circular MYCN Amplicon Architecture in Neuroblastoma. Nat. Commun. 2020, 11, 5823. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.D. Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells. In DNA Electrophoresis; Hanada, K., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2119, pp. 165–181. ISBN 978-1-07-160322-2. [Google Scholar]
- Mehta, D.; Cornet, L.; Hirsch-Hoffmann, M.; Zaidi, S.S.-A.; Vanderschuren, H. Full-Length Sequencing of Circular DNA Viruses and Extrachromosomal Circular DNA Using CIDER-Seq. Nat. Protoc. 2020, 15, 1673–1689. [Google Scholar] [CrossRef]
- Fan, X.; Yang, C.; Li, W.; Bai, X.; Zhou, X.; Xie, H.; Wen, L.; Tang, F. SMOOTH-Seq: Single-Cell Genome Sequencing of Human Cells on a Third-Generation Sequencing Platform. Genome Biol. 2021, 22, 195. [Google Scholar] [CrossRef]
- Chang, L.; Deng, E.; Wang, J.; Zhou, W.; Ao, J.; Liu, R.; Su, D.; Fan, X. Single-cell Third-generation Sequencing-based Multi-omics Uncovers Gene Expression Changes Governed by ecDNA and Structural Variants in Cancer Cells. Clin. Transl. Med. 2023, 13, e1351. [Google Scholar] [CrossRef]
- Chamorro González, R.; Conrad, T.; Stöber, M.C.; Xu, R.; Giurgiu, M.; Rodriguez-Fos, E.; Kasack, K.; Brückner, L.; Van Leen, E.; Helmsauer, K.; et al. Parallel Sequencing of Extrachromosomal Circular DNAs and Transcriptomes in Single Cancer Cells. Nat. Genet. 2023, 55, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, L.; Ruan, S.; Bi, W.; Chen, Y.; Chen, L.; Liu, Y.; Li, M.; Qiao, J.; Mao, F. CircleBase: An Integrated Resource and Analysis Platform for Human eccDNAs. Nucleic Acids Res. 2022, 50, D72–D82. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, N.; Zhang, C.-Y.; Li, G.-C.; Yuan, X.-Q. eccDNAdb: A Database of Extrachromosomal Circular DNA Profiles in Human Cancers. Oncogene 2022, 41, 2696–2705. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Li, Q.; Chang, X.; Liu, X. TeCD: The eccDNA Collection Database for Extrachromosomal Circular DNA. BMC Genom. 2023, 24, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Wang, W.; Liu, H.; Zeng, M.; Zhao, X.; Guo, Z. eccDNA Atlas: A Comprehensive Resource of eccDNA Catalog. Brief. Bioinform. 2023, 24, bbad037. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Otter, M.; Wahl, G.M. Mitotic Segregation of Viral and Cellular Acentric Extrachromosomal Molecules by Chromosome Tethering. J. Cell Sci. 2001, 114, 49–58. [Google Scholar] [CrossRef]
- Levan, A.; Levan, G. Have Double Minutes Functioning Centromeres? Hereditas 2009, 88, 81–92. [Google Scholar] [CrossRef]
- Hung, K.L.; Yost, K.E.; Xie, L.; Shi, Q.; Helmsauer, K.; Luebeck, J.; Schöpflin, R.; Lange, J.T.; Chamorro González, R.; Weiser, N.E.; et al. ecDNA Hubs Drive Cooperative Intermolecular Oncogene Expression. Nature 2021, 600, 731–736. [Google Scholar] [CrossRef]
- Lundberg, G.; Rosengren, A.H.; Håkanson, U.; Stewénius, H.; Jin, Y.; Stewénius, Y.; Påhlman, S.; Gisselsson, D. Binomial Mitotic Segregation of MYCN-Carrying Double Minutes in Neuroblastoma Illustrates the Role of Randomness in Oncogene Amplification. PLoS ONE 2008, 3, e3099. [Google Scholar] [CrossRef]
- L’Abbate, A.; Macchia, G.; D’Addabbo, P.; Lonoce, A.; Tolomeo, D.; Trombetta, D.; Kok, K.; Bartenhagen, C.; Whelan, C.W.; Palumbo, O.; et al. Genomic Organization and Evolution of Double Minutes/Homogeneously Staining Regions with MYC Amplification in Human Cancer. Nucleic Acids Res. 2014, 42, 9131–9145. [Google Scholar] [CrossRef]
- Xue, Y.; Martelotto, L.; Baslan, T.; Vides, A.; Solomon, M.; Mai, T.T.; Chaudhary, N.; Riely, G.J.; Li, B.T.; Scott, K.; et al. An Approach to Suppress the Evolution of Resistance in BRAFV600E-Mutant Cancer. Nat. Med. 2017, 23, 929–937. [Google Scholar] [CrossRef]
- Song, K.; Minami, J.K.; Huang, A.; Dehkordi, S.R.; Lomeli, S.H.; Luebeck, J.; Goodman, M.H.; Moriceau, G.; Krijgsman, O.; Dharanipragada, P.; et al. Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discov. 2022, 12, 1046–1069. [Google Scholar] [CrossRef]
- Clarke, T.L.; Tang, R.; Chakraborty, D.; Van Rechem, C.; Ji, F.; Mishra, S.; Ma, A.; Kaniskan, H.Ü.; Jin, J.; Lawrence, M.S.; et al. Histone Lysine Methylation Dynamics Control EGFR DNA Copy-Number Amplification. Cancer Discov. 2020, 10, 306–325. [Google Scholar] [CrossRef]
- Matsui, A.; Ihara, T.; Suda, H.; Mikami, H.; Semba, K. Gene Amplification: Mechanisms and Involvement in Cancer. BioMolecular Concepts 2013, 4, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Pellman, D.; Zhang, C.-Z. Decoding Complex Patterns of Oncogene Amplification. Nat. Genet. 2021, 53, 1626–1627. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gong, L.; Wei, C.-L. Guilt by Association: EcDNA as a Mobile Transactivator in Cancer. Trends Cancer 2022, 8, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Watanabe, T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer 2020, 6, 462–477. [Google Scholar] [CrossRef]
- Nikolaev, S.; Santoni, F.; Garieri, M.; Makrythanasis, P.; Falconnet, E.; Guipponi, M.; Vannier, A.; Radovanovic, I.; Bena, F.; Forestier, F.; et al. Extrachromosomal Driver Mutations in Glioblastoma and Low-Grade Glioma. Nat. Commun. 2014, 5, 5690. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Y.; Zhou, R.; Liu, L.; Zeng, H.; Xiong, F.; Zhang, S.; Gong, Z.; Zhang, W.; Guo, C.; et al. Extrachromosomal Circular DNA: A New Target in Cancer. Front. Oncol. 2022, 12, 814504. [Google Scholar] [CrossRef]
- Morton, A.R.; Dogan-Artun, N.; Faber, Z.J.; MacLeod, G.; Bartels, C.F.; Piazza, M.S.; Allan, K.C.; Mack, S.C.; Wang, X.; Gimple, R.C.; et al. Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell 2019, 179, 1330–1341.e13. [Google Scholar] [CrossRef]
- Paulsen, T.; Kumar, P.; Koseoglu, M.M.; Dutta, A. Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells. Trends Genet. 2018, 34, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, X.; Yu, F.; Ding, H.; Zhang, Y.; Wang, K. Extrachromosomal Circular DNAs: Origin, Formation and Emerging Function in Cancer. Int. J. Biol. Sci. 2021, 17, 1010–1025. [Google Scholar] [CrossRef] [PubMed]
- Noer, J.B.; Hørsdal, O.K.; Xiang, X.; Luo, Y.; Regenberg, B. Extrachromosomal Circular DNA in Cancer: History, Current Knowledge, and Methods. Trends Genet. 2022, 38, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Bafna, V.; Chang, H.Y.; Mischel, P.S. Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 367–386. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Y.; Li, J.; Zhou, X. Extrachromosomal Circular DNA (eccDNA): An Emerging Star in Cancer. Biomark. Res. 2022, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.; Chamorro González, R.; Henssen, A.G.; Verhaak, R.G.W. Extrachromosomal DNA Amplifications in Cancer. Nat. Rev. Genet. 2022, 23, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wan, M.; Wu, J. ecDNA within Tumors: A New Mechanism That Drives Tumor Heterogeneity and Drug Resistance. Sig. Transduct. Target. Ther. 2020, 5, 277. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, H.; Zhou, Y.; Shi, J. Extrachromosomal Circular DNA: A New Potential Role in Cancer Progression. J. Transl. Med. 2021, 19, 257. [Google Scholar] [CrossRef]
- Meng, X.; Qi, X.; Guo, H.; Cai, M.; Li, C.; Zhu, J.; Chen, F.; Guo, H.; Li, J.; Zhao, Y.; et al. Novel Role for Non-Homologous End Joining in the Formation of Double Minutes in Methotrexate-Resistant Colon Cancer Cells. J. Med. Genet. 2015, 52, 135–144. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Z.; Cao, W.; Ma, X.; Fan, Y.; Yu, Y.; Bai, J.; Chen, F.; Rosales, J.; Lee, K.-Y.; et al. Novel Functional MAR Elements of Double Minute Chromosomes in Human Ovarian Cells Capable of Enhancing Gene Expression. PLoS ONE 2012, 7, e30419. [Google Scholar] [CrossRef]
- Vicario, R.; Peg, V.; Morancho, B.; Zacarias-Fluck, M.; Zhang, J.; Martínez-Barriocanal, Á.; Navarro Jiménez, A.; Aura, C.; Burgues, O.; Lluch, A.; et al. Patterns of HER2 Gene Amplification and Response to Anti-HER2 Therapies. PLoS ONE 2015, 10, e0129876. [Google Scholar] [CrossRef] [PubMed]
- Ambros, I.M.; Rumpler, S.; Luegmayr, A.; Hattinger, C.M.; Strehl, S.; Kovar, H.; Gadner, H.; Ambros, P.F. Neuroblastoma Cells Can Actively Eliminate Supernumerary MYCN Gene Copies by Micronucleus Formation—Sign of Tumour Cell Revertance? Eur. J. Cancer 1997, 33, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Snapka, R.M.; Varshavsky, A. Loss of Unstably Amplified Dihydrofolate Reductase Genes from Mouse Cells Is Greatly Accelerated by Hydroxyurea. Proc. Natl. Acad. Sci. USA 1983, 80, 7533–7537. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, S.G.; Dai, A.; Davidson, K.K.; Forseth, B.J.; Wahl, G.M.; Von Hoff, D.D. Induction of Differentiation in HL60 Cells by the Reduction of Extrachromosomally Amplified C-Myc. Proc. Natl. Acad. Sci. USA 1994, 91, 6674–6678. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, T.; Shibata, Y.; Kumar, P.; Dillon, L.; Dutta, A. Small Extrachromosomal Circular DNAs, microDNA, Produce Short Regulatory RNAs That Suppress Gene Expression Independent of Canonical Promoters. Nucleic Acids Res. 2019, 47, 4586–4596. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Larijani, B.; Tavangar, S.M. The Presence of Tumor Extrachomosomal Circular DNA (ecDNA) as a Component of Liquid Biopsy in Blood. Med. Hypotheses 2018, 114, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Bronkhorst, A.J.; Wentzel, J.F.; Ungerer, V.; Peters, D.L.; Aucamp, J.; De Villiers, E.P.; Holdenrieder, S.; Pretorius, P.J. Sequence Analysis of Cell-Free DNA Derived from Cultured Human Bone Osteosarcoma (143B) Cells. Tumour Biol. 2018, 40, 101042831880119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Dillon, L.W.; Shibata, Y.; Jazaeri, A.A.; Jones, D.R.; Dutta, A. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA (eccDNA) into the Circulation. Mol. Cancer Res. 2017, 15, 1197–1205. [Google Scholar] [CrossRef]
- Xu, G.; Shi, W.; Ling, L.; Li, C.; Shao, F.; Chen, J.; Wang, Y. Differential Expression and Analysis of Extrachromosomal Circular DNAs as Serum Biomarkers in Lung Adenocarcinoma. Clin. Lab. Anal. 2022, 36, e24425. [Google Scholar] [CrossRef]
- Zeng, T.; Huang, W.; Cui, L.; Zhu, P.; Lin, Q.; Zhang, W.; Li, J.; Deng, C.; Wu, Z.; Huang, Z.; et al. The Landscape of Extrachromosomal Circular DNA (eccDNA) in the Normal Hematopoiesis and Leukemia Evolution. Cell Death Discov. 2022, 8, 400. [Google Scholar] [CrossRef]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of Fetal DNA in Maternal Plasma and Serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Sin, S.T.K.; Jiang, P.; Deng, J.; Ji, L.; Cheng, S.H.; Dutta, A.; Leung, T.Y.; Chan, K.C.A.; Chiu, R.W.K.; Lo, Y.M.D. Identification and Characterization of Extrachromosomal Circular DNA in Maternal Plasma. Proc. Natl. Acad. Sci. USA 2020, 117, 1658–1665. [Google Scholar] [CrossRef]
- Kong, X.; Wan, S.; Chen, T.; Jiang, L.; Xing, Y.; Bai, Y.; Hua, Q.; Yao, X.; Zhao, Y.; Zhang, H.; et al. Increased Serum Extrachromosomal Circular DNA SORBS1circle Level Is Associated with Insulin Resistance in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. Cell Mol. Biol. Lett. 2024, 29, 12. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, S.; Zhang, F.; Wang, L. Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy? Mol. Diagn. Ther. 2018, 22, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, P.; Gagné, V.; Lajoie, M.; Spinella, J.-F.; St-Onge, P.; Sinnett, D.; Brukner, I.; Krajinovic, M. Characterization of the microDNA through the Response to Chemotherapeutics in Lymphoblastoid Cell Lines. PLoS ONE 2017, 12, e0184365. [Google Scholar] [CrossRef]
- Sin, S.T.K.; Ji, L.; Deng, J.; Jiang, P.; Cheng, S.H.; Heung, M.M.S.; Lau, C.S.L.; Leung, T.Y.; Chan, K.C.A.; Chiu, R.W.K.; et al. Characteristics of Fetal Extrachromosomal Circular DNA in Maternal Plasma: Methylation Status and Clearance. Clin. Chem. 2021, 67, 788–796. [Google Scholar] [CrossRef]
- Bøllehuus Hansen, L.; Jakobsen, S.F.; Zole, E.; Noer, J.B.; Fang, L.T.; Alizadeh, S.; Johansen, J.S.; Mohiyuddin, M.; Regenberg, B. Methods for the Purification and Detection of Single Nucleotide KRAS Mutations on Extrachromosomal Circular DNA in Human Plasma. Cancer Med. 2023, 12, 17679–17691. [Google Scholar] [CrossRef]
- Song, P.; Wu, L.R.; Yan, Y.H.; Zhang, J.X.; Chu, T.; Kwong, L.N.; Patel, A.A.; Zhang, D.Y. Limitations and Opportunities of Technologies for the Analysis of Cell-Free DNA in Cancer Diagnostics. Nat. Biomed. Eng. 2022, 6, 232–245. [Google Scholar] [CrossRef]
- Shoura, M.J.; Gabdank, I.; Hansen, L.; Merker, J.; Gotlib, J.; Levene, S.D.; Fire, A.Z. Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 Genes Genomes Genet. 2017, 7, 3295–3303. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, S.; Ge, L.; Zhang, W.; Huang, J.; Sun, W. Extrachromosomal Circular DNA: Category, Biogenesis, Recognition, and Functions. Front. Vet. Sci. 2021, 8, 693641. [Google Scholar] [CrossRef]
- Zhang, P.; Peng, H.; Llauro, C.; Bucher, E.; Mirouze, M. Ecc_finder: A Robust and Accurate Tool for Detecting Extrachromosomal Circular DNA From Sequencing Data. Front. Plant Sci. 2021, 12, 743742. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, E.; Fan, X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules 2024, 14, 488. https://doi.org/10.3390/biom14040488
Deng E, Fan X. Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules. 2024; 14(4):488. https://doi.org/10.3390/biom14040488
Chicago/Turabian StyleDeng, Enze, and Xiaoying Fan. 2024. "Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer" Biomolecules 14, no. 4: 488. https://doi.org/10.3390/biom14040488
APA StyleDeng, E., & Fan, X. (2024). Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer. Biomolecules, 14(4), 488. https://doi.org/10.3390/biom14040488