Mechanisms Controlling the Expression and Secretion of BDNF
Abstract
1. Introduction
2. BDNF Expression
3. Regulated BDNF Secretion
4. BDNF Release during Development
5. BDNF Release from Mature Neurons in Synaptic Plasticity
6. BDNF Release from Astrocytes
7. BDNF Release from Microglia
8. Molecular Machinery Involved in BDNF Release
8.1. Trk Neurotrophin Receptors
8.2. ARMS/Kidins220
8.3. PKG
8.4. Rab3a-Rim1
8.5. Munc18
8.6. CAPS2
8.7. Synaptotagmin 4 and Synaptotagmin 6
8.8. SNARE Proteins
8.9. mGluR
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell Survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and -Independent Mechanisms. Science 1999, 286, 1358–1362. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Almeida, R.D.; Manadas, B.J.; Melo, C.V.; Gomes, J.R.; Mendes, C.S.; Grãos, M.M.; Carvalho, R.F.; Carvalho, A.P.; Duarte, C.B. Neuroprotection by BDNF against Glutamate-Induced Apoptotic Cell Death Is Mediated by ERK and PI3-Kinase Pathways. Cell Death Differ. 2005, 12, 1329–1343. [Google Scholar] [CrossRef][Green Version]
- Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M.; et al. Neuroprotective Effects of Brain-Derived Neurotrophic Factor in Rodent and Primate Models of Alzheimer’s Disease. Nat. Med. 2009, 15, 331–337. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deogracias, R.; Yazdani, M.; Dekkers, M.P.J.; Guy, J.; Ionescu, M.C.S.; Vogt, K.E.; Barde, Y.-A. Fingolimod, a Sphingosine-1 Phosphate Receptor Modulator, Increases BDNF Levels and Improves Symptoms of a Mouse Model of Rett Syndrome. Proc. Natl. Acad. Sci. USA 2012, 109, 14230–14235. [Google Scholar] [CrossRef][Green Version]
- Nomoto, H.; Takaiwa, M.; Mouri, A.; Furukawa, S. Pro-Region of Neurotrophins Determines the Processing Efficiency. Biochem. Biophys. Res. Commun. 2007, 356, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Rauskolb, S.; Polack, M.; Klose, J.; Kolbeck, R.; Korte, M.; Barde, Y.-A. Biosynthesis and Processing of Endogenous BDNF: CNS Neurons Store and Secrete BDNF, Not Pro-BDNF. Nat. Neurosci. 2008, 11, 131–133. [Google Scholar] [CrossRef]
- Lim, K.-C.; Tyler, C.M.; Lim, S.T.; Giuliano, R.; Federoff, H.J. Proteolytic Processing of ProNGF Is Necessary for Mature NGF Regulated Secretion from Neurons. Biochem. Biophys. Res. Commun. 2007, 361, 599–604. [Google Scholar] [CrossRef]
- Bruno, M.A.; Cuello, A.C. Activity-Dependent Release of Precursor Nerve Growth Factor, Conversion to Mature Nerve Growth Factor, and Its Degradation by a Protease Cascade. Proc. Natl. Acad. Sci. USA 2006, 103, 6735–6740. [Google Scholar] [CrossRef][Green Version]
- Lee, R.; Kermani, P.; Teng, K.K.; Hempstead, B.L. Regulation of Cell Survival by Secreted Proneurotrophins. Science 2001, 294, 1945–1948. [Google Scholar] [CrossRef][Green Version]
- Lu, B.; Pang, P.T.; Woo, N.H. The Yin and Yang of Neurotrophin Action. Nat. Rev. Neurosci. 2005, 6, 603–614. [Google Scholar] [CrossRef][Green Version]
- Pang, P.T.; Teng, H.K.; Zaitsev, E.; Woo, N.T.; Sakata, K.; Zhen, S.; Teng, K.K.; Yung, W.-H.; Hempstead, B.L.; Lu, B. Cleavage of ProBDNF by TPA/Plasmin Is Essential for Long-Term Hippocampal Plasticity. Science 2004, 306, 487–491. [Google Scholar] [CrossRef]
- Seidah, N.G.; Benjannet, S.; Pareek, S.; Chrétien, M.; Murphy, R.A. Cellular Processing of the Neurotrophin Precursors of NT3 and BDNF by the Mammalian Proprotein Convertases. FEBS Lett. 1996, 379, 247–250. [Google Scholar] [CrossRef][Green Version]
- Seidah, N.G.; Mowla, S.J.; Hamelin, J.; Mamarbachi, A.M.; Benjannet, S.; Touré, B.B.; Basak, A.; Munzer, J.S.; Marcinkiewicz, J.; Zhong, M.; et al. Mammalian Subtilisin/Kexin Isozyme SKI-1: A Widely Expressed Proprotein Convertase with a Unique Cleavage Specificity and Cellular Localization. Proc. Natl. Acad. Sci. USA 1999, 96, 1321–1326. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mowla, S.J.; Pareek, S.; Farhadi, H.F.; Petrecca, K.; Fawcett, J.P.; Seidah, N.G.; Morris, S.J.; Sossin, W.S.; Murphy, R.A. Differential Sorting of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in Hippocampal Neurons. J. Neurosci. 1999, 19, 2069–2080. [Google Scholar] [CrossRef][Green Version]
- Wetsel, W.C.; Rodriguiz, R.M.; Guillemot, J.; Rousselet, E.; Essalmani, R.; Kim, I.H.; Bryant, J.C.; Marcinkiewicz, J.; Desjardins, R.; Day, R.; et al. Disruption of the Expression of the Proprotein Convertase PC7 Reduces BDNF Production and Affects Learning and Memory in Mice. Proc. Natl. Acad. Sci. USA 2013, 110, 17362–17367. [Google Scholar] [CrossRef][Green Version]
- Uegaki, K.; Kumanogoh, H.; Mizui, T.; Hirokawa, T.; Ishikawa, Y.; Kojima, M. BDNF Binds Its Pro-Peptide with High Affinity and the Common Val66Met Polymorphism Attenuates the Interaction. Int. J. Mol. Sci. 2017, 18, 1042. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Ieraci, A.; Teng, H.; Dall, H.; Meng, C.-X.; Herrera, D.G.; Nykjaer, A.; Hempstead, B.L.; Lee, F.S. Sortilin Controls Intracellular Sorting of Brain-Derived Neurotrophic Factor to the Regulated Secretory Pathway. J. Neurosci. 2005, 25, 6156–6166. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lou, H.; Kim, S.-K.; Zaitsev, E.; Snell, C.R.; Lu, B.; Loh, Y.P. Sorting and Activity-Dependent Secretion of BDNF Require Interaction of a Specific Motif with the Sorting Receptor Carboxypeptidase e. Neuron 2005, 45, 245–255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Farhadi, H.F.; Mowla, S.J.; Petrecca, K.; Morris, S.J.; Seidah, N.G.; Murphy, R.A. Neurotrophin-3 Sorts to the Constitutive Secretory Pathway of Hippocampal Neurons and Is Diverted to the Regulated Secretory Pathway by Coexpression with Brain-Derived Neurotrophic Factor. J. Neurosci. 2000, 20, 4059–4068. [Google Scholar] [CrossRef][Green Version]
- Mowla, S.J.; Farhadi, H.F.; Pareek, S.; Atwal, J.K.; Morris, S.J.; Seidah, N.G.; Murphy, R.A. Biosynthesis and Post-Translational Processing of the Precursor to Brain-Derived Neurotrophic Factor. J. Biol. Chem. 2001, 276, 12660–12666. [Google Scholar] [CrossRef][Green Version]
- Lessmann, V.; Brigadski, T. Mechanisms, Locations, and Kinetics of Synaptic BDNF Secretion: An Update. Neurosci. Res. 2009, 65, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Cawley, N.X.; Loh, Y.P. A Bi-Directional Carboxypeptidase E-Driven Transport Mechanism Controls BDNF Vesicle Homeostasis in Hippocampal Neurons. Mol. Cell. Neurosci. 2008, 39, 63–73. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF Val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bath, K.G.; Lee, F.S. Variant BDNF (Val66Met) Impact on Brain Structure and Function. Cogn. Affect. Behav. Neurosci. 2006, 6, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Poo, M. Neurotrophin Regulation of Neural Circuit Development and Function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Patel, P.D.; Sant, G.; Meng, C.-X.; Teng, K.K.; Hempstead, B.L.; Lee, F.S. Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) Alters the Intracellular Trafficking and Activity-Dependent Secretion of Wild-Type BDNF in Neurosecretory Cells and Cortical Neurons. J. Neurosci. 2004, 24, 4401–4411. [Google Scholar] [CrossRef][Green Version]
- Zhou, X.-F.; Song, X.-Y.; Zhong, J.-H.; Barati, S.; Zhou, F.H.-H.; Johnson, S.M. Distribution and Localization of Pro-Brain-Derived Neurotrophic Factor-like Immunoreactivity in the Peripheral and Central Nervous System of the Adult Rat. J. Neurochem. 2004, 91, 704–715. [Google Scholar] [CrossRef]
- Yang, J.; Siao, C.-J.; Nagappan, G.; Marinic, T.; Jing, D.; McGrath, K.; Chen, Z.-Y.; Mark, W.; Tessarollo, L.; Lee, F.S.; et al. Neuronal Release of ProBDNF. Nat. Neurosci. 2009, 12, 113–115. [Google Scholar] [CrossRef][Green Version]
- Dieni, S.; Matsumoto, T.; Dekkers, M.; Rauskolb, S.; Ionescu, M.S.; Deogracias, R.; Gundelfinger, E.D.; Kojima, M.; Nestel, S.; Frotscher, M.; et al. BDNF and Its Pro-Peptide Are Stored in Presynaptic Dense Core Vesicles in Brain Neurons. J. Cell Biol. 2012, 196, 775–788. [Google Scholar] [CrossRef][Green Version]
- Arevalo, J.C.; Wu, S.H. Neurotrophin Signaling: Many Exciting Surprises! Cell. Mol. Life Sci. 2006, 63, 1523–1537. [Google Scholar] [CrossRef]
- Zagrebelsky, M.; Tacke, C.; Korte, M. BDNF Signaling during the Lifetime of Dendritic Spines. Cell Tissue Res. 2020, 382, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Tébar, A.; Dechant, G.; Barde, Y.A. Binding of Brain-Derived Neurotrophic Factor to the Nerve Growth Factor Receptor. Neuron 1990, 4, 487–492. [Google Scholar] [CrossRef]
- Ibáñez, C.F.; Simi, A. P75 Neurotrophin Receptor Signaling in Nervous System Injury and Degeneration: Paradox and Opportunity. Trends Neurosci. 2012, 35, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, L.F. Neurotrophin-Regulated Signalling Pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef][Green Version]
- Teng, K.K.; Felice, S.; Kim, T.; Hempstead, B.L. Understanding Proneurotrophin Actions: Recent Advances and Challenges. Dev. Neurobiol. 2010, 70, 350–359. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Frade, J.M.; Rodríguez-Tébar, A.; Barde, Y.A. Induction of Cell Death by Endogenous Nerve Growth Factor through Its P75 Receptor. Nature 1996, 383, 166–168. [Google Scholar] [CrossRef]
- Volosin, M.; Trotter, C.; Cragnolini, A.; Kenchappa, R.S.; Light, M.; Hempstead, B.L.; Carter, B.D.; Friedman, W.J. Induction of Proneurotrophins and Activation of P75NTR-Mediated Apoptosis via Neurotrophin Receptor-Interacting Factor in Hippocampal Neurons after Seizures. J. Neurosci. 2008, 28, 9870–9879. [Google Scholar] [CrossRef][Green Version]
- Tanaka, K.; Kelly, C.E.; Goh, K.Y.; Lim, K.B.; Ibáñez, C.F. Death Domain Signaling by Disulfide-Linked Dimers of the P75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. J. Neurosci. 2016, 36, 5587–5595. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dechant, G.; Barde, Y.-A. The Neurotrophin Receptor P75(NTR): Novel Functions and Implications for Diseases of the Nervous System. Nat. Neurosci. 2002, 5, 1131–1136. [Google Scholar] [CrossRef]
- Rösch, H.; Schweigreiter, R.; Bonhoeffer, T.; Barde, Y.-A.; Korte, M. The Neurotrophin Receptor P75NTR Modulates Long-Term Depression and Regulates the Expression of AMPA Receptor Subunits in the Hippocampus. Proc. Natl. Acad. Sci. USA 2005, 102, 7362–7367. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Harte-Hargrove, L.C.; Siao, C.-J.; Marinic, T.; Clarke, R.; Ma, Q.; Jing, D.; Lafrancois, J.J.; Bath, K.G.; Mark, W.; et al. ProBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus. Cell Rep. 2014, 7, 796–806. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mizui, T.; Ishikawa, Y.; Kumanogoh, H.; Kojima, M. Neurobiological Actions by Three Distinct Subtypes of Brain-Derived Neurotrophic Factor: Multi-Ligand Model of Growth Factor Signaling. Pharmacol. Res. 2016, 105, 93–98. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kojima, M.; Matsui, K.; Mizui, T. BDNF Pro-Peptide: Physiological Mechanisms and Implications for Depression. Cell Tissue Res. 2019, 377, 73–79. [Google Scholar] [CrossRef]
- Patnaik, A.; Zagrebelsky, M.; Korte, M.; Holz, A. Signaling via the P75 Neurotrophin Receptor Facilitates Amyloid-β-Induced Dendritic Spine Pathology. Sci. Rep. 2020, 10, 13322. [Google Scholar] [CrossRef] [PubMed]
- Vicario-Abejón, C.; Collin, C.; McKay, R.D.; Segal, M. Neurotrophins Induce Formation of Functional Excitatory and Inhibitory Synapses between Cultured Hippocampal Neurons. J. Neurosci. 1998, 18, 7256–7271. [Google Scholar] [CrossRef][Green Version]
- Bibel, M.; Barde, Y.A. Neurotrophins: Key Regulators of Cell Fate and Cell Shape in the Vertebrate Nervous System. Genes Dev. 2000, 14, 2919–2937. [Google Scholar] [CrossRef][Green Version]
- Rauskolb, S.; Zagrebelsky, M.; Dreznjak, A.; Deogracias, R.; Matsumoto, T.; Wiese, S.; Erne, B.; Sendtner, M.; Schaeren-Wiemers, N.; Korte, M.; et al. Global Deprivation of Brain-Derived Neurotrophic Factor in the CNS Reveals an Area-Specific Requirement for Dendritic Growth. J. Neurosci. 2010, 30, 1739–1749. [Google Scholar] [CrossRef][Green Version]
- Ernfors, P.; Wetmore, C.; Olson, L.; Persson, H. Identification of Cells in Rat Brain and Peripheral Tissues Expressing MRNA for Members of the Nerve Growth Factor Family. Neuron 1990, 5, 511–526. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Belluscio, L.; Friedman, B.; Alderson, R.F.; Wiegand, S.J.; Furth, M.E.; Lindsay, R.M.; Yancopoulos, G.D. NT-3, BDNF, and NGF in the Developing Rat Nervous System: Parallel as Well as Reciprocal Patterns of Expression. Neuron 1990, 5, 501–509. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Le Beau, M.M.; Espinosa, R.; Ip, N.Y.; Belluscio, L.; de la Monte, S.M.; Squinto, S.; Furth, M.E.; Yancopoulos, G.D. Human and Rat Brain-Derived Neurotrophic Factor and Neurotrophin-3: Gene Structures, Distributions, and Chromosomal Localizations. Genomics 1991, 10, 558–568. [Google Scholar]
- Katoh-Semba, R.; Takeuchi, I.K.; Semba, R.; Kato, K. Distribution of Brain-Derived Neurotrophic Factor in Rats and Its Changes with Development in the Brain. J. Neurochem. 1997, 69, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Fernández, P.; Säuberli, K.; Colzani, M.; Moreau, T.; Ghevaert, C.; Barde, Y.-A. Brain-Derived Neurotrophic Factor in Megakaryocytes. J. Biol. Chem. 2016, 291, 9872–9881. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Friedman, W.J.; Olson, L.; Persson, H. Cells That Express Brain-Derived Neurotrophic Factor MRNA in the Developing Postnatal Rat Brain. Eur. J. Neurosci. 1991, 3, 688–697. [Google Scholar] [CrossRef]
- Barde, Y.A. Trophic Factors and Neuronal Survival. Neuron 1989, 2, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Dugich-Djordjevic, M.M.; Tocco, G.; Willoughby, D.A.; Najm, I.; Pasinetti, G.; Thompson, R.F.; Baudry, M.; Lapchak, P.A.; Hefti, F. BDNF MRNA Expression in the Developing Rat Brain Following Kainic Acid-Induced Seizure Activity. Neuron 1992, 8, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Timmusk, T.; Palm, K.; Metsis, M.; Reintam, T.; Paalme, V.; Saarma, M.; Persson, H. Multiple Promoters Direct Tissue-Specific Expression of the Rat BDNF Gene. Neuron 1993, 10, 475–489. [Google Scholar] [CrossRef]
- Aid, T.; Kazantseva, A.; Piirsoo, M.; Palm, K.; Timmusk, T. Mouse and Rat BDNF Gene Structure and Expression Revisited. J. Neurosci. Res. 2007, 85, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the Human BDNF Locus: Bidirectional Transcription, Complex Splicing, and Multiple Promoters. Genomics 2007, 90, 397–406. [Google Scholar] [CrossRef][Green Version]
- Tao, X.; Finkbeiner, S.; Arnold, D.B.; Shaywitz, A.J.; Greenberg, M.E. Ca2+ Influx Regulates BDNF Transcription by a CREB Family Transcription Factor-Dependent Mechanism. Neuron 1998, 20, 709–726. [Google Scholar] [CrossRef][Green Version]
- Tao, X.; West, A.E.; Chen, W.G.; Corfas, G.; Greenberg, M.E. A Calcium-Responsive Transcription Factor, CaRF, That Regulates Neuronal Activity-Dependent Expression of BDNF. Neuron 2002, 33, 383–395. [Google Scholar] [CrossRef][Green Version]
- Lipsky, R.H.; Xu, K.; Zhu, D.; Kelly, C.; Terhakopian, A.; Novelli, A.; Marini, A.M. Nuclear Factor KappaB Is a Critical Determinant in N-Methyl-D-Aspartate Receptor-Mediated Neuroprotection. J. Neurochem. 2001, 78, 254–264. [Google Scholar] [CrossRef]
- Zheng, F.; Zhou, X.; Moon, C.; Wang, H. Regulation of Brain-Derived Neurotrophic Factor Expression in Neurons. Int. J. Physiol. Pathophysiol. Pharmacol. 2012, 4, 188–200. [Google Scholar] [PubMed]
- Pruunsild, P.; Sepp, M.; Orav, E.; Koppel, I.; Timmusk, T. Identification of Cis-Elements and Transcription Factors Regulating Neuronal Activity-Dependent Transcription of Human BDNF Gene. J. Neurosci. 2011, 31, 3295–3308. [Google Scholar] [CrossRef][Green Version]
- Maynard, K.R.; Hobbs, J.W.; Sukumar, M.; Kardian, A.S.; Jimenez, D.V.; Schloesser, R.J.; Martinowich, K. Bdnf MRNA Splice Variants Differentially Impact CA1 and CA3 Dendrite Complexity and Spine Morphology in the Hippocampus. Brain Struct. Funct. 2017, 222, 3295–3307. [Google Scholar] [CrossRef] [PubMed]
- Sakata, K.; Woo, N.H.; Martinowich, K.; Greene, J.S.; Schloesser, R.J.; Shen, L.; Lu, B. Critical Role of Promoter IV-Driven BDNF Transcription in GABAergic Transmission and Synaptic Plasticity in the Prefrontal Cortex. Proc. Natl. Acad. Sci. USA 2009, 106, 5942–5947. [Google Scholar] [CrossRef][Green Version]
- Gao, J.; Wang, W.-Y.; Mao, Y.-W.; Gräff, J.; Guan, J.-S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.-H. A Novel Pathway Regulates Memory and Plasticity via SIRT1 and MiR-134. Nature 2010, 466, 1105–1109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baby, N.; Alagappan, N.; Dheen, S.T.; Sajikumar, S. MicroRNA-134-5p Inhibition Rescues Long-Term Plasticity and Synaptic Tagging/Capture in an Aβ(1-42)-Induced Model of Alzheimer’s Disease. Aging Cell 2020, 19, e13046. [Google Scholar] [CrossRef][Green Version]
- You, Y.-H.; Qin, Z.-Q.; Zhang, H.-L.; Yuan, Z.-H.; Yu, X. MicroRNA-153 Promotes Brain-Derived Neurotrophic Factor and Hippocampal Neuron Proliferation to Alleviate Autism Symptoms through Inhibition of JAK-STAT Pathway by LEPR. Biosci. Rep. 2019, 39, BSR20181904. [Google Scholar] [CrossRef][Green Version]
- Xin, C.; Xia, J.; Liu, Y.; Zhang, Y. MicroRNA-202-3p Targets Brain-Derived Neurotrophic Factor and Is Involved in Depression-Like Behaviors. Neuropsychiatr. Dis. Treat. 2020, 16, 1073–1083. [Google Scholar]
- Yang, W.; Liu, M.; Zhang, Q.; Zhang, J.; Chen, J.; Chen, Q.; Suo, L. Knockdown of MiR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Curr. Neurovasc. Res. 2020, 17, 196–203. [Google Scholar] [CrossRef]
- Keller, S.; Sarchiapone, M.; Zarrilli, F.; Videtic, A.; Ferraro, A.; Carli, V.; Sacchetti, S.; Lembo, F.; Angiolillo, A.; Jovanovic, N.; et al. Increased BDNF Promoter Methylation in the Wernicke Area of Suicide Subjects. Arch. Gen. Psychiatry 2010, 67, 258–267. [Google Scholar] [CrossRef][Green Version]
- Tadić, A.; Müller-Engling, L.; Schlicht, K.F.; Kotsiari, A.; Dreimüller, N.; Kleimann, A.; Bleich, S.; Lieb, K.; Frieling, H. Methylation of the Promoter of Brain-Derived Neurotrophic Factor Exon IV and Antidepressant Response in Major Depression. Mol. Psychiatry 2014, 19, 281–283. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lieb, K.; Dreimüller, N.; Wagner, S.; Schlicht, K.; Falter, T.; Neyazi, A.; Müller-Engling, L.; Bleich, S.; Tadić, A.; Frieling, H. BDNF Plasma Levels and BDNF Exon IV Promoter Methylation as Predictors for Antidepressant Treatment Response. Front. Psychiatry 2018, 9, 511. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ogier, M.; Wang, H.; Hong, E.; Wang, Q.; Greenberg, M.E.; Katz, D.M. Brain-Derived Neurotrophic Factor Expression and Respiratory Function Improve after Ampakine Treatment in a Mouse Model of Rett Syndrome. J. Neurosci. 2007, 27, 10912–10917. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Simmons, D.A.; Rex, C.S.; Palmer, L.; Pandyarajan, V.; Fedulov, V.; Gall, C.M.; Lynch, G. Up-Regulating BDNF with an Ampakine Rescues Synaptic Plasticity and Memory in Huntington’s Disease Knockin Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 4906–4911. [Google Scholar] [CrossRef][Green Version]
- Schmid, D.A.; Yang, T.; Ogier, M.; Adams, I.; Mirakhur, Y.; Wang, Q.; Massa, S.M.; Longo, F.M.; Katz, D.M. A TrkB Small Molecule Partial Agonist Rescues TrkB Phosphorylation Deficits and Improves Respiratory Function in a Mouse Model of Rett Syndrome. J. Neurosci. 2012, 32, 1803–1810. [Google Scholar] [CrossRef][Green Version]
- Chang, Q.; Khare, G.; Dani, V.; Nelson, S.; Jaenisch, R. The Disease Progression of Mecp2 Mutant Mice Is Affected by the Level of BDNF Expression. Neuron 2006, 49, 341–348. [Google Scholar] [CrossRef][Green Version]
- Kim, J.-W.; Autry, A.E.; Na, E.S.; Adachi, M.; Björkholm, C.; Kavalali, E.T.; Monteggia, L.M. Sustained Effects of Rapidly Acting Antidepressants Require BDNF-Dependent MeCP2 Phosphorylation. Nat. Neurosci. 2021, 24, 1100–1109. [Google Scholar] [CrossRef]
- Wosnitzka, E.; Nan, X.; Nan, J.; Chacón-Fernández, P.; Kussmaul, L.; Schuler, M.; Hengerer, B.; Barde, Y.-A. A New Mouse Line Reporting the Translation of Brain-Derived Neurotrophic Factor Using Green Fluorescent Protein. eNeuro 2020, 7, ENEURO.0462. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Canossa, M.; Gärtner, A.; Campana, G.; Inagaki, N.; Thoenen, H. Regulated Secretion of Neurotrophins by Metabotropic Glutamate Group I (MGluRI) and Trk Receptor Activation Is Mediated via Phospholipase C Signalling Pathways. EMBO J. 2001, 20, 1640–1650. [Google Scholar] [CrossRef][Green Version]
- Griesbeck, O.; Canossa, M.; Campana, G.; Gärtner, A.; Hoener, M.C.; Nawa, H.; Kolbeck, R.; Thoenen, H. Are There Differences between the Secretion Characteristics of NGF and BDNF? Implications for the Modulatory Role of Neurotrophins in Activity-Dependent Neuronal Plasticity. Microsc. Res. Tech. 1999, 45, 262–275. [Google Scholar] [CrossRef]
- Santi, S.; Cappello, S.; Riccio, M.; Bergami, M.; Aicardi, G.; Schenk, U.; Matteoli, M.; Canossa, M. Hippocampal Neurons Recycle BDNF for Activity-Dependent Secretion and LTP Maintenance. EMBO J. 2006, 25, 4372–4380. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Edelmann, E.; Lessmann, V.; Brigadski, T. Pre- and Postsynaptic Twists in BDNF Secretion and Action in Synaptic Plasticity. Neuropharmacology 2014, 76 Pt C, 610–627. [Google Scholar] [CrossRef]
- Coull, J.A.M.; Beggs, S.; Boudreau, D.; Boivin, D.; Tsuda, M.; Inoue, K.; Gravel, C.; Salter, M.W.; De Koninck, Y. BDNF from Microglia Causes the Shift in Neuronal Anion Gradient Underlying Neuropathic Pain. Nature 2005, 438, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Trang, T.; Beggs, S.; Wan, X.; Salter, M.W. P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and P38-Mitogen-Activated Protein Kinase Activation. J. Neurosci. 2009, 29, 3518–3528. [Google Scholar] [CrossRef][Green Version]
- Ulmann, L.; Hatcher, J.P.; Hughes, J.P.; Chaumont, S.; Green, P.J.; Conquet, F.; Buell, G.N.; Reeve, A.J.; Chessell, I.P.; Rassendren, F. Up-Regulation of P2X4 Receptors in Spinal Microglia after Peripheral Nerve Injury Mediates BDNF Release and Neuropathic Pain. J. Neurosci. 2008, 28, 11263–11268. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vignoli, B.; Canossa, M. Glioactive ATP Controls BDNF Recycling in Cortical Astrocytes. Commun. Integr. Biol. 2017, 10, e1277296. [Google Scholar] [CrossRef]
- Jornot, L.; Grouzmann, E.; Lacroix, J.S.; Rochat, T. BDNF and DPP-IV in Polyps and Middle Turbinates Epithelial Cells. Rhinology 2007, 45, 129–133. [Google Scholar]
- Gomes, C.; Ferreira, R.; George, J.; Sanches, R.; Rodrigues, D.I.; Gonçalves, N.; Cunha, R.A. Activation of Microglial Cells Triggers a Release of Brain-Derived Neurotrophic Factor (BDNF) Inducing Their Proliferation in an Adenosine A2A Receptor-Dependent Manner: A2A Receptor Blockade Prevents BDNF Release and Proliferation of Microglia. J. Neuroinflamm. 2013, 10, 16. [Google Scholar] [CrossRef][Green Version]
- Ferrini, F.; Trang, T.; Mattioli, T.-A.M.; Laffray, S.; Del’Guidice, T.; Lorenzo, L.-E.; Castonguay, A.; Doyon, N.; Zhang, W.; Godin, A.G.; et al. Morphine Hyperalgesia Gated through Microglia-Mediated Disruption of Neuronal Cl− Homeostasis. Nat. Neurosci. 2013, 16, 183–192. [Google Scholar] [CrossRef][Green Version]
- Stenovec, M.; Lasič, E.; Božić, M.; Bobnar, S.T.; Stout, R.F.; Grubišić, V.; Parpura, V.; Zorec, R. Ketamine Inhibits ATP-Evoked Exocytotic Release of Brain-Derived Neurotrophic Factor from Vesicles in Cultured Rat Astrocytes. Mol. Neurobiol. 2016, 53, 6882–6896. [Google Scholar] [CrossRef]
- Long, T.; He, W.; Pan, Q.; Zhang, S.; Zhang, D.; Qin, G.; Chen, L.; Zhou, J. Microglia P2X4R-BDNF Signalling Contributes to Central Sensitization in a Recurrent Nitroglycerin-Induced Chronic Migraine Model. J. Headache Pain 2020, 21, 4. [Google Scholar] [CrossRef][Green Version]
- Lever, I.J.; Bradbury, E.J.; Cunningham, J.R.; Adelson, D.W.; Jones, M.G.; McMahon, S.B.; Marvizón, J.C.; Malcangio, M. Brain-Derived Neurotrophic Factor Is Released in the Dorsal Horn by Distinctive Patterns of Afferent Fiber Stimulation. J. Neurosci. 2001, 21, 4469–4477. [Google Scholar] [CrossRef][Green Version]
- Sánchez-Sánchez, J.; Vicente-García, C.; Cañada-García, D.; Martín-Zanca, D.; Arévalo, J.C. ARMS/Kidins220 Regulates Nociception by Controlling Brain-Derived Neurotrophic Factor Secretion. Pain 2022, 164, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Jean, Y.Y.; Lercher, L.D.; Dreyfus, C.F. Glutamate Elicits Release of BDNF from Basal Forebrain Astrocytes in a Process Dependent on Metabotropic Receptors and the PLC Pathway. Neuron Glia Biol. 2008, 4, 35–42. [Google Scholar] [CrossRef]
- Simsek-Duran, F.; Lonart, G. The Role of RIM1alpha in BDNF-Enhanced Glutamate Release. Neuropharmacology 2008, 55, 27–34. [Google Scholar] [CrossRef]
- Bagayogo, I.P.; Dreyfus, C.F. Regulated Release of BDNF by Cortical Oligodendrocytes Is Mediated through Metabotropic Glutamate Receptors and the PLC Pathway. ASN Neuro 2009, 1, e00001. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Datta, I.; Ganapathy, K.; Razdan, R.; Bhonde, R. Location and Number of Astrocytes Determine Dopaminergic Neuron Survival and Function under 6-OHDA Stress Mediated through Differential BDNF Release. Mol. Neurobiol. 2018, 55, 5505–5525. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Heumann, R.; Lessmann, V. Synaptic Secretion of BDNF after High-Frequency Stimulation of Glutamatergic Synapses. EMBO J. 2001, 20, 5887–5897. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Itami, C.; Kimura, F.; Kohno, T.; Matsuoka, M.; Ichikawa, M.; Tsumoto, T.; Nakamura, S. Brain-Derived Neurotrophic Factor-Dependent Unmasking of “Silent” Synapses in the Developing Mouse Barrel Cortex. Proc. Natl. Acad. Sci. USA 2003, 100, 13069–13074. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhou, L.-J.; Peng, J.; Xu, Y.-N.; Zeng, W.-J.; Zhang, J.; Wei, X.; Mai, C.-L.; Lin, Z.-J.; Liu, Y.; Murugan, M.; et al. Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Rep. 2019, 27, 3844–3859.e6. [Google Scholar] [CrossRef][Green Version]
- Lepack, A.E.; Bang, E.; Lee, B.; Dwyer, J.M.; Duman, R.S. Fast-Acting Antidepressants Rapidly Stimulate ERK Signaling and BDNF Release in Primary Neuronal Cultures. Neuropharmacology 2016, 111, 242–252. [Google Scholar] [CrossRef][Green Version]
- Lepack, A.E.; Fuchikami, M.; Dwyer, J.M.; Banasr, M.; Duman, R.S. BDNF Release Is Required for the Behavioral Actions of Ketamine. Int. J. Neuropsychopharmacol. 2014, 18, pyu033. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Krüttgen, A.; Möller, J.C.; Heymach, J.V.; Shooter, E.M. Neurotrophins Induce Release of Neurotrophins by the Regulated Secretory Pathway. Proc. Natl. Acad. Sci. USA 1998, 95, 9614–9619. [Google Scholar] [CrossRef][Green Version]
- López-Benito, S.; Sánchez-Sánchez, J.; Brito, V.; Calvo, L.; Lisa, S.; Torres-Valle, M.; Palko, M.E.; Vicente-García, C.; Fernández-Fernández, S.; Bolaños, J.P.; et al. Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels. J. Neurosci. 2018, 38, 5415–5428. [Google Scholar] [CrossRef][Green Version]
- Gomes, W.F.; Lacerda, A.C.R.; Mendonça, V.A.; Arrieiro, A.N.; Fonseca, S.F.; Amorim, M.R.; Teixeira, A.L.; Teixeira, M.M.; Miranda, A.S.; Coimbra, C.C.; et al. Effect of Exercise on the Plasma BDNF Levels in Elderly Women with Knee Osteoarthritis. Rheumatol. Int. 2014, 34, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Tohyama, Y.; Kohsaka, S.; Kurihara, T. Ceramide Activates Microglia to Enhance the Production/Secretion of Brain-Derived Neurotrophic Factor (BDNF) without Induction of Deleterious Factors in Vitro. J. Neurochem. 2002, 80, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Canossa, M.; Griesbeck, O.; Berninger, B.; Campana, G.; Kolbeck, R.; Thoenen, H. Neurotrophin Release by Neurotrophins: Implications for Activity-Dependent Neuronal Plasticity. Proc. Natl. Acad. Sci. USA 1997, 94, 13279–13286. [Google Scholar] [CrossRef][Green Version]
- Hutchinson, A.J.; Chou, C.-L.; Israel, D.D.; Xu, W.; Regan, J.W. Activation of EP2 Prostanoid Receptors in Human Glial Cell Lines Stimulates the Secretion of BDNF. Neurochem. Int. 2009, 54, 439–446. [Google Scholar] [CrossRef][Green Version]
- Sadakata, T.; Washida, M.; Iwayama, Y.; Shoji, S.; Sato, Y.; Ohkura, T.; Katoh-Semba, R.; Nakajima, M.; Sekine, Y.; Tanaka, M.; et al. Autistic-like Phenotypes in Cadps2-Knockout Mice and Aberrant CADPS2 Splicing in Autistic Patients. J. Clin. Investig. 2007, 117, 931–943. [Google Scholar] [CrossRef][Green Version]
- Bergami, M.; Santi, S.; Formaggio, E.; Cagnoli, C.; Verderio, C.; Blum, R.; Berninger, B.; Matteoli, M.; Canossa, M. Uptake and Recycling of Pro-BDNF for Transmitter-Induced Secretion by Cortical Astrocytes. J. Cell Biol. 2008, 183, 213–221. [Google Scholar] [CrossRef]
- Vignoli, B.; Battistini, G.; Melani, R.; Blum, R.; Santi, S.; Berardi, N.; Canossa, M. Peri-Synaptic Glia Recycles Brain-Derived Neurotrophic Factor for LTP Stabilization and Memory Retention. Neuron 2016, 92, 873–887. [Google Scholar] [CrossRef][Green Version]
- Saha, R.N.; Liu, X.; Pahan, K. Up-Regulation of BDNF in Astrocytes by TNF-Alpha: A Case for the Neuroprotective Role of Cytokine. J Neuroimmune Pharmacol. 2006, 1, 212–222. [Google Scholar] [CrossRef][Green Version]
- Brigadski, T.; Hartmann, M.; Lessmann, V. Differential Vesicular Targeting and Time Course of Synaptic Secretion of the Mammalian Neurotrophins. J. Neurosci. 2005, 25, 7601–7614. [Google Scholar] [CrossRef][Green Version]
- Kojima, M.; Takei, N.; Numakawa, T.; Ishikawa, Y.; Suzuki, S.; Matsumoto, T.; Katoh-Semba, R.; Nawa, H.; Hatanaka, H. Biological Characterization and Optical Imaging of Brain-Derived Neurotrophic Factor-Green Fluorescent Protein Suggest an Activity-Dependent Local Release of Brain-Derived Neurotrophic Factor in Neurites of Cultured Hippocampal Neurons. J. Neurosci. Res. 2001, 64, 1–10. [Google Scholar] [CrossRef]
- Kolarow, R.; Brigadski, T.; Lessmann, V. Postsynaptic Secretion of BDNF and NT-3 from Hippocampal Neurons Depends on Calcium Calmodulin Kinase II Signaling and Proceeds via Delayed Fusion Pore Opening. J. Neurosci. 2007, 27, 10350–10364. [Google Scholar] [CrossRef][Green Version]
- Lochner, J.E.; Spangler, E.; Chavarha, M.; Jacobs, C.; McAllister, K.; Schuttner, L.C.; Scalettar, B.A. Efficient Copackaging and Cotransport Yields Postsynaptic Colocalization of Neuromodulators Associated with Synaptic Plasticity. Dev. Neurobiol. 2008, 68, 1243–1256. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rind, H.B.; Butowt, R.; von Bartheld, C.S. Synaptic Targeting of Retrogradely Transported Trophic Factors in Motoneurons: Comparison of Glial Cell Line-Derived Neurotrophic Factor, Brain-Derived Neurotrophic Factor, and Cardiotrophin-1 with Tetanus Toxin. J. Neurosci. 2005, 25, 539–549. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dean, C.; Liu, H.; Dunning, F.M.; Chang, P.Y.; Jackson, M.B.; Chapman, E.R. Synaptotagmin-IV Modulates Synaptic Function and Long-Term Potentiation by Regulating BDNF Release. Nat. Neurosci. 2009, 12, 767–776. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Haubensak, W.; Narz, F.; Heumann, R.; Lessmann, V. BDNF-GFP Containing Secretory Granules Are Localized in the Vicinity of Synaptic Junctions of Cultured Cortical Neurons. J. Cell Sci. 1998, 111 Pt 11, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Kohara, K.; Kitamura, A.; Morishima, M.; Tsumoto, T. Activity-Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neurons. Science 2001, 291, 2419–2423. [Google Scholar] [CrossRef][Green Version]
- Matsuda, N.; Lu, H.; Fukata, Y.; Noritake, J.; Gao, H.; Mukherjee, S.; Nemoto, T.; Fukata, M.; Poo, M.-M. Differential Activity-Dependent Secretion of Brain-Derived Neurotrophic Factor from Axon and Dendrite. J. Neurosci. 2009, 29, 14185–14198. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sadakata, T.; Shinoda, Y.; Oka, M.; Sekine, Y.; Sato, Y.; Saruta, C.; Miwa, H.; Tanaka, M.; Itohara, S.; Furuichi, T. Reduced Axonal Localization of a Caps2 Splice Variant Impairs Axonal Release of BDNF and Causes Autistic-like Behavior in Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 21104–21109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Scalettar, B.A.; Jacobs, C.; Fulwiler, A.; Prahl, L.; Simon, A.; Hilken, L.; Lochner, J.E. Hindered Submicron Mobility and Long-Term Storage of Presynaptic Dense-Core Granules Revealed by Single-Particle Tracking. Dev. Neurobiol. 2012, 72, 1181–1195. [Google Scholar] [CrossRef][Green Version]
- Shinoda, Y.; Sadakata, T.; Nakao, K.; Katoh-Semba, R.; Kinameri, E.; Furuya, A.; Yanagawa, Y.; Hirase, H.; Furuichi, T. Calcium-Dependent Activator Protein for Secretion 2 (CAPS2) Promotes BDNF Secretion and Is Critical for the Development of GABAergic Interneuron Network. Proc. Natl. Acad. Sci. USA 2011, 108, 373–378. [Google Scholar] [CrossRef][Green Version]
- Kuczewski, N.; Porcher, C.; Ferrand, N.; Fiorentino, H.; Pellegrino, C.; Kolarow, R.; Lessmann, V.; Medina, I.; Gaiarsa, J.-L. Backpropagating Action Potentials Trigger Dendritic Release of BDNF during Spontaneous Network Activity. J. Neurosci. 2008, 28, 7013–7023. [Google Scholar] [CrossRef]
- Butowt, R.; von Bartheld, C.S. Sorting of Internalized Neurotrophins into an Endocytic Transcytosis Pathway via the Golgi System: Ultrastructural Analysis in Retinal Ganglion Cells. J. Neurosci. 2001, 21, 8915–8930. [Google Scholar] [CrossRef][Green Version]
- von Bartheld, C.S.; Wang, X.; Butowt, R. Anterograde Axonal Transport, Transcytosis, and Recycling of Neurotrophic Factors: The Concept of Trophic Currencies in Neural Networks. Mol. Neurobiol. 2001, 24, 1–28. [Google Scholar] [CrossRef]
- Baquet, Z.C.; Gorski, J.A.; Jones, K.R. Early Striatal Dendrite Deficits Followed by Neuron Loss with Advanced Age in the Absence of Anterograde Cortical Brain-Derived Neurotrophic Factor. J. Neurosci. 2004, 24, 4250–4258. [Google Scholar] [CrossRef][Green Version]
- Crépel, V.; Aronov, D.; Jorquera, I.; Represa, A.; Ben-Ari, Y.; Cossart, R. A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus. Neuron 2007, 54, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Egorov, A.V.; Draguhn, A. Development of Coherent Neuronal Activity Patterns in Mammalian Cortical Networks: Common Principles and Local Hetereogeneity. Mech. Dev. 2013, 130, 412–423. [Google Scholar] [CrossRef]
- Luhmann, H.J.; Khazipov, R. Neuronal Activity Patterns in the Developing Barrel Cortex. Neuroscience 2018, 368, 256–267. [Google Scholar] [CrossRef]
- Kojima, M.; Ishii, C.; Sano, Y.; Mizui, T.; Furuichi, T. Journey of Brain-Derived Neurotrophic Factor: From Intracellular Trafficking to Secretion. Cell Tissue Res. 2020, 382, 125–134. [Google Scholar] [CrossRef]
- Balkowiec, A.; Katz, D.M. Activity-Dependent Release of Endogenous Brain-Derived Neurotrophic Factor from Primary Sensory Neurons Detected by ELISA in Situ. J. Neurosci. 2000, 20, 7417–7423. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Balkowiec, A.; Katz, D.M. Cellular Mechanisms Regulating Activity-Dependent Release of Native Brain-Derived Neurotrophic Factor from Hippocampal Neurons. J. Neurosci. 2002, 22, 10399–10407. [Google Scholar] [CrossRef][Green Version]
- Meis, S.; Endres, T.; Lessmann, V. Postsynaptic BDNF Signalling Regulates Long-Term Potentiation at Thalamo-Amygdala Afferents. J. Physiol. 2012, 590, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gall, C.M.; Lynch, G. Presynaptic BDNF Promotes Postsynaptic Long-Term Potentiation in the Dorsal Striatum. J. Neurosci. 2010, 30, 14440–14445. [Google Scholar] [CrossRef][Green Version]
- Huang, S.-L.; Wang, J.; He, X.-J.; Li, Z.-F.; Pu, J.-N.; Shi, W. Secretion of BDNF and GDNF from Free and Encapsulated Choroid Plexus Epithelial Cells. Neurosci. Lett. 2014, 566, 42–45. [Google Scholar] [CrossRef]
- Von Bartheld, C.S.; Johnson, J.E. Target-Derived BDNF (Brain-Derived Neurotrophic Factor) Is Essential for the Survival of Developing Neurons in the Isthmo-Optic Nucleus. J. Comp. Neurol. 2001, 433, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.J.; Patz, S.; Wahle, P. Transcellular Induction of Neuropeptide Y Expression by NT4 and BDNF. Proc. Natl. Acad. Sci. USA 2005, 102, 3064–3069. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nakajima, T.; Sato, M.; Akaza, N.; Umezawa, Y. Cell-Based Fluorescent Indicator to Visualize Brain-Derived Neurotrophic Factor Secreted from Living Neurons. ACS Chem. Biol. 2008, 3, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Alderson, R.F.; Curtis, R.; Alterman, A.L.; Lindsay, R.M.; DiStefano, P.S. Truncated TrkB Mediates the Endocytosis and Release of BDNF and Neurotrophin-4/5 by Rat Astrocytes and Schwann Cells in Vitro. Brain Res. 2000, 871, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Giralt, A.; Friedman, H.C.; Caneda-Ferrón, B.; Urbán, N.; Moreno, E.; Rubio, N.; Blanco, J.; Peterson, A.; Canals, J.M.; Alberch, J. BDNF Regulation under GFAP Promoter Provides Engineered Astrocytes as a New Approach for Long-Term Protection in Huntington’s Disease. Gene Ther. 2010, 17, 1294–1308. [Google Scholar] [CrossRef][Green Version]
- Nakajima, K.; Honda, S.; Tohyama, Y.; Imai, Y.; Kohsaka, S.; Kurihara, T. Neurotrophin Secretion from Cultured Microglia. J. Neurosci. Res. 2001, 65, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Masuda, T.; Tozaki-Saitoh, H.; Inoue, K. P2X4 Receptors and Neuropathic Pain. Front. Cell. Neurosci. 2013, 7, 191. [Google Scholar] [CrossRef][Green Version]
- Sadakata, T.; Mizoguchi, A.; Sato, Y.; Katoh-Semba, R.; Fukuda, M.; Mikoshiba, K.; Furuichi, T. The Secretory Granule-Associated Protein CAPS2 Regulates Neurotrophin Release and Cell Survival. J. Neurosci. 2004, 24, 43–52. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sadakata, T.; Kakegawa, W.; Mizoguchi, A.; Washida, M.; Katoh-Semba, R.; Shutoh, F.; Okamoto, T.; Nakashima, H.; Kimura, K.; Tanaka, M.; et al. Impaired Cerebellar Development and Function in Mice Lacking CAPS2, a Protein Involved in Neurotrophin Release. J. Neurosci. 2007, 27, 2472–2482. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.I.; Kim, Y.G.; Pyeon, H.J.; Ahn, J.C.; Logan, S.; Orock, A.; Joo, K.M.; Lőrincz, A.; Deák, F. Dysregulation of the SNARE-Binding Protein Munc18-1 Impairs BDNF Secretion and Synaptic Neurotransmission: A Novel Interventional Target to Protect the Aging Brain. Geroscience 2019, 41, 109–123. [Google Scholar] [CrossRef]
- Puntman, D.C.; Arora, S.; Farina, M.; Toonen, R.F.; Verhage, M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J. Neurosci. 2021, 41, 5980–5993. [Google Scholar] [CrossRef]
- Soman, S.K.; Tingle, D.; Dagda, R.Y.; Torres, M.; Dagda, M.; Dagda, R.K. Cleaved PINK1 Induces Neuronal Plasticity through PKA-Mediated BDNF Functional Regulation. J. Neurosci. Res. 2021, 99, 2134–2155. [Google Scholar] [CrossRef] [PubMed]
- Canossa, M.; Giordano, E.; Cappello, S.; Guarnieri, C.; Ferri, S. Nitric Oxide Down-Regulates Brain-Derived Neurotrophic Factor Secretion in Cultured Hippocampal Neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 3282–3287. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hsieh, H.; Robertson, C.L.; Vermehren-Schmaedick, A.; Balkowiec, A. Nitric Oxide Regulates BDNF Release from Nodose Ganglion Neurons in a Pattern-Dependent and CGMP-Independent Manner. J. Neurosci. Res. 2010, 88, 1285–1297. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xie, R.-G.; Chu, W.-G.; Liu, D.-L.; Wang, X.; Ma, S.-B.; Wang, F.; Wang, F.-D.; Lin, Z.; Wu, W.-B.; Lu, N.; et al. Presynaptic NMDARs on Spinal Nociceptor Terminals State-Dependently Modulate Synaptic Transmission and Pain. Nat. Commun. 2022, 13, 728. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhao, T.; Li, X.-J.; Li, S. Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J. Neurosci. 2016, 36, 8790–8801. [Google Scholar] [CrossRef]
- Persoon, C.M.; Hoogstraaten, R.I.; Nassal, J.P.; van Weering, J.R.T.; Kaeser, P.S.; Toonen, R.F.; Verhage, M. The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators. Neuron 2019, 104, 1065–1080.e12. [Google Scholar] [CrossRef] [PubMed]
- Thakker-Varia, S.; Alder, J.; Crozier, R.A.; Plummer, M.R.; Black, I.B. Rab3A Is Required for Brain-Derived Neurotrophic Factor-Induced Synaptic Plasticity: Transcriptional Analysis at the Population and Single-Cell Levels. J. Neurosci. 2001, 21, 6782–6790. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alder, J.; Thakker-Varia, S.; Crozier, R.A.; Shaheen, A.; Plummer, M.R.; Black, I.B. Early Presynaptic and Late Postsynaptic Components Contribute Independently to Brain-Derived Neurotrophic Factor-Induced Synaptic Plasticity. J. Neurosci. 2005, 25, 3080–3085. [Google Scholar] [CrossRef][Green Version]
- Shimojo, M.; Courchet, J.; Pieraut, S.; Torabi-Rander, N.; Sando, R.; Polleux, F.; Maximov, A. SNAREs Controlling Vesicular Release of BDNF and Development of Callosal Axons. Cell Rep. 2015, 11, 1054–1066. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wong, Y.H.; Lee, C.M.; Xie, W.; Cui, B.; Poo, M.M. Activity-Dependent BDNF Release via Endocytic Pathways Is Regulated by Synaptotagmin-6 and Complexin. Proc. Natl. Acad. Sci. USA 2015, 112, E4475–E4484. [Google Scholar] [CrossRef][Green Version]
- Han, J.; Yoon, S.; Park, H. Endocytic BDNF Secretion Regulated by Vamp3 in Astrocytes. Sci. Rep. 2021, 11, 21203. [Google Scholar] [CrossRef]
- Chao, M.V. Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Tessarollo, L.; Yanpallewar, S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front. Neurosci. 2022, 16, 847572. [Google Scholar] [CrossRef]
- Neubrand, V.E.; Cesca, F.; Benfenati, F.; Schiavo, G. Kidins220/ARMS as a Functional Mediator of Multiple Receptor Signalling Pathways. J. Cell Sci. 2012, 125, 1845–1854. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Iglesias, T.; Cabrera-Poch, N.; Mitchell, M.; Naven, T.; Rozengurt, E.; Schiavo, G. Identification and Cloning of Kidins220, a Novel Neuronal Substrate of Protein Kinase D. J. Biol. Chem. 2000, 275, 40048–40056. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kong, H.; Boulter, J.; Weber, J.L.; Lai, G.; Chao, M.V. An Evolutionarily Conserved Transmembrane Protein That Is a Novel Downstream Target of Neurotrophin and Ephrin Receptors. J. Neurosci. 2001, 21, 176–185. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, J.; Chen, L.A.; Townsend, C.M.; Evers, B.M. PKD1, PKD2, and Their Substrate Kidins220 Regulate Neurotensin Secretion in the BON Human Endocrine Cell Line. J. Biol. Chem. 2008, 283, 2614–2621. [Google Scholar] [CrossRef] [PubMed][Green Version]
- López-Benito, S.; Lillo, C.; Hernández-Hernández, Á.; Chao, M.V.; Arévalo, J.C. ARMS/Kidins220 and Synembryn-B Levels Regulate NGF-Mediated Secretion. J. Cell Sci. 2016, 129, 1866–1877. [Google Scholar] [CrossRef][Green Version]
- Miller, K.G.; Emerson, M.D.; McManus, J.R.; Rand, J.B. RIC-8 (Synembryn): A Novel Conserved Protein That Is Required for G(q)Alpha Signaling in the C. elegans Nervous System. Neuron 2000, 27, 289–299. [Google Scholar] [CrossRef][Green Version]
- Arevalo, J.C.; Wu, S.H.; Takahashi, T.; Zhang, H.; Yu, T.; Yano, H.; Milner, T.A.; Tessarollo, L.; Ninan, I.; Arancio, O.; et al. The ARMS/Kidins220 Scaffold Protein Modulates Synaptic Transmission. Mol. Cell. Neurosci. 2010, 45, 92–100. [Google Scholar] [CrossRef][Green Version]
- Wu, S.H.; Arevalo, J.C.; Neubrand, V.E.; Zhang, H.; Arancio, O.; Chao, M.V. The Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Is Regulated by Activity-Dependent Calpain Proteolysis and Modulates Synaptic Plasticity. J. Biol. Chem. 2010, 285, 40472–40478. [Google Scholar] [CrossRef][Green Version]
- Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of Synaptic Responses to High-Frequency Stimulation and LTP by Neurotrophins in the Hippocampus. Nature 1996, 381, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Popescu, A.; Poo, M. Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP. Neuron 2014, 84, 1009–1022. [Google Scholar] [CrossRef] [PubMed][Green Version]
- López-Menéndez, C.; Simón-García, A.; Gamir-Morralla, A.; Pose-Utrilla, J.; Luján, R.; Mochizuki, N.; Díaz-Guerra, M.; Iglesias, T. Excitotoxic Targeting of Kidins220 to the Golgi Apparatus Precedes Calpain Cleavage of Rap1-Activation Complexes. Cell Death Dis. 2019, 10, 535. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baudry, M.; Bi, X. Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci. 2016, 39, 235–245. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Briz, V.; Baudry, M. Calpains: Master Regulators of Synaptic Plasticity. Neuroscientist 2017, 23, 221–231. [Google Scholar] [CrossRef]
- Lopez-Menendez, C.; Gascon, S.; Sobrado, M.; Vidaurre, O.G.; Higuero, A.M.; Rodriguez-Pena, A.; Iglesias, T.; Diaz-Guerra, M. Kidins220/ARMS Downregulation by Excitotoxic Activation of NMDARs Reveals Its Involvement in Neuronal Survival and Death Pathways. J. Cell Sci. 2009, 122, 3554–3565. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wu, S.H.; Arevalo, J.C.; Sarti, F.; Tessarollo, L.; Gan, W.B.; Chao, M.V. Ankyrin Repeat-Rich Membrane Spanning/Kidins220 Protein Regulates Dendritic Branching and Spine Stability in Vivo. Dev. Neurobiol. 2009, 69, 547–557. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lopez-Menendez, C.; Gamir-Morralla, A.; Jurado-Arjona, J.; Higuero, A.M.; Campanero, M.R.; Ferrer, I.; Hernandez, F.; Avila, J.; Diaz-Guerra, M.; Iglesias, T. Kidins220 Accumulates with Tau in Human Alzheimer’s Disease and Related Models: Modulation of Its Calpain-Processing by GSK3beta/PP1 Imbalance. Hum. Mol. Genet. 2013, 22, 466–482. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, C.; Sharma, R. Cyclic Nucleotide Selectivity of Protein Kinase G Isozymes. Protein Sci. 2021, 30, 316–327. [Google Scholar] [CrossRef]
- Berg, E.A.; Johnson, R.J.; Leeman, S.E.; Boyd, N.; Kimerer, L.; Fine, R.E. Isolation and Characterization of Substance P-Containing Dense Core Vesicles from Rabbit Optic Nerve and Termini. J. Neurosci. Res. 2000, 62, 830–839. [Google Scholar] [CrossRef]
- Wang, X.; Yu, D.; Wang, H.; Lei, Z.; Zhai, Y.; Sun, M.; Chen, S.; Yin, P. Rab3 and Synaptotagmin Proteins in the Regulation of Vesicle Fusion and Neurotransmitter Release. Life Sci. 2022, 309, 120995. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C.; Rothman, J.E. Membrane Fusion: Grappling with SNARE and SM Proteins. Science 2009, 323, 474–477. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Verhage, M.; Maia, A.S.; Plomp, J.J.; Brussaard, A.B.; Heeroma, J.H.; Vermeer, H.; Toonen, R.F.; Hammer, R.E.; van den Berg, T.K.; Missler, M.; et al. Synaptic Assembly of the Brain in the Absence of Neurotransmitter Secretion. Science 2000, 287, 864–869. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Heeroma, J.H.; Roelandse, M.; Wierda, K.; van Aerde, K.I.; Toonen, R.F.G.; Hensbroek, R.A.; Brussaard, A.; Matus, A.; Verhage, M. Trophic Support Delays but Does Not Prevent Cell-Intrinsic Degeneration of Neurons Deficient for Munc18-1. Eur. J. Neurosci. 2004, 20, 623–634. [Google Scholar] [CrossRef][Green Version]
- Simó, A.; Just-Borràs, L.; Cilleros-Mañé, V.; Hurtado, E.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. BDNF-TrkB Signaling Coupled to NPKCε and CPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front. Mol. Neurosci. 2018, 11, 207. [Google Scholar] [CrossRef][Green Version]
- Wolfes, A.C.; Dean, C. The Diversity of Synaptotagmin Isoforms. Curr. Opin. Neurobiol. 2020, 63, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Vician, L.; Lim, I.K.; Ferguson, G.; Tocco, G.; Baudry, M.; Herschman, H.R. Synaptotagmin IV Is an Immediate Early Gene Induced by Depolarization in PC12 Cells and in Brain. Proc. Natl. Acad. Sci. USA 1995, 92, 2164–2168. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tocco, G.; Bi, X.; Vician, L.; Lim, I.K.; Herschman, H.; Baudry, M. Two Synaptotagmin Genes, Syt1 and Syt4, Are Differentially Regulated in Adult Brain and during Postnatal Development Following Kainic Acid-Induced Seizures. Brain Res. Mol. Brain Res. 1996, 40, 229–239. [Google Scholar] [CrossRef]
- Denovan-Wright, E.M.; Newton, R.A.; Armstrong, J.N.; Babity, J.M.; Robertson, H.A. Acute Administration of Cocaine, but Not Amphetamine, Increases the Level of Synaptotagmin IV MRNA in the Dorsal Striatum of Rat. Brain Res. Mol. Brain Res. 1998, 55, 350–354. [Google Scholar] [CrossRef]
- Ibata, K.; Hashikawa, T.; Tsuboi, T.; Terakawa, S.; Liang, F.; Mizutani, A.; Fukuda, M.; Mikoshiba, K. Non-Polarized Distribution of Synaptotagmin IV in Neurons: Evidence That Synaptotagmin IV Is Not a Synaptic Vesicle Protein. Neurosci. Res. 2002, 43, 401–406. [Google Scholar] [CrossRef]
- Mittelsteadt, T.; Seifert, G.; Alvárez-Barón, E.; Steinhäuser, C.; Becker, A.J.; Schoch, S. Differential MRNA Expression Patterns of the Synaptotagmin Gene Family in the Rodent Brain. J. Comp. Neurol. 2009, 512, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Sadakata, T.; Itakura, M.; Kozaki, S.; Sekine, Y.; Takahashi, M.; Furuichi, T. Differential Distributions of the Ca2+-Dependent Activator Protein for Secretion Family Proteins (CAPS2 and CAPS1) in the Mouse Brain. J. Comp. Neurol. 2006, 495, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Lalo, U.; Koh, W.; Lee, C.J.; Pankratov, Y. The Tripartite Glutamatergic Synapse. Neuropharmacology 2021, 199, 108758. [Google Scholar] [CrossRef] [PubMed]
- Niswender, C.M.; Conn, P.J. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef][Green Version]
Stimulus | Cell Type | Proteins Involved | References |
---|---|---|---|
Adenosine | Microglial cells | GPCR, PKA, PLC | [89] |
ATP | Astrocytes/Microglial cells | P2X4, Ras, p38-MAPK | [80,84,85,87,90,91,92] |
Capsaicin | Neurons | TRPV1 | [93,94] |
Glutamate | Neurons/ Astrocytes/ Oligodendrocytes | NMDARs, AMPARs, mGluRs | [80,95,96,97] |
5-hydroxytryptamine (5-HT; serotonin) | Cultured NG2 glial cells | 5-HTR | [98] |
High frequency stimulation (HFS) | Neuron | NMDARs, AMPARs, mGluRs | [99,100,101] |
Ketamine | Astrocytes | NMDARs | [102,103] |
KCl | Neurons/Astrocytes | VGCC | [80,104,105] |
Lipopolysaccharide Ceramide | Microglia | PKC | [106,107] |
NGF | Neurons | TrkA | [105,108] |
NT-3 | Neurons | TrkB, TrkC | [105,108] |
NT-4 | Neurons | TrkB | [105,108] |
Prostaglandine E2 | Astrocytes/Microglial cells | GPCR, PKA, PLC | [109] |
Rhythmic neuronal discharges | Neuron | NMDAR, AMPARs, mGluRs | [10] |
Theta-burst stimulation (TBS) | Neuron | NMDARs, AMPARs, mGluRs | [82,83,93,95,110,111,112] |
TNF | Astrocytes | TNFR | [113] |
Protein | Effect | Cells | BDNF Source | References |
---|---|---|---|---|
ARMS/Kidins220 | − | Neurons | synthesized | [94,105] |
CAPS2 | + | Neurons | synthesized | [110,125,146,147] |
mGluR | + | Neurons/Astrocytes | endocytosed/recycled | [80,95,97] |
Munc-18 | + | Neurons | synthesized | [148,149] |
PKA | + | Neurons/Glial cells | [150] | |
PKG | −/+ | Neurons | [151,152,153] | |
PLC | –/+ | Neurons/Astrocytes | synthesized endocytosed/recycled | [80,95,97] |
Rab3a/Rim1 | + | Neurons/Astrocytes | synthesized endocytosed/recycled | [96,154,155,156,157] |
SNAP25 | + | Neurons | synthesized | [158] |
SNAP47 | + | Neurons | synthesized | [158] |
Synaptobrevin2 | + | Neurons | synthesized endocytosed/recycled | [158] |
Synaptotagmin4 | – | Neurons | synthesized | [105,119,159] |
Synaptotagmin6 /complexin 1 | + | Neurons | endocytosed/recycled | [159] |
Trk receptors | + | Neurons | synthesized | [104,105,108] |
Vamp3 | + | Astrocytes | endocytosed/recycled | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo, J.C.; Deogracias, R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023, 13, 789. https://doi.org/10.3390/biom13050789
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules. 2023; 13(5):789. https://doi.org/10.3390/biom13050789
Chicago/Turabian StyleArévalo, Juan Carlos, and Rubén Deogracias. 2023. "Mechanisms Controlling the Expression and Secretion of BDNF" Biomolecules 13, no. 5: 789. https://doi.org/10.3390/biom13050789
APA StyleArévalo, J. C., & Deogracias, R. (2023). Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules, 13(5), 789. https://doi.org/10.3390/biom13050789