Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains
Abstract
:1. Introduction
2. Biosynthesis of Carotenoids
3. Technology for Discovering Novel Gene Targets
4. Gene Targets in the Carotenoid Synthetic Pathway
5. Gene Targets Involved in the Carotenoid Biosynthetic Pathway
5.1. Central Metabolic Pathway
5.2. MEP and MVA Pathways
5.3. Lipid Pathway
6. Gene Targets Outside the Carotenoid Biosynthetic Pathway
7. Gene Targets Involved in Regulatory Networks
8. Bioprocess Engineering
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.M.; Shin, J.; Keum, Y.S.; Lee, J.H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.; Palou, A. Chromatographic determination of carotenoids in foods. J. Chromatogr. A 2000, 881, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Böhm, V.; Borge, G.I.A.; Cano, M.P.; Fikselová, M.; Gruskiene, R.; Lavelli, V.; Loizzo, M.R.; Mandić, A.I.; Brahm, P.M.; et al. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annu. Rev. Food Sci. Technol. 2021, 12, 433–460. [Google Scholar] [CrossRef] [PubMed]
- The Global Market for Carotenoids. Available online: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html (accessed on 27 November 2023).
- Mussagy, C.U.; Khan, S.; Kot, A.M. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit. Rev. Food Sci. Nutr. 2022, 62, 6932–6946. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. J. Ind. Microbiol. Biotechnol. 2019, 46, 657–674. [Google Scholar] [CrossRef]
- Igreja, W.S.; Maia, F.D.; Lopes, A.S.; Chisté, R.C. Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review. Int. J. Mol. Sci. 2021, 22, 8819. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Flora, G.; Sevanan, M.; Sripriya, R.; Chen, W.H.; Park, J.-H.; Rajesh Banu, J.; Kumar, G. Technological advances in the production of carotenoids and their applications–A critical review. Bioresour. Technol. 2023, 367, 128215. [Google Scholar] [CrossRef]
- Lyu, X.M.; Lyu, Y.; Yu, H.W.; Chen, W.N.; Ye, L.D.; Yang, R.J. Biotechnological advances for improving natural pigment production: A state-of-the-art review. Bioresour. Bioprocess. 2022, 9, 8. [Google Scholar] [CrossRef]
- Joshi, K.; Kumar, P.; Kataria, R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem. 2023, 128, 190–205. [Google Scholar] [CrossRef]
- Li, M.J.; Hou, F.F.; Wu, T.; Jiang, X.L.; Li, F.L.; Liu, H.B.; Xian, M.; Zhang, H.B. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep. 2020, 37, 80–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, S.; Shao, X.; Park, J.B.; Jeong, S.H.; Park, H.J.; Kwak, W.J.; Wei, G.; Kim, S.W. Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microb. Cell Factories 2019, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.; Groll, M. The Methylerythritol Phosphate Pathway to Isoprenoids. Chem. Rev. 2017, 117, 5675–5703. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Sharkey, T.D. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat. Prod. Rep. 2014, 31, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Hou, J.; Deng, H.-K.; Wang, L.-J. Microbial production of mevalonate. J. Biotechnol. 2023, 370, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.; Hemmerlin, A.; Bach, T.J.; Chye, M.-L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv. 2016, 34, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Navale, G.R.; Dharne, M.S.; Shinde, S.S. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2021, 105, 457–475. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Too, H.P. Microbial astaxanthin biosynthesis: Recent achievements, challenges, and commercialization outlook. Appl. Microbiol. Biotechnol. 2020, 104, 5725–5737. [Google Scholar] [CrossRef]
- Volk, M.J.; Tran, V.G.; Tan, S.I.; Mishra, S.; Fatma, Z.; Boob, A.; Li, H.; Xue, P. Metabolic Engineering: Methodologies and Applications. Chem. Rev. 2023, 123, 5521–5570. [Google Scholar] [CrossRef]
- Brettner, L.; Ho, W.-C.; Schmidlin, K.; Apodaca, S.; Eder, R.; Geiler-Samerotte, K. Challenges and potential solutions for studying the genetic and phenotypic architecture of adaptation in microbes. Curr. Opin. Genet. Dev. 2022, 75, 101951. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Yang, Q.; Yang, J. Metabolic Engineering Escherichia coli for the Production of Lycopene. Molecules 2020, 25, 3136. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Xia, Q.Q.; Zhang, H.B.; Zhang, R.B.; Yang, J.M. Metabolic Engineering of Different Microbial Hosts for Lycopene Production. J. Agric. Food Chem. 2020, 68, 14104–14122. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Lee, Y.M.; Yoon, S.H.; Kim, J.H.; Ock, S.W.; Jung, K.H.; Shin, Y.C.; Keasling, J.D.; Kim, S.W. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol. Bioeng. 2005, 91, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Alper, H.; Miyaoku, K.; Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 2005, 23, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Alper, H.; Jin, Y.S.; Moxley, J.F.; Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 2005, 7, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.-S.; Stephanopoulos, G. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab. Eng. 2007, 9, 337–347. [Google Scholar] [CrossRef]
- Stephanopoulos, G.; Alper, H.; Moxley, J. Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol. 2004, 22, 1261–1267. [Google Scholar] [CrossRef]
- Park, S.Y.; Yang, D.; Ha, S.H.; Lee, S.Y. Metabolic engineering of microorganisms for the production of natural compounds. Adv. BioSyst. 2018, 2, 1700190. [Google Scholar] [CrossRef]
- Lopes, H.; Rocha, I. Genome-scale modeling of yeast: Chronology, applications and critical perspectives. FEMS Yeast Res. 2017, 17, fox050. [Google Scholar] [CrossRef]
- Yen, J.Y.; Tanniche, I.; Fisher, A.K.; Gillaspy, G.E.; Bevan, D.R.; Senger, R.S. Designing metabolic engineering strategies with genome-scale metabolic flux modeling. Adv. Genom. Genet. 2015, 2015, 93–105. [Google Scholar]
- Wang, J.-F.; Meng, H.-L.; Xiong, Z.-Q.; Zhang, S.-L.; Wang, Y. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli. Biotechnol. Lett. 2014, 36, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Currin, A.; Parker, S.; Robinson, C.J.; Takano, E.; Scrutton, N.S.; Breitling, R. The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnol. Adv. 2021, 50, 107762. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, J.; Ji, X.; Fang, Z.; Wu, Z.; Chen, J.; Du, G. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 2018, 102, 4615–4627. [Google Scholar] [CrossRef] [PubMed]
- Leavell, M.D.; Singh, A.H.; Kaufmann-Malaga, B.B. High-throughput screening for improved microbial cell factories, perspective and promise. Curr. Opin. Biotechnol. 2020, 62, 22–28. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; Yao, M.; Gu, X.; Li, B.; Liu, H.; Ding, M.; Xiao, W.; Yuan, Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol. Biofuels 2018, 11, 230. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, X.L.; Liu, J.Z. Adaptive laboratory evolution and shuffling of to enhance its tolerance and production of astaxanthin. Biotechnol. Biofuels Bioprod. 2022, 15, 17. [Google Scholar] [CrossRef]
- Godara, A.; Rodriguez, M.A.G.; Weatherston, J.D.; Peabody, G.L.; Wu, H.-J.; Kao, K.C. Beneficial mutations for carotenoid production identified from laboratory-evolved Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2019, 46, 1793–1804. [Google Scholar] [CrossRef]
- Li, J.; Shen, J.; Sun, Z.; Li, J.; Li, C.; Li, X.; Zhang, Y. Discovery of Several Novel Targets that Enhance β-Carotene Production in Saccharomyces cerevisiae. Front. Microbiol. 2017, 8, 1116. [Google Scholar] [CrossRef]
- Reyes, L.H.; Gomez, J.M.; Kao, K.C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 2014, 21, 26–33. [Google Scholar] [CrossRef]
- Su, B.; Lai, P.; Yang, F.; Li, A.; Deng, M.-R.; Zhu, H. Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering. J. Agric. Food Chem. 2022, 70, 4019–4029. [Google Scholar] [CrossRef]
- Su, B.; Li, A.; Deng, M.-R.; Zhu, H. Identification of a novel metabolic engineering target for carotenoid production in Saccharomyces cerevisiae via ethanol-induced adaptive laboratory evolution. Bioresour. Bioprocess. 2021, 8, 47. [Google Scholar] [CrossRef]
- Niu, F.X.; Lu, Q.; Bu, Y.F.; Liu, J.Z. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Syn. Syst. Biotechnol. 2017, 2, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Swofford, C.A.; Sinskey, A.J. Modular engineering for microbial production of carotenoids. Metab. Eng. Commun. 2020, 10, e00118. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Liu, Y.; Jiang, H.; Liu, J.; Ma, Y. Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr. Opin. Biotechnol. 2020, 66, 27–35. [Google Scholar] [CrossRef]
- Ye, L.; Yang, C.; Yu, H. From molecular engineering to process engineering: Development of high-throughput screening methods in enzyme directed evolution. Appl. Microbiol. Biotechnol. 2018, 102, 559–567. [Google Scholar] [CrossRef]
- Eriksen, D.T.; Lian, J.; Zhao, H. Protein design for pathway engineering. J. Struct. Biol. 2014, 185, 234–242. [Google Scholar] [CrossRef]
- Abatemarco, J.; Hill, A.; Alper, H.S. Expanding the metabolic engineering toolbox with directed evolution. Biotechnol. J. 2013, 8, 1397–1410. [Google Scholar] [CrossRef]
- Xie, W.; Lv, X.; Ye, L.; Zhou, P.; Yu, H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 2015, 30, 69–78. [Google Scholar] [CrossRef]
- Zhou, P.; Xie, W.; Li, A.; Wang, F.; Yao, Z.; Bian, Q.; Zhu, Y.; Yu, H.; Ye, L. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzym. Microb. Technol. 2017, 100, 28–36. [Google Scholar] [CrossRef]
- Lee, P.C.; Petri, R.; Mijts, B.N.; Watts, K.T.; Schmidt-Dannert, C. Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity. Metab. Eng. 2005, 7, 18–26. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, C.; Liang, N.; Xiao, W.; Wang, Y.; Yao, M.; Yuan, Y. Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in Saccharomyces cerevisiae via Enhanced Precursors Supply and Utilization. J. Agric. Food Chem. 2023, 71, 3821–3831. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, N.; Greisen, P.; Li, J.; Qiao, K.; Huang, S.; Stephanopoulos, G. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat. Commun. 2022, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Wang, C.; Jang, H.J.; Cha, M.S.; Park, J.E.; Jo, S.Y.; Choi, E.S.; Kim, S.W. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb. Cell Factories 2016, 15, 214. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Q.; Sun, T.; Zhu, X.; Xu, H.; Tang, J.; Zhang, X.; Ma, Y. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab. Eng. 2013, 17, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Meadows, A.L.; Hawkins, K.M.; Tsegaye, Y.; Antipov, E.; Kim, Y.; Raetz, L.; Dahl, R.H.; Tai, A.; Mahatdejkul-Meadows, T.; Xu, L.; et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 2016, 537, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-K.; Nie, M.-Y.; Chen, J.; Wei, L.-J.; Hua, Q. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J. Biotechnol. 2019, 289, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lim, J.H.; Kim, S.Y.; Im, D.-K.; Seok, J.Y.; Lee, S.-J.V.; Oh, M.-K.; Jung, G.Y. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metab. Eng. 2016, 38, 401–408. [Google Scholar] [CrossRef]
- Farmer, W.R.; Liao, J.C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 2001, 17, 57–61. [Google Scholar] [CrossRef]
- Li, C.; Ying, L.Q.; Zhang, S.S.; Chen, N.; Liu, W.F.; Tao, Y. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli. Microb. Cell Factories 2015, 14, 117. [Google Scholar] [CrossRef]
- Zhou, Y.; Nambou, K.; Wei, L.; Cao, J.; Imanaka, T.; Hua, Q. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 2013, 35, 2137–2145. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, P.; Li, Y.; Liu, X.; Wang, Z.; Chen, T.; Zhao, X. Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Front. Bioeng. Biotechnol. 2020, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cui, M.; Wang, X. Improvement of lycopene biosynthesis in waaC and waaF mutants of Escherichia coli by integrant expression of crtEBI gene and deletion of aceE and gdhA. Syst. Microbiol. Biomanuf. 2023, 3, 739–749. [Google Scholar] [CrossRef]
- Rinaldi, M.A.; Ferraz, C.A.; Scrutton, N.S. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat. Prod. Rep. 2022, 39, 90–118. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Noh, M.H.; Woo, S.; Lim, H.G.; Jung, G.Y. Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg. Catalysts 2019, 9, 1003. [Google Scholar] [CrossRef]
- Gong, Z.K.; Wang, H.L.; Tang, J.L.; Bi, C.H.; Li, Q.Y.; Zhang, X.L. Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in Escherichia coli. J. Agric. Food Chem. 2020, 68, 14917–14927. [Google Scholar] [CrossRef]
- Park, S.Y.; Binkley, R.M.; Kim, W.J.; Lee, M.H.; Lee, S.Y. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 2018, 49, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiong, Z.; Li, S.; Wang, Y. Exploiting exogenous MEP pathway genes to improve the downstream isoprenoid pathway effects and enhance isoprenoid production in Escherichia coli. Process Biochem. 2015, 50, 24–32. [Google Scholar] [CrossRef]
- Lv, X.; Xu, H.; Yu, H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl. Microbiol. Biotechnol. 2013, 97, 2357–2365. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Liu, C.; Zhang, H.; Xian, M.; Liu, H. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microb. Cell Factories 2018, 17, 65. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, Y.M.; Kim, J.E.; Lee, S.H.; Lee, J.H.; Kim, J.Y.; Jung, K.H.; Shin, Y.C.; Keasling, J.D.; Kim, S.W. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 2006, 94, 1025–1032. [Google Scholar] [CrossRef]
- Verwaal, R.; Wang, J.; Meijnen, J.-P.; Visser, H.; Sandmann, G.; Van den Berg, J.A.; van Ooyen, A.J. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 2007, 73, 4342–4350. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, F.; Ketelhot, M.; Gatter, M.; Barth, G. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 2014, 80, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, D.; Li, R.; Huang, L.; Dai, Z.; Zhang, X. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab. Eng. 2021, 67, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Huang, X.; Song, B.-L.; Yang, H. The biogenesis of lipid droplets: Lipids take center stage. Prog. Lipid Res. 2019, 75, 100989. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Vighi, A.; Dong, Y.; Bureau, J.-A.; Ignea, C. Engineering membrane architecture for biotechnological applications. Biotechnol. Adv. 2023, 64, 108118. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shi, B.; Ye, Z.; Li, X.; Liu, M.; Chen, Y.; Xia, J.; Nielsen, J.; Deng, Z.; Liu, T. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 2019, 52, 134–142. [Google Scholar] [CrossRef]
- Bu, X.; Lin, J.Y.; Duan, C.Q.; Koffas, M.A.G.; Yan, G.L. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microb. Cell Factories 2022, 21, 3. [Google Scholar] [CrossRef]
- Li, M.; Zhou, P.; Chen, M.; Yu, H.; Ye, L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth. Biol. 2022, 11, 2636–2649. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Nielsen, J.; Liu, Z. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol. Bioeng. 2021, 118, 2043–2052. [Google Scholar] [CrossRef]
- Yang, F.; Liu, L.; Qiang, S.; Hu, C.Y.; Li, Y.; Meng, Y.H. Enhanced β-carotene production by overexpressing the DID2 gene, a subunit of ESCRT complex, in engineered Yarrowia lipolytica. Biotechnol. Lett. 2021, 43, 1799–1807. [Google Scholar] [CrossRef]
- Guo, Q.; Peng, Q.Q.; Li, Y.W.; Yan, F.; Wang, Y.T.; Ye, C.; Shi, T.Q. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit. Rev. Biotechnol. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Li, A.; Deng, M.R.; Zhu, H. Transcriptome Analysis Reveals a Promotion of Carotenoid Production by Copper Ions in Recombinant Saccharomyces cerevisiae. Microorganisms 2021, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Park, S.H.; Kim, S.; Kim, S.W.; Hahn, J.S. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl. Microbiol. Biotechnol. 2019, 103, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Yu, H.; Ye, L. Enhanced astaxanthin production in S. cerevisiae by combinatorial engineering of gene targets outside the synthetic pathway. Biochem. Eng. J. 2023, 200, 109097. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Liu, M.; Qu, J.Z.; Yao, M.D.; Li, B.; Ding, M.Z.; Liu, H.; Xiao, W.H.; Yuan, Y.J. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ PL062W) in Metabolically Engineered Terpenoid-Producing. Appl. Environ. Microbiol. 2019, 85, e01990–18. [Google Scholar] [CrossRef]
- Papapostolou, H.; Kachrimanidou, V.; Alexandri, M.; Plessas, S.; Papadaki, A.; Kopsahelis, N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants 2023, 12, 1030. [Google Scholar] [CrossRef]
- Guo, L.; Pang, Z.; Gao, C.; Chen, X.; Liu, L. Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Curr. Opin. Biotechnol. 2020, 66, 18–26. [Google Scholar] [CrossRef]
- Wu, T.; Ye, L.; Zhao, D.; Li, S.; Li, Q.; Zhang, B.; Bi, C. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech 2018, 8, 269. [Google Scholar] [CrossRef]
- Wu, T.; Ye, L.; Zhao, D.; Li, S.; Li, Q.; Zhang, B.; Bi, C.; Zhang, X. Membrane engineering–A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab. Eng. 2017, 43, 85–91. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, J.Z. Enhanced Astaxanthin Production in Escherichia coli via Morphology and Oxidative Stress Engineering. J. Agric. Food Chem. 2019, 67, 11703–11709. [Google Scholar] [CrossRef]
- Liu, M.M.; Zhang, J.; Ye, J.R.; Qi, Q.S.; Hou, J. Morphological and Metabolic Engineering of to Increase β-Carotene Production. ACS Synth. Biol. 2021, 10, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Ma, T.; Ye, Z.; Li, X.; Huang, Y.; Zhou, Z.; Ding, Y.; Deng, Z.; Liu, T. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Lycopene Overproduction. J. Agric. Food Chem. 2019, 67, 11148–11157. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Shen, B.; Li, M.; Ye, L.; Yu, H. Secretory Production of Tocotrienols in Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Avalos, M.; Garbeva, P.; Vader, L.; van Wezel, G.P. Biosynthesis, evolution and ecology of microbial terpenoids. Nat. Prod. Rep. 2022, 39, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.J.; Zhu, X.N.; Wu, T.; Wang, W.; Zhao, D.D.; Bi, C.H.; Zhang, X.L. Optimizing the localization of astaxanthin enzymes for improved productivity. Biotechnol. Biofuels 2018, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Lin, J.Y.; Cheng, J.; Yang, D.; Duan, C.Q.; Koffas, M.; Yan, G.L. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnol. Biofuels 2020, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Li, S.; Ye, L.; Zhao, D.; Fan, F.; Li, Q.; Zhang, B.; Bi, C.; Zhang, X. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of beta-Carotene in Escherichia coli. ACS Synth. Biol. 2019, 8, 1037–1046. [Google Scholar] [CrossRef]
- Fordjour, E.; Bai, Z.H.; Li, S.H.; Li, S.J.; Sackey, I.; Yang, Y.K.; Liu, C.L. Improved Membrane Permeability via Hypervesiculation for In Situ Recovery of Lycopene in Escherichia coli. ACS Synth. Biol. 2023, 12, 2725–2739. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Hu, X.; Wang, X. Effects of lipopolysaccharide structure on lycopene production in Escherichia coli. Enzym. Microb. Technol. 2019, 124, 9–16. [Google Scholar] [CrossRef]
- Cho, J.S.; Kim, G.B.; Eun, H.; Moon, C.W.; Lee, S.Y. Designing Microbial Cell Factories for the Production of Chemicals. JACS Au 2022, 2, 1781–1799. [Google Scholar] [CrossRef]
- Huang, L.; Pu, Y.; Yang, X.; Zhu, X.; Cai, J.; Xu, Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J. Biotechnol. 2015, 199, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Atlung, T.; Knudsen, K.; Heerfordt, L.; Brøndsted, L. Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. J. Bacteriol. 1997, 179, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresour. Technol. 2021, 337, 125398. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Winterburn, J.; Santos-Ebinuma, V.C.; Pereira, J.F.B. Production and extraction of carotenoids produced by microorganisms. Appl. Microbiol. Biotechnol. 2019, 103, 1095–1114. [Google Scholar] [CrossRef]
Types of Gene Target/Organisms | Genetic Modifications | Phenotypic Changes | Reference |
---|---|---|---|
In the synthetic pathway | |||
S. cerevisiae | Directed evolution of β-carotene ketolase (BKT) | 34% improvement in astaxanthin yield | [50] |
S. cerevisiae | Engineered CrtI mutant (Y160F&N576S) | 60% increase in lycopene yield | [52] |
Y. lipolytica | Engineered carRP mutant (Y27R) | 1441-fold improvement in β-carotene production | [53] |
Involved in the synthetic pathway | |||
Y. lipolytica | Overexpressed AMP deaminase-encoding gene AMPD | approximately 3-fold increase in lycopene content | [57] |
E. coli | Deletion of central carbon metabolic gene zwf | 130% enhancement in lycopene production | [62] |
E. coli | Directed evolution of isopentenyl diphosphate isomerase (IDI) | 2.1-fold increase in lycopene yield | [70] |
S. cerevisia | Overexpressed the fatty acid desaturase gene OLE1; deletion of the Seipin gene FLD1 | 25% increase in lycopene yield | [77] |
Y. lipolytica | Overexpressed the bottleneck genes HMG1 and GGS1 | increased the lycopene content 10.8-fold | [73] |
S. cerevisia | Overexpression of the sterol ester synthesis genes ARE1 and ARE2; deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) | 2.4-fold increase in β-carotene yield | [80] |
S. cerevisia | Deletion of TGL3, TGL4, and TGL5, encoding TAG lipase and SE hydrolase | 37% improvement in β-carotene yield | [78] |
S. cerevisiae | Deletion of opi3 and hrd1 | 43.5% improvement in astaxanthin yield | [79] |
S. cerevisia | Deletion of pfk1 | 5.1-fold increase in lycopene yield | [42] |
S. cerevisiae | Deletion of cho2 | 3.2-fold increase in lycopene yield | [41] |
S. cerevisiae | Overexpression of SOD1 | 2.6-fold increase in lycopene yield | [83] |
Outside the synthetic pathway | |||
S. cerevisia | Deletion of the HRD1 gene; overexpression of the transcription factor gene Pdr3 | 61.61% higher astaxanthin yield | [85] |
S. cerevisia | Deletion of CSS1 | 59% improvement in astaxanthin yield | [36] |
S. cerevisia | Deletion of YMRCTy1-3 | 2.1-fold improvement in astaxanthin yield | [38] |
E. coli | Deletion of waaC | 142% higher lycopene yield | [100] |
E. coli | Overexpression of Almgs, plsb, plsc, and dgka | 1.32-fold increase in lycopene yield | [89] |
Y. lipolytica | Deletion of CLA4 and MHY1 | 139% improvement in β-carotene yield | [92] |
E. coli | Overexpression of Almgs, Plsb and plsc | 2.9-fold increase in β-carotene yield | [90] |
S. cerevisia | Overexpression of the DID2 gene | 2.1-fold increase in β-carotene yield | [39] |
E. coli | Deletion of yadC and overexpression of rnb | 32% improvement in astaxanthin yield | [33] |
S. cerevisia | Deletion of YPL062W | 146% increase in lycopene yield | [86] |
E. coli | Localization of crtW to the membrane using the signal peptide of the outer membrane protein OmpF | 60% higher astaxanthin production | [67] |
E. coli | Localization of crtW and crtZ to the cell membrane by the glycerol channel protein GlpF | 215% increase in astaxanthin production | [96] |
E. coli | Deletion of gdhA, eutD; overexpression of tpiA, ompE, and ompN | 174% increase in lycopene titer | [32] |
E. coli | Deletion of aceE and gdhA | 140.85% increase in lycopene yield | [63] |
Y. lipolytica | Overexpression of the DID2 gene | 2.6-fold increase in β-carotene yield | [81] |
S. cerevisia | Deletion of exg1; overexpression of POS5, ALD6, and acetyl-CoA synthetase, ACS | 55% increase in lycopene production | [93] |
E. coli | Deletion of lpp, bamB, uspE, and yggE | 82% higher astaxanthin yield | [91] |
E. coli | Deletion of nlpI and tolR; overexpression of AccABCD and PlsBC | 61% increase in β-carotene | [98] |
E. coli | Deletion of lpp, nlpI, mlaE, and tolA | 59.34-fold improvement in extracellular lycopene production | [99] |
S. cerevisia | Overexpression of the ABC transporter gene Snq2 | 5.80-fold higher extracellular β-carotene production | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Deng, M.-R.; Zhu, H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023, 13, 1747. https://doi.org/10.3390/biom13121747
Su B, Deng M-R, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules. 2023; 13(12):1747. https://doi.org/10.3390/biom13121747
Chicago/Turabian StyleSu, Buli, Ming-Rong Deng, and Honghui Zhu. 2023. "Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains" Biomolecules 13, no. 12: 1747. https://doi.org/10.3390/biom13121747
APA StyleSu, B., Deng, M.-R., & Zhu, H. (2023). Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules, 13(12), 1747. https://doi.org/10.3390/biom13121747