Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration
Abstract
:1. Introduction
2. CMs
3. GFs for Osteogenesis
3.1. Bone Morphogenetic Protein (BMP)-2
3.2. Platelet-Derived Growth Factor (PDGF)
3.3. Growth/Differentiation Factor-5 (GDF-5)
3.4. Stromal Cell-Derived Factor 1 (SDF-1)
3.5. Osteogenic Protein-1 (OP-1)
3.6. Fibroblast Growth Factor-18 (FGF-18)
3.7. Fibroblast Growth Factor-2 (FGF-2)
4. A Growth Factor Released from a CM
4.1. CMs with PDGF (CM/PDGF) [101]
4.2. CMs with GDF5 (CM/GDF-5) [96]
4.3. CMs with SDF-1 (CM/SDF-1) [97]
4.4. CMs with OP-1 (CM/OP-1) [98]
4.5. CMs with FGF-18 (CM/FGF-18) [99]
4.6. CMs with FGF-2 (CM/FGF-2) [100]
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided Bone Regeneration: Materials and Biological Mechanisms Revisited. Eur. J. Oral. Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.T. A Review of Guided Tissue Regeneration. Int. Dent. J. 1998, 48, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Ward, E. A Review of Tissue Engineering for Periodontal Tissue Regeneration. J. Vet. Dent. 2022, 39, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Rasperini, G.; Tavelli, L.; Barootchi, S.; McGuire, M.K.; Zucchelli, G.; Pagni, G.; Stefanini, M.; Wang, H.-L.; Giannobile, W.V. Interproximal Attachment Gain: The Challenge of Periodontal Regeneration. J. Periodontol. 2021, 92, 931–946. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Hujoel, P.; Becker, B.E.; Wohrle, P. Dental Implants in an Aged Population: Evaluation of Periodontal Health, Bone Loss, Implant Survival, and Quality of Life. Clin. Implant Dent. Relat. Res. 2016, 18, 473–479. [Google Scholar] [CrossRef]
- Agrawal, V.; Johnson, S.A.; Reing, J.; Zhang, L.; Tottey, S.; Wang, G.; Hirschi, K.K.; Braunhut, S.; Gudas, L.J.; Badylak, S.F. Epi morphic Regeneration Approach to Tissue Replacement in Adult Mammals. Proc. Natl. Acad. Sci. USA 2010, 107, 3351–3355. [Google Scholar] [CrossRef]
- Bakhshandeh, B.; Zarrintaj, P.; Oftadeh, M.O.; Keramati, F.; Fouladiha, H.; Sohrabi-Jahromi, S.; Ziraksaz, Z. Tissue Engineering; Strategies, Tissues, and Biomaterials. Biotechnol. Genet. Eng. Rev. 2017, 33, 144–172. [Google Scholar] [CrossRef]
- Kempen, D.H.R.; Creemers, L.B.; Alblas, J.; Lu, L.; Verbout, A.J.; Yaszemski, M.J.; Dhert, W.J.A. Growth Factor Interactions in Bone Regeneration. Tissue Eng. Part B Rev. 2010, 16, 551–566. [Google Scholar] [CrossRef]
- Oliveira, É.R.; Nie, L.; Podstawczyk, D.; Allahbakhsh, A.; Ratnayake, J.; Brasil, D.L.; Shavandi, A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 903. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A. Platelet-Rich Plasma for Bone Healing and Regeneration. Expert Opin. Biol. Ther. 2016, 16, 213–232. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Yu, J.; Wang, J.; Zhai, P.; Chen, S.; Liu, M.; Zhou, Y. Platelet-Rich Fibrin as a Bone Graft Material in Oral and Maxillofacial Bone Regeneration: Classification and Summary for Better Application. Biomed. Res. Int. 2019, 2019, 3295756. [Google Scholar] [CrossRef]
- Leonida, A.; Favero, G.; Caccianiga, P.; Ceraulo, S.; Rodella, L.F.; Rezzani, R.; Caccianiga, G. Concentrated Growth Factors (CGF) Combined with Melatonin in Guided Bone Regeneration (GBR): A Case Report. Diagnostics 2022, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Ren, Y.; Emmert, S.; Vučković, I.; Stojanovic, S.; Najman, S.; Schnettler, R.; Barbeck, M.; Schenke-Layland, K.; Xiong, X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 3744. [Google Scholar] [CrossRef] [PubMed]
- Chvapil, M. Collagen Sponge: Theory and Practice of Medical Applications. J. Biomed. Mater. Res. 1977, 11, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Briquez, P.S.; Tsai, H.-M.; Watkins, E.A.; Hubbell, J.A. Engineered Bridge Protein with Dual Affinity for Bone Morphogenetic Protein-2 and Collagen Enhances Bone Regeneration for Spinal Fusion. Sci. Adv. 2021, 7, eabh4302. [Google Scholar] [CrossRef] [PubMed]
- Acri, T.M.; Laird, N.Z.; Jaidev, L.R.; Meyerholz, D.K.; Salem, A.K.; Shin, K. Nonviral Gene Delivery Embedded in Biomimeti cally Mineralized Matrices for Bone Tissue Engineering. Tissue Eng. Part A 2021, 27, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Gharati, G.; Shirian, S.; Sharifi, S.; Mirzaei, E.; Bakhtirimoghadam, B.; Karimi, I.; Nazari, H. Comparison Capacity of Collagen Hydrogel and Collagen/Strontium Bioglass Nanocomposite Scaffolds with and without Mesenchymal Stem Cells in Regeneration of Critical Sized Bone Defect in a Rabbit Animal Model. Biol. Trace Elem. Res. 2022, 200, 3176–3186. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, X.; Chen, J.; Lin, K. The Development of Collagen Based Composite Scaffolds for Bone Regeneration. Bioact. Mater. 2018, 3, 129–138. [Google Scholar] [CrossRef]
- Walsh, D.P.; Raftery, R.M.; Chen, G.; Heise, A.; O’Brien, F.J.; Cryan, S.-A. Rapid Healing of a Critical-Sized Bone Defect Using a Collagen-Hydroxyapatite Scaffold to Facilitate Low Dose, Combinatorial Growth Factor Delivery. J. Tissue Eng. Regen Med. 2019, 13, 1843–1853. [Google Scholar] [CrossRef]
- Sasaki, J.-I.; Abe, G.L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier Membranes for Tissue Regeneration in Dentistry. Biomater. Investig. Dent. 2021, 8, 54–63. [Google Scholar] [CrossRef]
- Bottino, M.C.; Thomas, V. Membranes for Periodontal Regeneration--A Materials Perspective. Front Oral. Biol. 2015, 17, 90–100. [Google Scholar] [PubMed]
- Gelse, K.; Pöschl, E.; Aigner, T. Collagens--Structure, Function, and Biosynthesis. Adv. Drug. Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for Bone Tissue Regeneration. Acta Biomater. 2012, 8, 3191–3200. [Google Scholar] [CrossRef]
- Greiner, J.F.; Gottschalk, M.; Fokin, N.; Büker, B.; Kaltschmidt, B.P.; Dreyer, A.; Vordemvenne, T.; Kaltschmidt, C.; Hütten, A.; Kaltschmidt, B. Natural and Synthetic Nanopores Directing Osteogenic Differentiation of Human Stem Cells. Nanomedicine 2019, 17, 319–328. [Google Scholar] [CrossRef]
- Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and Bone Regeneration. Bone Res. 2015, 3, 15029. [Google Scholar] [CrossRef]
- Mendonça, G.; Mendonça, D.B.S.; Simões, L.G.P.; Araújo, A.L.; Leite, E.R.; Duarte, W.R.; Aragão, F.J.L.; Cooper, L.F. The Effects of Implant Surface Nanoscale Features on Osteoblast-Specific Gene Expression. Biomaterials 2009, 30, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Vordemvenne, T.; Wähnert, D.; Koettnitz, J.; Merten, M.; Fokin, N.; Becker, A.; Büker, B.; Vogel, A.; Kronenberg, D.; Stange, R.; et al. Bone Regeneration: A Novel Osteoinductive Function of Spongostan by the Interplay between Its Nano- and Microtopography. Cells 2020, 9, 654. [Google Scholar] [CrossRef]
- Wähnert, D.; Koettnitz, J.; Merten, M.; Kronenberg, D.; Stange, R.; Greiner, J.F.W.; Kaltschmidt, C.; Vordemvenne, T.; Kalt schmidt, B. SpongostanTM Leads to Increased Regeneration of a Rat Calvarial Critical Size Defect Compared to NanoBone® and Actifuse. Materials 2021, 14, 1961. [Google Scholar] [CrossRef]
- Aprile, P.; Letourneur, D.; Simon-Yarza, T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv. Healthc. Mater. 2020, 9, e2000707. [Google Scholar] [CrossRef]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef]
- Khorsand, B.; Elangovan, S.; Hong, L.; Kormann, M.S.D.; Salem, A.K. A Bioactive Collagen Membrane That Enhances Bone Regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.M.D.; Sartoretto, S.C.; Duarte, I.M.; Resende, R.F.d.B.; Neves Novellino Alves, A.T.; Mourão, C.F.d.A.B.; Calasans-Maia, J.; Montemezzi, P.; Tristão, G.C.; Calasans-Maia, M.D. In Vivo Comparative Evaluation of Biocompatibility and Biodegradation of Bovine and Porcine Collagen Membranes. Membranes 2020, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Annen, B.M.; Ramel, C.F.; Hämmerle, C.H.; Jung, R.E. Use of a New Cross-Linked Collagen Membrane for the Treatment of Peri-Implant Dehiscence Defects: A Randomised Controlled Double-Blinded Clinical Trial. Eur. J. Oral. Implantol. 2011, 4, 87–100. [Google Scholar] [PubMed]
- Wessing, B.; Lettner, S.; Zechner, W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int. J. Oral. Maxillofac. Implants 2018, 33, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Bunyaratavej, P.; Wang, H.L. Collagen Membranes: A Review. J. Periodontol. 2001, 72, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Urban, I.A.; Nagursky, H.; Lozada, J.L.; Nagy, K. Horizontal Ridge Augmentation with a Collagen Membrane and a Combi nation of Particulated Autogenous Bone and Anorganic Bovine Bone-Derived Mineral: A Prospective Case Series in 25 Patients. Int. J. Periodontics Restor. Dent 2013, 33, 299–307. [Google Scholar] [CrossRef]
- Hockers, T.; Abensur, D.; Valentini, P.; Legrand, R.; Hammerle, C.H. The Combined Use of Bioresorbable Membranes and Xenografts or Autografts in the Treatment of Bone Defects around Implants. A Study in Beagle Dogs. Clin. Oral. Implants Res. 1999, 10, 487–498. [Google Scholar] [CrossRef]
- Speer, D.P.; Chvapil, M.; Eskelson, C.D.; Ulreich, J. Biological Effects of Residual Glutaraldehyde in Glutaraldehyde-Tanned Collagen Biomaterials. J. Biomed. Mater. Res. 1980, 14, 753–764. [Google Scholar] [CrossRef]
- Speer, D.P.; Chvapil, M.; Volz, R.G.; Holmes, M.D. Enhancement of Healing in Osteochondral Defects by Collagen Sponge Implants. Clin. Orthop. Relat. Res. 1979, 144, 326–335. [Google Scholar] [CrossRef]
- Shahlaie, K.; Kim, K.D. Occipitocervical Fusion Using Recombinant Human Bone Morphogenetic Protein-2: Adverse Effects Due to Tissue Swelling and Seroma. Spine (Phila Pa 1976) 2008, 33, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Rihn, J.A.; Makda, J.; Hong, J.; Patel, R.; Hilibrand, A.S.; Anderson, D.G.; Vaccaro, A.R.; Albert, T.J. The Use of RhBMP-2 in Single-Level Transforaminal Lumbar Interbody Fusion: A Clinical and Radiographic Analysis. Eur. Spine J. 2009, 18, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, H. High-Dose Bone Morphogenetic Protein-Induced Ectopic Abdomen Bone Growth. Spine J. 2010, 10, e1–e4. [Google Scholar] [CrossRef]
- Epstein, N.E. Basic Science and Spine Literature Document Bone Morphogenetic Protein Increases Cancer Risk. Surg. Neurol. Int. 2014, 5, S552–S560. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Feng, J.; Wismeijer, D.; Wu, G.; Hunziker, E.B. Hyaluronic Acid Promotes the Osteogenesis of BMP-2 in an Absorb able Collagen Sponge. Polymers 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-C.; Bae, E.-B.; Kim, S.-E.; Kim, S.-Y.; Choi, K.-H.; Choi, J.-W.; Bae, J.-H.; Ryu, J.-J.; Huh, J.-B. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration. Materials 2016, 9, 954. [Google Scholar] [CrossRef]
- Haidar, Z.S.; Hamdy, R.C.; Tabrizian, M. Delivery of Recombinant Bone Morphogenetic Proteins for Bone Regeneration and Repair. Part A: Current Challenges in BMP Delivery. Biotechnol. Lett. 2009, 31, 1817–1824. [Google Scholar] [CrossRef]
- El Bialy, I.; Jiskoot, W.; Reza Nejadnik, M. Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharm. Res. 2017, 34, 1152–1170. [Google Scholar] [CrossRef]
- Antoniades, H.N. PDGF: A Multifunctional Growth Factor. Baillieres. Clin. Endocrinol. Metab. 1991, 5, 595–613. [Google Scholar] [CrossRef]
- Kaigler, D.; Avila, G.; Wisner-Lynch, L.; Nevins, M.L.; Nevins, M.; Rasperini, G.; Lynch, S.E.; Giannobile, W.V. Platelet-Derived Growth Factor Applications in Periodontal and Peri-Implant Bone Regeneration. Expert Opin. Biol. Ther. 2011, 11, 375–385. [Google Scholar] [CrossRef]
- Graham, S.; Leonidou, A.; Lester, M.; Heliotis, M.; Mantalaris, A.; Tsiridis, E. Investigating the Role of PDGF as a Potential Drug Therapy in Bone Formation and Fracture Healing. Expert Opin. Investig. Drugs 2009, 18, 1633–1654. [Google Scholar] [CrossRef] [PubMed]
- Hollinger, J.O.; Hart, C.E.; Hirsch, S.N.; Lynch, S.; Friedlaender, G.E. Recombinant Human Platelet-Derived Growth Factor: Biology and Clinical Applications. J. Bone Jt. Surg. Am. 2008, 90 (Suppl. S1), 48–54. [Google Scholar] [CrossRef]
- De Angelis, N.; Scivetti, M. Lateral Ridge Augmentation Using an Equine Flex Bone Block Infused with Recombinant Human Platelet-Derived Growth Factor BB: A Clinical and Histologic Study. Int. J. Periodontics Restor. Dent. 2011, 31, 383–388. [Google Scholar]
- Zhang, M.; Yu, W.; Niibe, K.; Zhang, W.; Egusa, H.; Tang, T.; Jiang, X. The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration. Stem. Cells Int. 2018, 2018, 3272098. [Google Scholar] [CrossRef] [PubMed]
- Hötten, G.; Neidhardt, H.; Jacobowsky, B.; Pohl, J. Cloning and Expression of Recombinant Human Growth/Differentiation Factor 5. Biochem. Biophys. Res. Commun. 1994, 204, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, X. Growth Differentiation Factor 5 Regulation in Bone Regeneration. Curr. Pharm. Des. 2013, 19, 3364–3373. [Google Scholar] [CrossRef] [PubMed]
- Dines, J.S.; Weber, L.; Razzano, P.; Prajapati, R.; Timmer, M.; Bowman, S.; Bonasser, L.; Dines, D.M.; Grande, D.P. The Effect of Growth Differentiation Factor-5-Coated Sutures on Tendon Repair in a Rat Model. J. Shoulder Elbow Surg. 2007, 16, S215–S221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, Y.; Wang, A.; Zhu, Z.; Li, Y.; Zhu, C.; Che, Z.; Liu, T.; Liu, H.; Huang, L. Application of BMP in Bone Tissue Engineering. Front Bioeng. Biotechnol. 2022, 10, 810880. [Google Scholar] [CrossRef]
- Buxton, P.; Edwards, C.; Archer, C.W.; Francis-West, P. Growth/Differentiation Factor-5 (GDF-5) and Skeletal Development. J. Bone Jt. Surg. Am. 2001, 83 (Suppl. S1), S23–S30. [Google Scholar] [CrossRef]
- Schwarz, F.; Ferrari, D.; Sager, M.; Herten, M.; Hartig, B.; Becker, J. Guided Bone Regeneration Using RhGDF-5- and RhBMP- 2-Coated Natural Bone Mineral in Rat Calvarial Defects. Clin. Oral. Implants Res. 2009, 20, 1219–1230. [Google Scholar] [CrossRef]
- Kleinschmidt, K.; Ploeger, F.; Nickel, J.; Glockenmeier, J.; Kunz, P.; Richter, W. Enhanced Reconstruction of Long Bone Archi tecture by a Growth Factor Mutant Combining Positive Features of GDF-5 and BMP-2. Biomaterials 2013, 34, 5926–5936. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yamamoto, M.; Tamura, M.; Izumi, Y. Effects of Growth/Differentiation Factor-5 on Human Periodontal Liga ment Cells. J. Periodontal. Res. 2003, 38, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.P.; Weinbach, C.; Hustert, E.; Al-Nawas, B.; Wagner, W. GDF-5 and BMP-2 Regulate Bone Cell Differentiation by Gene Expression of MSX1, MSX2, Dlx5, and Runx2 and Influence OCN Gene Expression in Vitro. Int. J. Periodontics Restor. Dent. 2012, 32, 285–293. [Google Scholar]
- Koch, F.P.; Becker, J.; Terheyden, H.; Capsius, B.; Wagner, W. A Prospective, Randomized Pilot Study on the Safety and Effi cacy of Recombinant Human Growth and Differentiation Factor-5 Coated onto β-Tricalcium Phosphate for Sinus Lift Augmentation. Clin. Oral. Implants Res. 2010, 21, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Weng, D.; Poehling, S.; Pippig, S.; Bell, M.; Richter, E.-J.; Zuhr, O.; Hürzeler, M.B. The Effects of Recombinant Human Growth/Differentiation Factor-5 (RhGDF-5) on Bone Regeneration around Titanium Dental Implants in Barrier Membrane-Protected Defects: A Pilot Study in the Mandible of Beagle Dogs. Int. J. Oral. Maxillofac. Implants 2009, 24, 31–37. [Google Scholar]
- Qin, H.; Zhao, X.; Hu, Y.J.; Wang, S.; Ma, Y.; He, S.; Shen, K.; Wan, H.; Cui, Z.; Yu, B. Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis. Biomed. Res. Int. 2021, 2021, 8852574. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Li, J.; Zhong, L.; Chen, X.; Chen, S. SDF-1 Mediates Mesenchymal Stem Cell Recruitment and Migration via the SDF-1/CXCR4 Axis in Bone Defect. J. Bone Miner. Metab. 2021, 39, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xue, F.; Guan, J.; Zhang, Z.; Yin, J.; Kang, Q. Stromal-Cell-Derived Factor (SDF) 1-Alpha Overexpression Promotes Bone Regeneration by Osteogenesis and Angiogenesis in Osteonecrosis of the Femoral Head. Cell Physiol. Biochem. 2018, 46, 2561–2575. [Google Scholar] [CrossRef]
- Chen, G.; Lv, Y. Matrix Elasticity-Modified Scaffold Loaded with SDF-1α Improves the in Situ Regeneration of Segmental Bone Defect in Rabbit Radius. Sci. Rep. 2017, 7, 1672. [Google Scholar] [CrossRef]
- Shafiq, M.; Kong, D.; Kim, S.H. SDF-1α Peptide Tethered Polyester Facilitates Tissue Repair by Endogenous Cell Mobilization and Recruitment. J. Biomed. Mater. Res. A 2017, 105, 2670–2684. [Google Scholar] [CrossRef]
- Baggiolini, M. Chemokines and Leukocyte Traffic. Nature 1998, 392, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Huang, Y.; Collin-Osdoby, P.; Osdoby, P. Stromal Cell-Derived Factor-1 (SDF-1) Recruits Osteoclast Precursors by Inducing Chemotaxis, Matrix Metalloproteinase-9 (MMP-9) Activity, and Collagen Transmigration. J. Bone Miner. Res. 2003, 18, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yang, P.; Ge, S. Stromal Cell-Derived Factor-1 Significantly Induces Proliferation, Migration, and Collagen Type I Ex pression in a Human Periodontal Ligament Stem Cell Subpopulation. J. Periodontol. 2012, 83, 379–388. [Google Scholar] [CrossRef]
- Cheifetz, S.; Li, I.W.; McCulloch, C.A.; Sampath, K.; Sodek, J. Influence of Osteogenic Protein-1 (OP-1;BMP-7) and Transform ing Growth Factor-Beta 1 on Bone Formation in Vitro. Connect. Tissue Res. 1996, 35, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Asahina, I.; Sampath, T.K.; Hauschka, P.V. Human Osteogenic Protein-1 Induces Chondroblastic, Osteoblastic, and/or Adipo cytic Differentiation of Clonal Murine Target Cells. Exp. Cell Res. 1996, 222, 38–47. [Google Scholar] [CrossRef]
- Tou, L.; Quibria, N.; Alexander, J.M. Transcriptional Regulation of the Human Runx2/Cbfa1 Gene Promoter by Bone Morphogenetic Protein-7. Mol. Cell Endocrinol. 2003, 205, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, K.; Souchelnytskyi, S.; Itoh, S.; Nakao, A.; Sampath, K.; Heldin, C.H.; ten Dijke, P. Intracellular Signaling of Osteogenic Protein-1 through Smad5 Activation. J. Cell Physiol. 1998, 177, 355–363. [Google Scholar] [CrossRef]
- Qian, Y.; Yao, G.; Lin, Z.; Chen, J.; Fan, Y.; Davey, T.; Xu, J.; Zheng, M. Natural Bone Collagen Scaffold Combined with OP-1 for Bone Formation Induction in Vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 778–788. [Google Scholar] [CrossRef]
- Cook, S.D.; Salkeld, S.L.; Rueger, D.C. Evaluation of Recombinant Human Osteogenic Protein-1 (RhOP-1) Placed with Dental Implants in Fresh Extraction Sites. J. Oral. Implantol. 1995, 21, 281–289. [Google Scholar]
- van den Bergh, J.P.; ten Bruggenkate, C.M.; Groeneveld, H.H.; Burger, E.H.; Tuinzing, D.B. Recombinant Human Bone Mor phogenetic Protein-7 in Maxillary Sinus Floor Elevation Surgery in 3 Patients Compared to Autogenous Bone Grafts. A Clinical Pilot Study. J. Clin. Periodontol. 2000, 27, 627–636. [Google Scholar] [CrossRef]
- Ohbayashi, N.; Hoshikawa, M.; Kimura, S.; Yamasaki, M.; Fukui, S.; Itoh, N. Structure and Expression of the MRNA Encoding a Novel Fibroblast Growth Factor, FGF-18. J. Biol. Chem. 1998, 273, 18161–18164. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.-H.; Shin, U.S.; Kim, H.-W. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. J. Tissue Eng. 2010, 2010, 218142. [Google Scholar] [CrossRef]
- Ohbayashi, N.; Shibayama, M.; Kurotaki, Y.; Imanishi, M.; Fujimori, T.; Itoh, N.; Takada, S. FGF18 Is Required for Normal Cell Proliferation and Differentiation during Osteogenesis and Chondrogenesis. Genes. Dev. 2002, 16, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Qiu, W.R.; Wang, Y.P.; Hill, D.; Ring, B.D.; Scully, S.; Bolon, B.; DeRose, M.; Luethy, R.; Simonet, W.S.; et al. FGF-18, a Novel Member of the Fibroblast Growth Factor Family, Stimulates Hepatic and Intestinal Proliferation. Mol. Cell Biol. 1998, 18, 6063–6074. [Google Scholar] [CrossRef]
- Hamidouche, Z.; Fromigué, O.; Nuber, U.; Vaudin, P.; Pages, J.-C.; Ebert, R.; Jakob, F.; Miraoui, H.; Marie, P.J. Autocrine Fi broblast Growth Factor 18 Mediates Dexamethasone-Induced Osteogenic Differentiation of Murine Mesenchymal Stem Cells. J. Cell Physiol. 2010, 224, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, J.; Colvin, J.S.; Ornitz, D.M. Coordination of Chondrogenesis and Osteogenesis by Fibroblast Growth Factor 18. Genes Dev. 2002, 16, 859–869. [Google Scholar] [CrossRef]
- Jeon, E.; Yun, Y.-R.; Kang, W.; Lee, S.; Koh, Y.-H.; Kim, H.-W.; Suh, C.K.; Jang, J.-H. Investigating the Role of FGF18 in the Cultivation and Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE 2012, 7, e43982. [Google Scholar] [CrossRef]
- Novais, A.; Chatzopoulou, E.; Chaussain, C.; Gorin, C. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells 2021, 10, 932. [Google Scholar] [CrossRef]
- Horton, E.R.; Vallmajo-Martin, Q.; Martin, I.; Snedeker, J.G.; Ehrbar, M.; Blache, U. Extracellular Matrix Production by Mesen chymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv. Healthc. Mater. 2020, 9, e1901669. [Google Scholar] [CrossRef]
- Montero, A.; Okada, Y.; Tomita, M.; Ito, M.; Tsurukami, H.; Nakamura, T.; Doetschman, T.; Coffin, J.D.; Hurley, M.M. Disrup tion of the Fibroblast Growth Factor-2 Gene Results in Decreased Bone Mass and Bone Formation. J. Clin. Investig. 2000, 105, 1085–1093. [Google Scholar] [CrossRef]
- Fei, Y.; Xiao, L.; Doetschman, T.; Coffin, D.J.; Hurley, M.M. Fibroblast Growth Factor 2 Stimulation of Osteoblast Differentiation and Bone Formation Is Mediated by Modulation of the Wnt Signaling Pathway. J. Biol. Chem. 2011, 286, 40575–40583. [Google Scholar] [CrossRef] [PubMed]
- Shimoaka, T.; Ogasawara, T.; Yonamine, A.; Chikazu, D.; Kawano, H.; Nakamura, K.; Itoh, N.; Kawaguchi, H. Regulation of Osteoblast, Chondrocyte, and Osteoclast Functions by Fibroblast Growth Factor (FGF)-18 in Comparison with FGF-2 and FGF-10. J. Biol. Chem. 2002, 277, 7493–7500. [Google Scholar] [CrossRef]
- Kitamura, M.; Akamatsu, M.; Machigashira, M.; Hara, Y.; Sakagami, R.; Hirofuji, T.; Hamachi, T.; Maeda, K.; Yokota, M.; Kido, J.; et al. FGF-2 Stimulates Periodontal Regeneration: Results of a Multi-Center Randomized Clinical Trial. J. Dent. Res. 2011, 90, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, H.; Oka, H.; Jingushi, S.; Izumi, T.; Fukunaga, M.; Sato, K.; Matsushita, T.; Nakamura, K. TESK Group A Local Application of Recombinant Human Fibroblast Growth Factor 2 for Tibial Shaft Fractures: A Randomized, Placebo-Controlled Trial. J. Bone Miner. Res. 2010, 25, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Yamano, S.; Haku, K.; Yamanaka, T.; Dai, J.; Takayama, T.; Shohara, R.; Tachi, K.; Ishioka, M.; Hanatani, S.; Karunagaran, S.; et al. The Effect of a Bioactive Collagen Membrane Releasing PDGF or GDF-5 on Bone Regeneration. Biomaterials 2014, 35, 2446–2453. [Google Scholar] [CrossRef]
- Takayama, T.; Dai, J.; Tachi, K.; Shohara, R.; Kasai, H.; Imamura, K.; Yamano, S. The Potential of Stromal Cell-Derived Factor- 1 Delivery Using a Collagen Membrane for Bone Regeneration. J. Biomater. Appl. 2017, 31, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Takayama, T.; Yamamoto, T.; Ozawa, Y.; Nagao, M.; Tanabe, N.; Nakajima, A.; Suzuki, N.; Maeno, M.; Yamano, S.; et al. A Collagen Membrane Containing Osteogenic Protein-1 Facilitates Bone Regeneration in a Rat Mandibular Bone Defect. Arch. Oral. Biol. 2017, 84, 19–28. [Google Scholar] [CrossRef]
- Imamura, K.; Tachi, K.; Takayama, T.; Shohara, R.; Kasai, H.; Dai, J.; Yamano, S. Released Fibroblast Growth Factor18 from a Collagen Membrane Induces Osteoblastic Activity Involved with Downregulation of MiR-133a and MiR-135a. J. Biomater. Appl. 2018, 32, 1382–1391. [Google Scholar] [CrossRef]
- Furuhata, M.; Takayama, T.; Yamamoto, T.; Ozawa, Y.; Senoo, M.; Ozaki, M.; Yamano, S.; Sato, S. Real-Time Assessment of Guided Bone Regeneration in Critical Size Mandibular Bone Defects in Rats Using Collagen Membranes with Adjunct Fibroblast Growth Factor-2. J. Dent. Sci. 2021, 16, 1170–1181. [Google Scholar] [CrossRef]
- Yamano, S.; Lin, T.Y.; Dai, J.; Fabella, K.; Moursi, A.M. Bioactive collagen membrane as a carrier of sustained release of PDGF. J. Tissue Sci. Eng. 2011, 2, 110. [Google Scholar]
Study | Materials | Design | Reference | ||
---|---|---|---|---|---|
Growth Factor | Collagen Membrane | In Vitro | In Vivo | ||
Yamano et al. (2011) | PDGF | OG | (1) Cell culture (MC3T3-E1) (2) Release kinetics (3) MTT assay (4) ALP activity (5) Cell proliferation (6) Real-time RT-PCR | N/A | [101] |
Yamano et al. (2014) | PDGF GDF-5 | OG | (1) Cell culture (MC3T3-E1) (2) MTT assay (3) ALP activity (4) Cell proliferation (5) Real-time RT-PCR | Rat mandibular bone defect model (1) μCT (2) Histological analysis | [96] |
Takayama et al. (2017) | SDF-1 | OG | (1) Cell culture (MC3T3-E1) (2) Release kinetics (3) MTT assay (4) ALP activity (5) Cell proliferation (6) Real-time RT-PCR | Rat mandibular bone defect model (1) μCT (2) Histological analysis | [97] |
Ozaki et al. (2017) | OP-1 | BM | (1) Cell culture (MC3T3-E1) (2) Release kinetics (3) MTT assay | Rat mandibular bone defect model (1) μCT (2) Histological analysis | [98] |
Imamura et al. (2018) | FGF-18 PDGF | OG | (1) Cell culture (MC3T3-E1) (2) Release kinetics (3) MTT assay (4) ALP activity (5) Cell proliferation (6) Real-time RT-PCR (7) Mineralization assay | N/A | [99] |
Furuhata et al. (2021) | FGF-2 | BM | (1) Release kinetics | Rat mandibular bone defect model (1) μCT (2) Histological analysis | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayama, T.; Imamura, K.; Yamano, S. Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration. Biomolecules 2023, 13, 809. https://doi.org/10.3390/biom13050809
Takayama T, Imamura K, Yamano S. Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration. Biomolecules. 2023; 13(5):809. https://doi.org/10.3390/biom13050809
Chicago/Turabian StyleTakayama, Tadahiro, Kentaro Imamura, and Seiichi Yamano. 2023. "Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration" Biomolecules 13, no. 5: 809. https://doi.org/10.3390/biom13050809
APA StyleTakayama, T., Imamura, K., & Yamano, S. (2023). Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration. Biomolecules, 13(5), 809. https://doi.org/10.3390/biom13050809