You are currently viewing a new version of our website. To view the old version click .
Biomolecules
  • Review
  • Open Access

23 April 2023

The Autoimmune Rheumatic Disease Related Dry Eye and Its Association with Retinopathy

,
,
and
Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue New Discoveries in Retinal Cell Degeneration and Retinal Diseases

Abstract

Dry eye disease is a chronic disease of the ocular surface characterized by abnormal tear film composition, tear film instability, and ocular surface inflammation, affecting 5% to 50% of the population worldwide. Autoimmune rheumatic diseases (ARDs) are systemic disorders with multi-organ involvement, including the eye, and play a significant role in dry eye. To date, most studies have focused on Sjögren’s syndrome (one of the ARDs) since it manifests as two of the most common symptoms–dry eyes and a dry mouth-and attracts physicians to explore the relationship between dry eye and ARDs. Many patients complained of dry eye related symptoms before they were diagnosed with ARDs, and ocular surface malaise is a sensitive indicator of the severity of ARDs. In addition, ARD related dry eye is also associated with some retinal diseases directly or indirectly, which are described in this review. This review also summarizes the incidence, epidemiological characteristics, pathogenesis, and accompanying ocular lesions of ARD’s related dry eye, emphasizing the potential role of dry eye in recognition and monitoring among ARDs patients.

1. Introduction

Dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film and accompanied by ocular symptoms, in which tear film instability and hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles [1]. It can be manifested as decreased vision and eye discomfort, accompanied by eye inflammation and ocular nerve damage. The vision-related quality of life and work efficiency of patients are significantly reduced by those malaises [2]. Epidemiological surveys reported that the prevalence of dry eye differed greatly among regions, ranging from 5% to 50% worldwide [3]. The incidence of dry eye has increased significantly in recent years due to the prolonged use of digital screens [4], air pollution [5], and population aging. Predisposing factors of dry eye include the environment, increased use of electronic products, systemic diseases, ocular surface diseases, eye surgeries, application of eye drops and ointment, etc. Systemic diseases, especially rheumatic immune diseases are closely related to dry eye [2].
Autoimmune rheumatic diseases (ARDs), also named rheumatic immune diseases or immune-mediated rheumatic diseases, are a group of diseases related to the overactivation of the immune system, including primary Sjögren’s syndrome (SS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) or scleroderma, idiopathic inflammatory myositis (IIM), and the systemic vasculitides (SV) [6].
As a systemic disorder with multi-organ involvement, ARDs lead to various clinical manifestations including skin lesions, joint pain, vascular damage, and dry eye. Furthermore, treatments for ARDs, including methotrexate and cyclophosphamide, usually cause or exacerbate symptoms of dry eye. Under normal conditions, the intrinsic immune mechanisms of the eyes could maintain the microenvironment homeostasis. When the eye becomes the target of the immune response of ARDs, the ocular immune system is excessively stimulated by relevant immunoregulatory molecules and the balance of the immunoregulatory mechanisms is therefore disrupted. Additionally, chronic ocular surface inflammation is a result of dysregulated balance of the innate and adaptive immune systems, leading to chronic dry eye [7]. Ocular surface symptoms could be sensitive manifestations of the severity of the systemic condition of ARDs. In addition, a considerable proportion of dry eye patients have ARDs but are not diagnosed and treated in a timely manner [8]. However, the reported literature mainly focused on specific kinds of ARDs (SS, RA, or SLE), and the number of cases is limited. Moreover, we retrieved a few studies exploring the correlation between other or overall ARDs and dry eye. Hence, this review aims to summarize the characteristics and pathogenesis of dry eye in various kinds of ARDs. For the lack of studies reporting IIM or SV-related dry eye, this article mainly focuses on the relationship between other kinds of ARDs (SS, RA, SLE, and SSc) and dry eye. Dry eye is related to some retinal diseases directly or indirectly. The retina is often involved in ARDs, commonly associated with autoimmunity and systemic inflammatory cell infiltration. Consequently. the retinal diseases related to dry eye and ARDs are also illuminated.

5. Clinical Attention–Dry Eye Is the “Window” of ARDs

First, dry eye is a challenge for patients and may be difficult for clinicians to diagnose and manage effectively [103]. Moreover, patients ultimately diagnosed with an autoimmune rheumatic disease are also a diagnostic challenge [6]. We should devote more attention to symptoms of ARD related dry eye. Second, there is a sequence of other ocular disorders that ARDs patients may have, e.g., scleritis, episcleritis, keratitis, etc. However, the symptoms and signs of these ocular diseases are easy to notice, unlike the latent dry eye. Third, the eye could be a surrogate marker for the onset or aggravation of an immune reactivation in ARDs since dry eye complaints can antedate the diagnosis of rheumatic diseases. It is possible to avoid the delay of many long-term sequelae by recognizing dry eye manifestations of ARDs.
Of note, a significant percentage of dry eye diagnoses can be missed because of the number of symptoms just for diagnosis of dry eye as well as isolated inclusion criteria. Severe dry eye is usually common in patients with ARDs. In addition, the decreased corneal sensation is a feature of severe dry eye which might alter the patient’s perception of symptoms of ocular irritation. The reduced corneal sensation could provide inadequate feedback through the ophthalmic nerve to the central nervous system, resulting in less efferent stimulation to the lacrimal gland, reduced tear production, and the promotion of a vicious cycle [104]. Overall, examines related to dry eye are significant and should be implemented in patients with ARDs, even if there is no specific ocular complaint.

6. Conclusions

Dry eye is the most common ocular complication in ARDs. ARD related dry eye, caused by functional disorders of the lacrimal gland, lacrimal duct, conjunctiva, cornea, and meibomian glands, includes the two kinds of aqueous-deficient and evaporative dry eye, simultaneously. Severe symptoms of dry eye are usually presented in patients with ARDs, which might enable the dry eye to be a significant indicator of ARDs. In the future, the research on ARD related dry eye might contribute to the investigation of systemically immunological and molecular mechanisms in ARDs. Significantly, because of the direct or indirect associations of ARD related dry eye with some retinal diseases, a comprehensive understanding of dry eye, ARDs, and relative complications is necessary.

Author Contributions

Conceptualization, K.P.; Methodology, K.P. and H.S.; Writing—original draft preparation, H.S.; Writing—review and editing, K.P., W.L. and Y.L.; visualization, H.S.; Supervision, K.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We thank BioRender (BioRender.com, accessed on 24 September 2022) for the creation of the figure. The authors thank Xiaoyan Li, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China, and Liqun Chen, Department of Ophthalmology, The First Clinical Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China for their assistance in editing and proofreading the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
  2. Clayton, J.A. Dry Eye. N. Engl. J. Med. 2018, 378, 2212–2223. [Google Scholar] [CrossRef]
  3. Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
  4. Mehra, D.; Galor, A. Digital Screen Use and Dry Eye: A Review. Asia Pac. J. Ophthalmol. 2020, 9, 491–497. [Google Scholar] [CrossRef]
  5. Mandell, J.T.; Idarraga, M.; Kumar, N.; Galor, A. Impact of Air Pollution and Weather on Dry Eye. J. Clin. Med. 2020, 9, 3740. [Google Scholar] [CrossRef] [PubMed]
  6. Goldblatt, F.; O′Neill, S.G. Clinical aspects of autoimmune rheumatic diseases. Lancet 2013, 382, 797–808. [Google Scholar] [CrossRef] [PubMed]
  7. Periman, L.M.; Perez, V.L.; Saban, D.R.; Lin, M.C.; Neri, P. The Immunological Basis of Dry Eye Disease and Current Topical Treatment Options. J. Ocul. Pharmacol. Ther. 2020, 36, 137–146. [Google Scholar] [CrossRef] [PubMed]
  8. Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Lin, A.; Rhee, M.K.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S. Dry Eye Syndrome Preferred Practice Pattern®. Ophthalmology 2019, 126, P286–P334. [Google Scholar] [CrossRef] [PubMed]
  9. Kemeny-Beke, A.; Szodoray, P. Ocular manifestations of rheumatic diseases. Int. Ophthalmol. 2020, 40, 503–510. [Google Scholar] [CrossRef]
  10. Fujita, M.; Igarashi, T.; Kurai, T.; Sakane, M.; Yoshino, S.; Takahashi, H. Correlation between dry eye and rheumatoid arthritis activity. Am. J. Ophthalmol. 2005, 140, 808–813. [Google Scholar] [CrossRef]
  11. Dammacco, R. Systemic lupus erythematosus and ocular involvement: An overview. Clin. Exp. Med. 2018, 18, 135–149. [Google Scholar] [CrossRef]
  12. El-Shereef, R.R.; Mohamed, A.S.; Hamdy, L. Ocular manifestation of systemic lupus erythematosus. Rheumatol. Int. 2013, 33, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
  13. Mavragani, C.P.; Moutsopoulos, H.M. Sjögren syndrome. CMAJ 2014, 186, E579–E586. [Google Scholar] [CrossRef] [PubMed]
  14. Ramos-Casals, M.; Brito-Zeron, P.; Siso-Almirall, A.; Bosch, X. Primary Sjogren syndrome. BMJ 2012, 344, e3821. [Google Scholar] [CrossRef]
  15. de AF Gomes, B.; Santhiago, M.R.; de Azevedo, M.N.; Moraes, H.V., Jr. Evaluation of dry eye signs and symptoms in patients with systemic sclerosis. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 1051–1056. [Google Scholar] [CrossRef]
  16. Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008, 58, 15–25. [Google Scholar] [CrossRef]
  17. Yu, K.; Bunya, V.; Maguire, M.; Asbell, P.; Ying, G.-S. Systemic Conditions Associated with Severity of Dry Eye Signs and Symptoms in the Dry Eye Assessment and Management Study. Ophthalmology 2021, 128, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
  18. Paulsen, A.J.; Cruickshanks, K.J.; Fischer, M.E.; Huang, G.-H.; Klein, B.E.K.; Klein, R.; Dalton, D.S. Dry eye in the beaver dam offspring study: Prevalence, risk factors, and health-related quality of life. Am. J. Ophthalmol. 2014, 157, 799–806. [Google Scholar] [CrossRef]
  19. Rosas, J.; Sánchez-Piedra, C.; Fernández-Castro, M.; Andreu, J.L.; Martínez-Taboada, V.; Olivé, A. ESSDAI activity index of the SJÖGRENSER cohort: Analysis and comparison with other European cohorts. Rheumatol. Int. 2019, 39, 991–999. [Google Scholar] [CrossRef]
  20. Abd-Allah, N.M.; Hassan, A.A.; Omar, G.; Hamdy, M.; Abdelaziz, S.T.A.; Abd El Hamid, W.M.; Moussa, R.A. Dry eye in rheumatoid arthritis: Relation to disease activity. Immunol. Med. 2020, 43, 92–97. [Google Scholar] [CrossRef]
  21. Arnaud, L.; Mathian, A.; Boddaert, J.; Amoura, Z. Late-onset systemic lupus erythematosus: Epidemiology, diagnosis and treatment. Drugs Aging 2012, 29, 181–189. [Google Scholar] [CrossRef]
  22. Pflugfelder, S.C.; de Paiva, C.S. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017, 124, S4–S13. [Google Scholar] [CrossRef]
  23. De Paiva, C.S.; Chotikavanich, S.; Pangelinan, S.B.; Pitcher, J.D.; Fang, B.; Zheng, X.; Ma, P.; Farley, W.J.; Siemasko, K.F.; Niederkorn, J.Y.; et al. IL-17 disrupts corneal barrier following desiccating stress. Mucosal. Immunol. 2009, 2, 243–253. [Google Scholar] [CrossRef] [PubMed]
  24. García-Posadas, L.; Hodges, R.R.; Li, D.; Shatos, M.A.; Storr-Paulsen, T.; Diebold, Y.; Dartt, D.A. Interaction of IFN-γ with cholinergic agonists to modulate rat and human goblet cell function. Mucosal. Immunol. 2016, 9, 206–217. [Google Scholar] [CrossRef] [PubMed]
  25. Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
  26. Wieczorek, R.; Jakobiec, F.A.; Sacks, E.H.; Knowles, D.M. The immunoarchitecture of the normal human lacrimal gland. Relevancy for understanding pathologic conditions. Ophthalmology 1988, 95, 100–109. [Google Scholar] [CrossRef]
  27. Bozic, B.; Pruijn, G.J.; Rozman, B.; van Venrooij, W.J. Sera from patients with rheumatic diseases recognize different epitope regions on the 52-kD Ro/SS-A protein. Clin. Exp. Immunol. 1993, 94, 227–235. [Google Scholar] [CrossRef]
  28. Patel, S.; Hwang, J.; Mehra, D.; Galor, A. Corneal Nerve Abnormalities in Ocular and Systemic Diseases. Exp. Eye Res. 2021, 202, 108284. [Google Scholar] [CrossRef] [PubMed]
  29. Villani, E.; Galimberti, D.; Viola, F.; Mapelli, C.; Ratiglia, R. The cornea in Sjogren’s syndrome: An in vivo confocal study. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2017–2022. [Google Scholar] [CrossRef]
  30. Benítez del Castillo, J.M.; Wasfy, M.A.S.; Fernandez, C.; Garcia-Sanchez, J. An in vivo confocal masked study on corneal epithelium and subbasal nerves in patients with dry eye. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3030–3035. [Google Scholar] [CrossRef] [PubMed]
  31. Xu, K.P.; Yagi, Y.; Tsubota, K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea 1996, 15, 235–239. [Google Scholar] [CrossRef]
  32. Ogawa, Y. Sjögren’s Syndrome, Non-Sjögren’s Syndrome, and Graft-Versus-Host Disease Related Dry Eye. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES71–DES79. [Google Scholar] [CrossRef] [PubMed]
  33. Moon, J.; Yoon, C.H.; Choi, S.H.; Kim, M.K. Can Gut Microbiota Affect Dry Eye Syndrome? Int. J. Mol. Sci. 2020, 21, 8443. [Google Scholar] [CrossRef] [PubMed]
  34. Kowalski, E.N.; Qian, G.; Vanni, K.M.M.; Sparks, J.A. A Roadmap for Investigating Preclinical Autoimmunity Using Patient-Oriented and Epidemiologic Study Designs: Example of Rheumatoid Arthritis. Front. Immunol. 2022, 13, 890996. [Google Scholar] [CrossRef]
  35. Wang, Y.; Chen, S.; Chen, J.; Xie, X.; Gao, S.; Zhang, C.; Zhou, S.; Wang, J.; Mai, R.; Lin, Q.; et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome highlight T cell-initiated autoimmunity. Ann. Rheum. Dis. 2020, 79, 268–275. [Google Scholar] [CrossRef]
  36. de Paiva, C.S.; Trujillo-Vargas, C.M.; Schaefer, L.; Yu, Z.; Britton, R.A.; Pflugfelder, S.C. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front. Immunol. 2021, 12, 702755. [Google Scholar] [CrossRef]
  37. Mavragani, C.P.; Moutsopoulos, H.M. The geoepidemiology of Sjogren’s syndrome. Autoimmun. Rev. 2010, 9, A305–A310. [Google Scholar] [CrossRef] [PubMed]
  38. Haugen, A.J.; Peen, E.; Hulten, B.; Johannessen, A.C.; Brun, J.G.; Halse, A.K.; Haga, H.J. Estimation of the prevalence of primary Sjogren’s syndrome in two age-different community-based populations using two sets of classification criteria: The Hordaland Health Study. Scand. J. Rheumatol. 2008, 37, 30–34. [Google Scholar] [CrossRef]
  39. Gøransson, L.G.; Haldorsen, K.; Brun, J.G.; Harboe, E.; Jonsson, M.V.; Skarstein, K.; Time, K.; Omdal, R. The point prevalence of clinically relevant primary Sjögren’s syndrome in two Norwegian counties. Scand. J. Rheumatol. 2011, 40, 221–224. [Google Scholar] [CrossRef]
  40. Jonsson, R.; Vogelsang, P.; Volchenkov, R.; Espinosa, A.; Wahren-Herlenius, M.; Appel, S. The complexity of Sjogren’s syndrome: Novel aspects on pathogenesis. Immunol. Lett. 2011, 141, 1–9. [Google Scholar] [CrossRef]
  41. Caffery, B.; Simpson, T.; Wang, S.; Bailey, D.; McComb, J.; Rutka, J.; Slomovic, A.; Bookman, A. Rose bengal staining of the temporal conjunctiva differentiates Sjogren’s syndrome from keratoconjunctivitis sicca. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
  42. Ronnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Upsala J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef] [PubMed]
  43. Fayyaz, A.; Kurien, B.T.; Scofield, R.H. Autoantibodies in Sjogren’s Syndrome. Rheum. Dis. Clin. N. Am. 2016, 42, 419–434. [Google Scholar] [CrossRef] [PubMed]
  44. Vosters, J.L.; Landek-Salgado, M.A.; Yin, H.; Swaim, W.D.; Kimura, H.; Tak, P.P.; Caturegli, P.; Chiorini, J.A. Interleukin-12 induces salivary gland dysfunction in transgenic mice, providing a new model of Sjogren’s syndrome. Arthritis Rheum. 2009, 60, 3633–3641. [Google Scholar] [CrossRef]
  45. Turpie, B.; Yoshimura, T.; Gulati, A.; Rios, J.D.; Dartt, D.A.; Masli, S. Sjögren’s Syndrome-Like Ocular Surface Disease in Thrombospondin-1 Deficient Mice. Am. J. Pathol. 2009, 175, 1136–1147. [Google Scholar] [CrossRef]
  46. De Paiva, C.S.; Hwang, C.S.; Pitcher, J.D., 3rd; Pangelinan, S.B.; Rahimy, E.; Chen, W.; Yoon, K.C.; Farley, W.J.; Niederkorn, J.Y.; Stern, M.E.; et al. Age-related T-cell cytokine profile parallels corneal disease severity in Sjogren’s syndrome-like keratoconjunctivitis sicca in CD25KO mice. Rheumatology 2010, 49, 246–258. [Google Scholar] [CrossRef]
  47. Kosenda, K.; Ichii, O.; Otsuka, S.; Hashimoto, Y.; Kon, Y. BXSB/MpJ-Yaa mice develop autoimmune dacryoadenitis with the appearance of inflammatory cell marker messenger RNAs in the lacrimal fluid. Clin. Exp. Ophthalmol. 2013, 41, 788–797. [Google Scholar] [CrossRef]
  48. Hayashi, T.; Hayashi, H.; Fujii, T.; Adachi, C.; Hasegawa, K. Ultrastructure of myoepithelial cells as a target cell in sialoadenitis of submandibular glands of lupus-prone female NZBxNZWF1 mice. Virchows Arch. 2008, 453, 177–188. [Google Scholar] [CrossRef]
  49. Hawley, D.; Tang, X.; Zyrianova, T.; Shah, M.; Janga, S.; Letourneau, A.; Schicht, M.; Paulsen, F.; Hamm-Alvarez, S.; Makarenkova, H.P.; et al. Myoepithelial cell-driven acini contraction in response to oxytocin receptor stimulation is impaired in lacrimal glands of Sjögren’s syndrome animal models. Sci. Rep. 2018, 8, 9919. [Google Scholar] [CrossRef]
  50. Hayashi, T.; Shimoyama, N.; Mizuno, T. Destruction of salivary and lacrimal glands by Th1-polarized reaction in a model of secondary Sjogren’s syndrome in lupus-prone female NZB x NZWF(1) mice. Inflammation 2012, 35, 638–646. [Google Scholar] [CrossRef]
  51. Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. TFOS DEWS II pain and sensation report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef] [PubMed]
  52. Villani, E.; Magnani, F.; Viola, F.; Santaniello, A.; Scorza, R.; Nucci, P.; Ratiglia, R. In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom. Vis. Sci. 2013, 90, 576–586. [Google Scholar] [CrossRef]
  53. Li, F.; Zhang, Q.; Ying, X.; He, J.; Jin, Y.; Xu, H.; Cheng, Y.; Zhao, M. Corneal nerve structure in patients with primary Sjogren’s syndrome in China. BMC Ophthalmol. 2021, 21, 211. [Google Scholar] [CrossRef] [PubMed]
  54. Zeng, M.; Szymczak, M.; Ahuja, M.; Zheng, C.; Yin, H.; Swaim, W.; Chiorini, J.A.; Bridges, R.J.; Muallem, S. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice. Gastroenterology 2017, 153, 1148–1159. [Google Scholar] [CrossRef]
  55. Akpek, E.K.; Bunya, V.Y.; Saldanha, I.J. Sjögren’s Syndrome: More Than Just Dry Eye. Cornea 2019, 38, 658–661. [Google Scholar] [CrossRef]
  56. Liew, M.S.; Zhang, M.; Kim, E.; Akpek, E.K. Prevalence and predictors of Sjogren’s syndrome in a prospective cohort of patients with aqueous-deficient dry eye. Br. J. Ophthalmol. 2012, 96, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
  57. Zi, C.; Huang, Q.; Ren, Y.; Yao, H.; He, T.; Gao, Y. Meibomian gland dysfunction and primary Sjogren’s syndrome dry eye: A protocol for systematic review and meta-analysis. BMJ Open 2021, 11, e048336. [Google Scholar] [CrossRef]
  58. Menzies, K.L.; Srinivasan, S.; Prokopich, C.L.; Jones, L. Infrared imaging of meibomian glands and evaluation of the lipid layer in Sjogren’s syndrome patients and nondry eye controls. Investig. Ophthalmol. Vis. Sci. 2015, 56, 836–841. [Google Scholar] [CrossRef]
  59. Mancel, E.; Janin, A.; Gosset, D.; Hatron, P.Y.; Gosselin, B. Conjunctival Biopsy in Scleroderma and Primary Sjögren’s Syndrome. Am. J. Ophthalmol. 1993, 115, 792–799. [Google Scholar] [CrossRef]
  60. Diebold, Y.; Chen, L.-L.; Tepavcevic, V.; Ferdman, D.; Hodges, R.R.; Dartt, D.A. Lymphocytic infiltration and goblet cell marker alteration in the conjunctiva of the MRL/MpJ-Fas(lpr) mouse model of Sjögren’s syndrome. Exp. Eye Res. 2007, 84, 500–512. [Google Scholar] [CrossRef]
  61. Alam, J.; de Paiva, C.S.; Pflugfelder, S.C. Desiccation Induced Conjunctival Monocyte Recruitment and Activation-Implications for Keratoconjunctivitis. Front. Immunol. 2021, 12, 701415. [Google Scholar] [CrossRef] [PubMed]
  62. Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
  63. Minichiello, E.; Semerano, L.; Boissier, M.C. Time trends in the incidence, prevalence, and severity of rheumatoid arthritis: A systematic literature review. Jt. Bone Spine 2016, 83, 625–630. [Google Scholar] [CrossRef] [PubMed]
  64. Conforti, A.; Di Cola, I.; Pavlych, V.; Ruscitti, P.; Berardicurti, O.; Ursini, F.; Giacomelli, R.; Cipriani, P. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102735. [Google Scholar] [CrossRef] [PubMed]
  65. Murray, P.I.; Rauz, S. The eye and inflammatory rheumatic diseases: The eye and rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2016, 30, 802–825. [Google Scholar] [CrossRef] [PubMed]
  66. Villani, E.; Galimberti, D.; Del Papa, N.; Nucci, P.; Ratiglia, R. Inflammation in dry eye associated with rheumatoid arthritis: Cytokine and in vivo confocal microscopy study. Innate Immun. 2013, 19, 420–427. [Google Scholar] [CrossRef] [PubMed]
  67. Theander, E.; Jacobsson, L.T. Relationship of Sjogren’s syndrome to other connective tissue and autoimmune disorders. Rheum. Dis. Clin. N. Am. 2008, 34, 935–947, viii-ix. [Google Scholar] [CrossRef]
  68. Choudhary, M.M.; Hajj-Ali, R.A.; Lowder, C.Y. Gender and ocular manifestations of connective tissue diseases and systemic vasculitides. J. Ophthalmol. 2014, 2014, 403042. [Google Scholar] [CrossRef]
  69. El-Shazly, A.A.; Mohamed, A.A. Relation of dry eye to disease activity in juvenile rheumatoid arthritis. Eur. J. Ophthalmol. 2012, 22, 330–334. [Google Scholar] [CrossRef]
  70. Lemp, M.A. Dry eye (Keratoconjunctivitis Sicca), rheumatoid arthritis, and Sjogren’s syndrome. Am. J. Ophthalmol. 2005, 140, 898–899. [Google Scholar] [CrossRef]
  71. Usuba, F.S.; de Medeiros-Ribeiro, A.C.; Novaes, P.; Aikawa, N.E.; Bonfiglioli, K.; Santo, R.M.; Bonfa, E.; Alves, M.R. Dry eye in rheumatoid arthritis patients under TNF-inhibitors: Conjunctival goblet cell as an early ocular biomarker. Sci. Rep. 2020, 10, 14054. [Google Scholar] [CrossRef]
  72. Tong, L.; Thumboo, J.; Tan, Y.K.; Wong, T.Y.; Albani, S. The eye: A window of opportunity in rheumatoid arthritis? Nat. Rev. Rheumatol. 2014, 10, 552–560. [Google Scholar] [CrossRef]
  73. Schargus, M.; Wolf, F.; Tony, H.-P.; Meyer-Ter-Vehn, T.; Geerling, G. Correlation between tear film osmolarity, dry eye disease, and rheumatoid arthritis. Cornea 2014, 33, 1257–1261. [Google Scholar] [CrossRef]
  74. Somers, E.C.; Marder, W.; Cagnoli, P.; Lewis, E.E.; DeGuire, P.; Gordon, C.; Helmick, C.G.; Wang, L.; Wing, J.J.; Dhar, J.P.; et al. Population-based incidence and prevalence of systemic lupus erythematosus: The Michigan Lupus Epidemiology and Surveillance program. Arthritis Rheumatol. 2014, 66, 369–378. [Google Scholar] [CrossRef]
  75. Alani, H.; Henty, J.R.; Thompson, N.L.; Jury, E.; Ciurtin, C. Systematic review and meta-analysis of the epidemiology of polyautoimmunity in Sjogren’s syndrome (secondary Sjogren’s syndrome) focusing on autoimmune rheumatic diseases. Scand. J. Rheumatol. 2018, 47, 141–154. [Google Scholar] [CrossRef]
  76. Gawdat, G.; El-Fayoumi, D.; Marzouk, H.; Farag, Y. Ocular Manifestations in Children with Juvenile-Onset Systemic Lupus Erythematosus. Semin. Ophthalmol. 2018, 33, 470–476. [Google Scholar] [CrossRef]
  77. Cervera, R.; Khamashta, M.A.; Font, J.; Sebastiani, G.D.; Gil, A.; Lavilla, P.; Doménech, I.; Aydintug, A.O.; Jedryka-Góral, A.; de Ramón, E. Systemic lupus erythematosus: Clinical and immunologic patterns of disease expression in a cohort of 1,000 patients. The European Working Party on Systemic Lupus Erythematosus. Medicine 1993, 72, 113–124. [Google Scholar] [CrossRef]
  78. Farland, L.V.; Missmer, S.A.; Bijon, A.; Gusto, G.; Gelot, A.; Clavel-Chapelon, F.; Mesrine, S.; Boutron-Ruault, M.C.; Kvaskoff, M. Associations among body size across the life course, adult height and endometriosis. Hum. Reprod. 2017, 32, 1732–1742. [Google Scholar] [CrossRef]
  79. Mirzayan, M.J.; Schmidt, R.E.; Witte, T. Prognostic parameters for flare in systemic lupus erythematosus. Rheumatology 2000, 39, 1316–1319. [Google Scholar] [CrossRef]
  80. Smith, P.P.; Gordon, C. Systemic lupus erythematosus: Clinical presentations. Autoimmun. Rev. 2010, 10, 43–45. [Google Scholar] [CrossRef]
  81. Chen, A.; Chen, H.T.; Hwang, Y.H.; Chen, Y.T.; Hsiao, C.H.; Chen, H.C. Severity of dry eye syndrome is related to anti-dsDNA autoantibody in systemic lupus erythematosus patients without secondary Sjogren syndrome: A cross-sectional analysis. Medicine 2016, 95, e4218. [Google Scholar] [CrossRef]
  82. Resch, M.D.; Marsovszky, L.; Nemeth, J.; Bocskai, M.; Kovacs, L.; Balog, A. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J. Ophthalmol. 2015, 2015, 543835. [Google Scholar] [CrossRef]
  83. Gu, Z.; Lu, Q.; Zhang, A.; Shuai, Z.W.; Liao, R. Analysis of Ocular Surface Characteristics and Incidence of Dry Eye Disease in Systemic Lupus Erythematosus Patients Without Secondary Sjogren’s Syndrome. Front. Med. 2022, 9, 833995. [Google Scholar] [CrossRef]
  84. Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
  85. Chifflot, H.; Fautrel, B.; Sordet, C.; Chatelus, E.; Sibilia, J. Incidence and prevalence of systemic sclerosis: A systematic literature review. Semin. Arthritis Rheum. 2008, 37, 223–235. [Google Scholar] [CrossRef]
  86. Tailor, R.; Gupta, A.; Herrick, A.; Kwartz, J. Ocular manifestations of scleroderma. Surv. Ophthalmol. 2009, 54, 292–304. [Google Scholar] [CrossRef]
  87. Wang, Y.; Grenell, A.; Zhong, F.; Yam, M.; Hauer, A.; Gregor, E.; Zhu, S.; Lohner, D.; Zhu, J.; Du, J. Metabolic signature of the aging eye in mice. Neurobiol. Aging 2018, 71, 223–233. [Google Scholar] [CrossRef]
  88. Cascio, C.; Deidda, I.; Russo, D.; Guarneri, P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015, 103, 31–41. [Google Scholar] [CrossRef]
  89. Pescosolido, N.; Imperatrice, B.; Karavitis, P. The aging eye and the role of L-carnitine and its derivatives. Drugs R D 2008, 9 (Suppl. S1), 3–14. [Google Scholar] [CrossRef]
  90. Pontelli, R.C.N.; Rocha, B.A.; Garcia, D.M.; Pereira, L.A.; Souza, M.C.O.; Barbosa, F.; Rocha, E.M. Endocrine disrupting chemicals associated with dry eye syndrome. Ocul. Surf. 2020, 18, 487–493. [Google Scholar] [CrossRef]
  91. Li, M.; Yang, T.; Gao, L.; Xu, H. An inadvertent issue of human retina exposure to endocrine disrupting chemicals: A safety assessment. Chemosphere 2021, 264, 128484. [Google Scholar] [CrossRef]
  92. Han, S.B.; Yang, H.K.; Hyon, J.Y. Influence of diabetes mellitus on anterior segment of the eye. Clin. Interv. Aging 2019, 14, 53–63. [Google Scholar] [CrossRef]
  93. Manaviat, M.R.; Rashidi, M.; Afkhami-Ardekani, M.; Shoja, M.R. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol. 2008, 8, 10. [Google Scholar] [CrossRef]
  94. Ajith, T.A. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1883–1890. [Google Scholar] [CrossRef]
  95. Androudi, S.; Dastiridou, A.; Symeonidis, C.; Kump, L.; Praidou, A.; Brazitikos, P.; Kurup, S.K. Retinal vasculitis in rheumatic diseases: An unseen burden. Clin. Rheumatol. 2013, 32, 7–13. [Google Scholar] [CrossRef]
  96. Szucs, G.; Szekanecz, Z.; Aszalos, Z.; Gesztelyi, R.; Zsuga, J.; Szodoray, P.; Kemeny-Beke, A. A Wide Spectrum of Ocular Manifestations Signify Patients with Systemic Sclerosis. Ocul. Immunol. Inflamm. 2021, 29, 81–89. [Google Scholar] [CrossRef]
  97. Conigliaro, P.; Cesareo, M.; Chimenti, M.S.; Triggianese, P.; Canofari, C.; Barbato, C.; Giannini, C.; Salandri, A.G.; Nucci, C.; Perricone, R. Take a look at the eyes in Systemic Lupus Erythematosus: A novel point of view. Autoimmun. Rev. 2019, 18, 247–254. [Google Scholar] [CrossRef]
  98. Berman, J.L.; Kashii, S.; Trachtman, M.S.; Burde, R.M. Optic neuropathy and central nervous system disease secondary to Sjögren’s syndrome in a child. Ophthalmology 1990, 97, 1606–1609. [Google Scholar] [CrossRef]
  99. Yang, J.M.; Heo, H.; Park, S.W. Relationship between retinal morphological findings and autoantibody profile in primary Sjögren’s syndrome. Jpn. J. Ophthalmol. 2014, 58, 359–368. [Google Scholar] [CrossRef]
  100. Liu, R.; Wang, Y.; Li, Q.; Xia, Q.; Xu, T.; Han, T.; Cai, S.; Luo, S.; Wu, R.; Shao, Y. Optical Coherence Tomography Angiography Biomarkers of Retinal Thickness and Microvascular Alterations in Sjogren’s Syndrome. Front. Neurol. 2022, 13, 853930. [Google Scholar] [CrossRef]
  101. Ayar, K.; Can, M.E.; Koca, N.; Çelik, D.Ş. Evaluation of retinal vascularization by optical coherence tomography angiography (OCTA) in rheumatoid arthritis, and its relationship with disease activity. Mod. Rheumatol. 2021, 31, 817–826. [Google Scholar] [CrossRef]
  102. Giordano, N.; D’Ettorre, M.; Biasi, G.; Fioravanti, A.; Moretti, L.; Marcolongo, R. Retinal vasculitis in rheumatoid arthritis: An angiographic study. Clin. Exp. Rheumatol. 1990, 8, 121–125. [Google Scholar] [CrossRef]
  103. Hakim, F.E.; Farooq, A.V. Dry Eye Disease: An Update in 2022. JAMA 2022, 327, 478–479. [Google Scholar] [CrossRef]
  104. Vitale, S.; Goodman, L.A.; Reed, G.F.; Smith, J.A. Comparison of the NEI-VFQ and OSDI questionnaires in patients with Sjogren’s syndrome-related dry eye. Health Qual. Life Outcomes 2004, 2, 44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.