Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animal Collection and Breeding Care
2.3. Experimental Design
2.4. Coelomic Fluid (CF) and Cell Sampling
2.5. Egg Collection
2.6. pH and Osmolarity Evaluation in the Coelomic Fluid (CF)
2.7. Coelomic Fluid (CF) Biochemical Analyses
2.8. Coelomocyte Count
2.9. Egg Count and Viability
2.10. Mitochondrial Membrane Potential (MMP)
2.11. Intracellular Hydrogen Peroxide (H2O2) Content
2.12. Intracellular pH (pHi)
2.13. Intracellular Total Antioxidant Capacity (TAC)
2.14. Intracellular Reactive Nitrogen Species (RNS)
2.15. Statistical Analysis
3. Results
3.1. Coelomic Fluid (CF) Parameters
3.2. Coelomocytes and Eggs Count
3.3. Coelomic Fluid (CF) Biochemical Analysis
3.4. Eggs’ Viability
3.5. Mitochondrial Membrane Potential (MMP) in Eggs and Coelomocytes
3.6. Hydrogen Peroxide (H2O2) Content in Eggs and Coelomocytes
3.7. Intracellular pH (pHi) in Eggs and Coelomocytes
3.8. Reactive Nitrogen Species (RNS) and Total Antioxidant Capacity (TAC) in Coelomocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seney, E.E.; Rowland, M.J.; Lowery, R.A.; Griffis, R.B.; McClure, M.M. Climate change, marine environments, and the US Endangered species act. Conserv. Biol. 2013, 27, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.P.; Barnes, P.W. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. Sci. Total Environ. 2019, 682, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Harley, C.D.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.; Thornber, C.S.; Rodriguez, L.F.; Tomanek, L.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefort, S.; Aumont, O.; Bopp, L.; Arsouze, T.; Gehlen, M.; Maury, O. Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Glob. Chang. Biol. 2015, 21, 154–164. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Impact on human health of climate changes. Eur. J. Intern. Med. 2015, 26, 1–5. [Google Scholar] [CrossRef]
- Morris, P.J.; Swindles, G.T.; Valdes, P.J.; Ivanovic, R.F.; Gregoire, L.J.; Smith, M.W.; Tarasov, L.; Haywood, A.M.; Bacon, K.L. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl. Acad. Sci. USA 2018, 115, 4851–4856. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 30 July 2023).
- Ding, J.; Zheng, D.; Sun, J.; Hu, F.; Yu, Y.; Zhao, C.; Chang, Y. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 2020, 519, 734873. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Farrell, A.P. Ecology. Physiology and climate change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef]
- Little, A.G.; Seebacher, F. The evolution of endothermy is explained by thyroid hormone-mediated responses to cold in early vertebrates. J. Exp. Biol. 2014, 217, 1642–1648. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.L.; Somero, G.N. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J. Exp. Biol. 2012, 215, 4267–4277. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, J.M. Sea urchin life history strategies. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 15–23. [Google Scholar]
- Dworjanyn, S.A.; Byrne, M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc. Biol. Sci. 2018, 285, 20172684. [Google Scholar] [CrossRef] [Green Version]
- Alix, M.; Kjesbu, O.S.; Anderson, K.C. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 2020, 97, 607–632. [Google Scholar] [CrossRef]
- Boni, R.; Gallo, A.; Montanino, M.; Macina, A.; Tosti, E. Dynamic changes in the sperm quality of Mytilus galloprovincialis under continuous thermal stress. Mol. Reprod. Dev. 2016, 83, 162–173. [Google Scholar] [CrossRef]
- Rivera-Ingraham, G.A.; Lignot, J.H. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. J. Exp. Biol. 2017, 220, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Inguglia, L.; Chiaramonte, M.; Arizza, V.; Turiák, L.; Vékey, K.; Drahos, L.; Pitonzo, R.; Avellone, G.; Di Stefano, V. Changes in the proteome of sea urchin Paracentrotus lividus coelomocytes in response to LPS injection into the body cavity. PLoS ONE 2020, 15, e0228893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.C.; Arizza, V.; Barela Hudgell, M.A.; Barone, G.; Bodnar, A.G.; Buckley, K.M.; Cunsolo, V.; Dheilly, N.M.; Franchi, N.; Fugmann, S.D. Echinodermata: The complex immune system in echinoderms. In Advances in Comparative; Springer: Berlin/Heidelberg, Germany, 2018; pp. 409–501. [Google Scholar] [CrossRef]
- Arizza, V.; Vazzana, M.; Schillaci, D.; Russo, D.; Giaramita, F.T.; Parrinello, N. Gender differences in the immune system activities of sea urchin Paracentrotus lividus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 164, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Murano, C.; Gallo, A.; Nocerino, A.; Macina, A.; Cecchini Gualandi, S.; Boni, R. Short-Term Thermal Stress Affects Immune Cell Features in the Sea Urchin Paracentrotus lividus. Animals 2023, 13, 1954. [Google Scholar] [CrossRef]
- Pinsino, A.; Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 2015, 49, 198–205. [Google Scholar] [CrossRef]
- Yeruham, E.; Abelson, A.; Rilov, G.; Ezra, D.B.; Shpigel, M. Energy budget of cultured Paracentrotus lividus under different temperatures. Aquaculture 2019, 501, 7–13. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Verlaque, M. Ecology of Paracentrotus lividus. Dev. Aquac. Fish. Sci. 2001, 32, 177–216. [Google Scholar]
- Ouréns, R.; Fernández, L.; Freire, J. Geographic, population, and seasonal patterns in the reproductive parameters of the sea urchin Paracentrotus lividus. Mar. Biol. 2011, 158, 793–804. [Google Scholar] [CrossRef]
- Brundu, G.; Cannavacciuolo, A.; Nannini, M.; Somma, E.; Munari, M.; Zupo, V.; Farina, S. Development of an efficient, noninvasive method for identifying gender year-round in the sea urchin Paracentrotus lividus. Aquaculture 2023, 564, 739082. [Google Scholar] [CrossRef]
- González-Irusta, J.; De Cerio, F.G.; Canteras, J. Reproductive cycle of the sea urchin Paracentrotus lividus in the Cantabrian Sea (northern Spain): Environmental effects. J. Mar. Biol. 2010, 90, 699–709. [Google Scholar] [CrossRef]
- Arafa, S.; Sadok, S.; El Abed, A. Variation in nitrogenous compounds and gonad index in fed and starved sea urchins (Paracentrotus lividus) during live storage. Aquaculture 2006, 257, 525–533. [Google Scholar] [CrossRef]
- Murano, C.; Bergami, E.; Liberatori, G.; Palumbo, A.; Corsi, I. Interplay between nanoplastics and the immune system of the mediterranean sea urchin Paracentrotus lividus. Front. Mar. Sci. 2021, 8, 647394. [Google Scholar] [CrossRef]
- Murano, C.; Nonnis, S.; Scalvini, F.G.; Maffioli, E.; Corsi, I.; Tedeschi, G.; Palumbo, A. Response to microplastic exposure: An exploration into the sea urchin immune cell proteome. Environ. Pollut. 2023, 320, 121062. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Quade, M.J.; Roth, J.A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 1997, 58, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Ross, N.W.; Firth, K.J.; Wang, A.; Burka, J.F.; Johnson, S.C. Changes in hydrolytic enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aquat. Org. 2000, 41, 43–51. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gallo, A.; Esposito, M.C.; Boni, R.; Tosti, E. Oocyte quality assessment in marine invertebrates: A novel approach by fluorescence spectroscopy. Biol. Res. 2022, 55, 34. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Boni, R.; Buttino, I.; Tosti, E. Spermiotoxicity of nickel nanoparticles in the marine invertebrate Ciona intestinalis (ascidians). Nanotoxicology 2016, 10, 1096–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, A.; Menezo, Y.; Dale, B.; Coppola, G.; Dattilo, M.; Tosti, E.; Boni, R. Metabolic enhancers supporting 1-carbon cycle affect sperm functionality: An in vitro comparative study. Sci. Rep. 2018, 8, 11769. [Google Scholar] [CrossRef] [Green Version]
- Murano, C.; Donnarumma, V.; Corsi, I.; Casotti, R.; Palumbo, A. Impact of Microbial Colonization of Polystyrene Microbeads on the Toxicological Responses in the Sea Urchin Paracentrotus lividus. Environ. Sci. Technol. 2021, 55, 7990–8000. [Google Scholar] [CrossRef]
- Murano, C.; Agnisola, C.; Caramiello, D.; Castellano, I.; Casotti, R.; Corsi, I.; Palumbo, A. How sea urchins face microplastics: Uptake, tissue distribution and immune system response. Environ. Pollut. 2020, 264, 114685. [Google Scholar] [CrossRef]
- Abuoghaba, A.A.; Ezzat, W.; Rizk, A.M.; Qurtam, A.A.; El-Sayed, O.A. Egg production, fertility, hatchability and immune responses of some chicken strains under high ambient temperatures. J. Anim. Physiol. Anim. Nutr. 2021, 105, 725–730. [Google Scholar] [CrossRef]
- Al-Zghoul, M.B.; Mohammad Saleh, K.M. Effects of thermal manipulation of eggs on the response of jejunal mucosae to posthatch chronic heat stress in broiler chickens. Poult. Sci. 2020, 99, 2727–2735. [Google Scholar] [CrossRef]
- Stickle, W.; Diehl, W. Effects of salinity on echinoderms. In Echinoderm Studies 2; Jaungoux, M., Lawrence, J.M., Eds.; Balkema Rotterdam: Rotterdam, The Netherlands, 1987; Volume 2, pp. 235–285. [Google Scholar]
- Shick, J.M. Respiratory gas exchange in echinoderms. In Echinoderm Studies 1 (1983); Jaungoux, M., Lawrence, J.M., Eds.; CRC Press: Rotterdam, The Netherlands, 2020; pp. 67–110. [Google Scholar]
- Gallo, A.; Boni, R.; Buia, M.C.; Monfrecola, V.; Esposito, M.C.; Tosti, E. Ocean acidification impact on ascidian Ciona robusta spermatozoa: New evidence for stress resilience. Sci. Total Environ. 2019, 697, 134100. [Google Scholar] [CrossRef]
- Gallo, A.; Esposito, M.C.; Cuccaro, A.; Buia, M.C.; Tarallo, A.; Monfrecola, V.; Tosti, E.; Boni, R. Adult exposure to acidified seawater influences sperm physiology in Mytilus galloprovincialis: Laboratory and in situ transplant experiments. Environ. Pollut. 2020, 265, 115063. [Google Scholar] [CrossRef]
- Matranga, V.; Toia, G.; Bonaventura, R.; Müller, W.E. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 2000, 5, 113–120. [Google Scholar] [CrossRef]
- Brothers, C.; Harianto, J.; McClintock, J.; Byrne, M. Sea urchins in a high-CO2 world: The influence of acclimation on the immune response to ocean warming and acidification. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161501. [Google Scholar] [CrossRef]
- Regoli, F.; Frenzilli, G.; Bocchetti, R.; Annarumma, F.; Scarcelli, V.; Fattorini, D.; Nigro, M. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. Aquat. Toxicol. 2004, 68, 167–178. [Google Scholar] [CrossRef]
- Goh, B.P.L.; Lai, C. Establishing the thermal threshold of the tropical mussel Perna viridis in the face of global warming. Mar. Pollut. Bull. 2014, 85, 325–331. [Google Scholar] [CrossRef]
- Griffin, S.P.; Bhagooli, R. Measuring antioxidant potential in corals using the FRAP assay. J. Exp. Mar. Biol. Ecol. 2004, 302, 201–211. [Google Scholar] [CrossRef]
- Dong, X.; Yang, Z.; Liu, Z.; Wang, X.; Yu, H.; Peng, C.; Hou, X.; Lu, W.; Xing, Q.; Hu, J. Metabonomic Analysis Provides New Insights into the Response of Zhikong Scallop (Chlamys farreri) to Heat Stress by Improving Energy Metabolism and Antioxidant Capacity. Antioxidants 2022, 11, 1084. [Google Scholar] [CrossRef]
- Chen, S.; Qu, M.; Ding, J.; Zhang, Y.; Wang, Y.; Di, Y. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus. Chemosphere 2018, 205, 286–296. [Google Scholar] [CrossRef]
- Cecchini, S.; Fazio, F. Assessment of total (anti) oxidant status in goat kids. Arch. Anim. Breed. 2021, 64, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, S.; Fazio, F. Assessment of total antioxidant capacity in serum of heathy and stressed hens. Animals 2020, 10, 2019. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.; Rahman, M.S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 2019, 86, 1444–1458. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.; Nash, S.; Hernandez, E.; Rahman, M.S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 2019, 149, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, O.; Pinsino, A.; Maffioli, E.; Smith, A.M.; Agnisola, C.; Matranga, V.; Nonnis, S.; Tedeschi, G.; Byrne, M.; Gambi, M.C. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO2 vent system. Sci. Total Environ. 2019, 672, 938–950. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic. Biol. Med. 2021, 172, 633–651. [Google Scholar] [CrossRef]
- Holmblad, T.; Söderhäll, K. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 1999, 172, 111–123. [Google Scholar] [CrossRef]
- Xing, J.; Lin, T.; Zhan, W. Variations of enzyme activities in the haemocytes of scallop Chlamys farreri after infection with the acute virus necrobiotic virus (AVNV). Fish Shellfish Immunol. 2008, 25, 847–852. [Google Scholar] [CrossRef]
- Han, Y.; Chen, L.; Zhang, Q.; Yu, D.; Yang, D.; Zhao, J. Hemocyte extracellular traps of Manila clam Ruditapes philippinarum: Production characteristics and antibacterial effects. Dev. Comp. Immunol. 2021, 116, 103953. [Google Scholar] [CrossRef]
- Cerenius, L.; Söderhäll, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 2004, 198, 116–126. [Google Scholar] [CrossRef]
- Wang, F.; Yang, H.; Gabr, H.R.; Gao, F. Immune condition of Apostichopus japonicus during aestivation. Aquaculture 2008, 285, 238–243. [Google Scholar] [CrossRef]
- Robb, C.T.; Dyrynda, E.A.; Gray, R.D.; Rossi, A.G.; Smith, V.J. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat. Commun. 2014, 5, 4627. [Google Scholar] [CrossRef] [Green Version]
- Homa, J. Earthworm coelomocyte extracellular traps: Structural and functional similarities with neutrophil NETs. Cell Tissue Res. 2018, 371, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Cecchini Gualandi, S.; Di Palma, T.; Boni, R. Serological and Uterine Biomarkers for Detecting Endometritis in Mares. Animals 2023, 13, 253. [Google Scholar] [CrossRef]
- Cerenius, L.; Söderhäll, K. Immune properties of invertebrate phenoloxidases. Dev. Comp. Immunol. 2021, 122, 104098. [Google Scholar] [CrossRef]
- Fernández-Boo, S.; Pedrosa-Oliveira, M.; Afonso, A.; Arenas, F.; Rocha, F.; Valente, L.; Costas, B. Annual assessment of the sea urchin (Paracentrotus lividus) humoral innate immune status: Tales from the north Portuguese coast. Mar. Environ. Res. 2018, 141, 128–137. [Google Scholar] [CrossRef]
- Foo, S.A.; Byrne, M. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg. Mar. Environ. Res. 2017, 128, 12–24. [Google Scholar] [CrossRef]
- Gallo, A.; Boni, R.; Tosti, E. Gamete quality in a multistressor environment. Environ. Int. 2020, 138, 105627. [Google Scholar] [CrossRef]
- Chen, L.B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 1988, 4, 155–181. [Google Scholar] [CrossRef]
- Takabayashi, A.; Kanai, M.; Kawai, Y.; Iwata, S.; Sasada, T.; Obama, K.; Taki, Y. Change in mitochondrial membrane potential in peripheral blood lymphocytes, especially in natural killer cells, is a possible marker for surgical stress on the immune system. World J. Surg. 2003, 27, 659–665. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Q.; Chen, L.; Yang, D.; Zhao, J. Mitochondria are essential for antibacterial extracellular trap formation mediated by zymosan in hemocytes of Ruditapes philippinarum. Dev. Comp. Immunol. 2021, 121, 104094. [Google Scholar] [CrossRef] [PubMed]
- Múgica, M.; Sokolova, I.; Izagirre, U.; Marigómez, I. Season-dependent effects of elevated temperature on stress biomarkers, energy metabolism and gamete development in mussels. Mar. Environ. Res. 2015, 103, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, I.M.; Frederich, M.; Bagwe, R.; Lannig, G.; Sukhotin, A.A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Coteur, G.; Warnau, M.; Jangoux, M.; Dubois, P. Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish Shellfish Immunol. 2002, 12, 187–200. [Google Scholar] [CrossRef]
- Tumminello, R.; Fuller-Espie, S. Heat stress induces ROS production and histone phosphorylation in celomocytes of Eisenia hortensis. Invertebr. Surviv. J. 2013, 10, 50–57. [Google Scholar]
- Coote, P.J.; Cole, M.B.; Jones, M.V. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J. Gen. Microbiol. 1991, 137, 1701–1708. [Google Scholar] [CrossRef] [Green Version]
- Gibbin, E.M.; Putnam, H.M.; Gates, R.D.; Nitschke, M.R.; Davy, S.K. Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar. Biol. 2015, 162, 717–723. [Google Scholar] [CrossRef]
17 °C | 23 °C | 28 °C | ||
---|---|---|---|---|
pHCF | 7.95 ± 0.05 | 7.88 ± 0.10 | 7.90 ± 0.06 | |
CF Osmolarity | mOsm | 1121 ± 3 | 1122 ± 5 | 1121 ± 5 |
Coelomocyte concentration | ×106 mL−1 | 14.8 ± 7.9 a | 24.0 ± 7.9 b | 14.0 ± 7.9 a |
Total eggs | ×103 | 387 ± 143 | 337 ± 188 | 370 ± 143 |
17 °C | 23 °C | 28 °C | |
---|---|---|---|
FRAP (μM) | 74.2 ± 15.1 a | 66.1 ± 12.1 | 58.8 ± 8.2 b |
TAC-ABTS (μM) | 93.5 ± 61.2 a | 188.2 ± 125.0 b | 148.8 ± 46.7 |
TTL (µM) | 48.2 ± 14.9 A | 52.3 ± 25.8 A | 104.9 ± 25.7 B |
NOx (μM) | 45.3 ± 16.3 | 43.0 ± 5.0 | 51.3 ± 20.5 |
MPO (OD450 nm) | 8.5 ± 3.9 a | 14.0 ± 5.3 | 15.2 ± 6.0 b |
Protease activity (%) | 4.5 ± 2.9 Aa | 10.4 ± 6.7 bC | 21.0 ± 4.5 BD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, A.; Murano, C.; Notariale, R.; Caramiello, D.; Tosti, E.; Cecchini Gualandi, S.; Boni, R. Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress. Biomolecules 2023, 13, 1216. https://doi.org/10.3390/biom13081216
Gallo A, Murano C, Notariale R, Caramiello D, Tosti E, Cecchini Gualandi S, Boni R. Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress. Biomolecules. 2023; 13(8):1216. https://doi.org/10.3390/biom13081216
Chicago/Turabian StyleGallo, Alessandra, Carola Murano, Rosaria Notariale, Davide Caramiello, Elisabetta Tosti, Stefano Cecchini Gualandi, and Raffaele Boni. 2023. "Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress" Biomolecules 13, no. 8: 1216. https://doi.org/10.3390/biom13081216
APA StyleGallo, A., Murano, C., Notariale, R., Caramiello, D., Tosti, E., Cecchini Gualandi, S., & Boni, R. (2023). Immune and Reproductive Biomarkers in Female Sea Urchins Paracentrotus lividus under Heat Stress. Biomolecules, 13(8), 1216. https://doi.org/10.3390/biom13081216