The Effects of Lipids on α-Synuclein Aggregation In Vitro
Abstract
:1. Introduction
2. Collected Aggregation Studies
2.1. Summary of Studies
2.2. Phospholipids
2.3. Gangliosides
2.4. Polyunsaturated Fatty Acids
2.5. Biological Membrane Mimics
Ref. | Rate ^ | αS | Lipid | Ratio | Aggregation Conditions |
---|---|---|---|---|---|
[75] | ++ | WT | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[75] | ++ | WT | DLPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[75] | ** | WT | DLPS | 1:2, 1:1, 3:2, 2:1, 5:1, 10:1, 15:1, 20:1 | 20 mM sodium phosphate, pH 6.5, 50 μM αS, no shaking |
[75] | −2 | WT | DOPS | 1:1 | 20 mM sodium phosphate, pH 6.5, 100 um α-Syn, no shaking |
[75] | −2 | WT | POPS | 1:1 | 20 mM sodium phosphate, pH 6.5, 100 μM αS, no shaking |
[75] | −2 | WT | DPPS | 1:1 | 20 mM sodium phosphate, pH 6.5, 100 μM αS, no shaking |
[89] | ++ | WT | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[89] | 1 | A53T | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[89] | −1 | A30P | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[89] | −2 | E46K | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[89] | −2 | H50Q | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[89] | −2 | G51D | DMPS | 5:1, 5:2, 5:3, 5:4, 1:1 | 20 mM sodium phosphate, pH 6.5, no shaking |
[91] | 1 | WT | DPPC/DPPA SUVs | 1:5 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | 0 | WT | DPPC/DPPA SUVs | 1:1 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | −2 | WT | DPPC/DPPA SUVs | 5:1 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | 1 | WT | DPPC/DPPA LUVs | 1:5 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | 0 | WT | DPPC/DPPA LUVs | 1:1 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | −1 | WT | DPPC/DPPA LUVs | 5:1 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[91] | ** | WT | DPPC | 5:1, 10:1, 20:1 | 20 mM Tris, 100 mM NaCl, pH 7.5, 35 μM αS, shaking |
[28] | ## | WT | DMPS SUVs | 2:1, 4:1, 6:1, 8:1, 10:1, 15:1, 20:1, 30:1, 40:1 | 20 mM sodium phosphate, 0.01% sodium azide, pH 6.5, 50 μM αS, no shaking |
[28] | ** | WT | DMPS SUVs | 10:1, 10:2, 10:4, 10:6, 10:8, 1:1 | 20 mM sodium phosphate, 0.01% sodium azide, pH 6.5, no shaking |
[28] | ** | WT | DMPS LUVs | 10:1, 10:2, 10:4, 10:6, 10:8, 1:1 | 20 mM sodium phosphate, 0.01% sodium azide, pH 6.5, no shaking |
[85] | 1 | WT | DPPG/DPPC 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 0 | WT | DPPG/DPPC 1:1 SUVs | 1:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPG/DPPC 1:1 SUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 1 | WT | DPPA/DPPC 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 0 | WT | DPPA/DPPC 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPA/DPPC 1:1 SUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 1 | WT | DPPA/DPPE 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −1 | WT | DPPA/DPPE 1:1 SUVs | 1:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPA/DPPE 1:1 SUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 1 | WT | DPPG/DPPE 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −1 | WT | DPPG/DPPE 1:1 SUVs | 1:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPG/DPPE 1:1 SUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 1 | WT | DPPG/DPPC 1:1 LUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −1 | WT | DPPG/DPPC 1:1 LUVs | 1:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −1 | WT | DPPG/DPPC 1:1 LUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 0 | WT | DPPC SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 0 | WT | DPPC SUVs | 1:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 0 | WT | DPPC SUVs | 5:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | 1 | WT | DPPS/DPPC 1:1 SUVs | 1:2 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPS/DPPC 1:1 SUVs | 1:5 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPS/DPPC 1:1 SUVs | 10:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −1 | WT | DPPG/DPPE 1:1 SUVs | 10:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[85] | −2 | WT | DPPS/DPPE 1:1 SUVs | 10:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, μM αS, no shaking |
[85] | −2 | WT | DPPS/DPPC 1:1 SUVs | 10:1 | 20 mM Tris-HCl, 100 mM NaCl, pH 7.5, 35 μM αS, no shaking |
[101] | −1 | WT | DOPC SUVs | 20:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS, 100 rpm |
[93] | 1 | WT | DOPG SUVs | 20:1 | 20 mM Tris, 150 mM NaCl, pH 7.4, 50 μM αS, 500 rpm |
[93] | −2 | WT | DOPG SUVs | 50:1 | 20 mM Tris, 150 mM NaCl, pH 7.4, 50 μM αS, 500 rpm |
[83] | 0 | AcN | DPPC SUVs | 1:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, shaking |
[83] | 0 | AcN | DPPC SUVs | 10:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, shaking |
[83] | 0 | AcN | DOPC SUVs | 1:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, shaking |
[83] | −1 | AcN | DOPC SUVs | 10:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, shaking |
[88] | 1 | WT | DOPS | 10:1 | 20 mM sodium phosphate, 1 mM sodium azide, pH 7.4, 5 μM αS, 180 rpm |
[79] | −1 | WT | POPG | 50:1 | 1:1 PBS:HEPES, pH 7.4, 70 μM αS, 300 rpm |
[78] | 1 | WT | POPG | 1:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, 600 rpm |
[78] | −2 | WT | POPG | 50:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, 600 rpm |
[90] | 0 | WT | POPC | 1:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, shaking |
[90] | −1 | WT | POPC | 5:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, shaking |
[90] | −2 | WT | POPC | 10:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, shaking |
[90] | 1 | WT | POPC/POPA 1:1 | 1:1, 5:1, 10:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 70 μM αS, shaking |
[90] | −2 | WT | DOPC | 5:1, 10:1, 15:1, 25:1, 50:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
Ref. | Rate ^ | αS | Lipid | Ratio | Aggregation Conditions |
---|---|---|---|---|---|
[84] | 1 | WT | DPPC/CB 1:1 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | 1 | WT | DPPC/CE 1:1 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | −1 | WT | DPPC/GM1-3 1:1 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | −2 | WT | DPPC/GM1 1:1 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | −2 | WT | DPPC/GM1 1:1 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | −2 | WT | DPPC/GM2 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[84] | −2 | WT | DPPC/GM3 | 10:1 | 20 mM Tris-HCl, pH 7.5, 56 μM αS |
[101] | 1 | WT | WT exosomes | 30 μM αS, 0.25 mg/mL exosomes | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | 1 | WT | overexpressing exosomes | 30 μM αS, 0.25 mg/mL exosomes | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS, no shaking |
[101] | 1 | A53T | A53T exosomes | 25:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | 1 | A30P | A30P exosomes | 25:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | 1 | E46K | E46K exosomes | 25:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | −1 | WT | DOPC | 20:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | −1 | WT | DOPC 6% Chol | 20:3 | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[101] | 1 | WT | WT exosomes | 30 μM αS:.25 mg/mL exosomes | 10 mM MES, 140 mM NaCl, pH 5.5, 30 μM αS,100 rpm |
[95] | −1 | WT | GM1 | 10:1 | 50 mM ammonium acetate, pH 7.4, 42 μM αS, shaking |
[95] | −2 | WT | GM1 | 10:1 | 50 mM ammonium acetate, pH 7.4, 42 μM αS, shaking |
[94] | 1 | WT | DOPC/GM1 9:1 | 5:1, 10:1, 15:1, 20:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
[94] | 1 | WT | DOPC/GM3 9:1 | 5:1, 10:1, 15:1, 20:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
[94] | 1 | WT | DOPC/PE-PEG750 9:1 | 5:1, 10:1, 15:1, 20:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
[94] | −2 | WT | DOPC/Asialo-GM1 9:1 | 5:1, 10:1, 15:1, 25:1, 50:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
[94] | −2 | WT | DOPC/CE-PEG750 9:1 | 5:1, 10:1, 15:1, 25:1, 50:1 | 10 mM MES, pH 5.5, 20 μM αS, no shaking |
[99] | - - | HNE | DOPE/DOPS/DOPC 5:3:2 | 9:2, 12:2, 15:2, 20:2 | 20 mM Tris, pH 7.4, 140 μM αS, no shaking |
[100] | 0 | WT | DOPC/SM/Chol 2:2:1 | 1:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, continuous shaking |
[100] | −1 | WT | DOPC/SM/Chol 2:2:1 | 10:1 | 20 mM MOPS, 100 mM NaCl, pH 7, 50 μM αS, continuous shaking |
[88] | 1 | WT | DOPE/DOPS/DOPC 5:3:2 | 10:1 | 20 mM sodium phosphate, 1 mM sodium azide, pH 7.4, 5 μM αS, 180 rpm |
[98] | 1 | WT | DHA | 10:1 | PBS, pH 7.4, 50 μM αS, 500 rpm |
[98] | −2 | WT | DHA | 50:1 | PBS, pH 7.4, 50 μM αS, 500 rpm |
[93] | −2 | WT | DHA | 50:1 | 20 mM Tris, pH 7.4, 150 mM NaCl, 50 μM αS, 500 rpm |
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease—Lessons and emerging principles. Mol. Neurodegener. 2019, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Mehra, S.; Sahay, S.; Singh, P.K.; Maji, S.K. α-synuclein aggregation and its modulation. Int. J. Biol. Macromol. 2017, 100, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.Y.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. α-Synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Emamzadeh, F.N. Alpha-synuclein structure, functions, and interactions. J. Res. Med. Sci. 2016, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Fink, A.L. Amino acid determinants of alpha-synuclein aggregation: Putting together pieces of the puzzle. FEBS Lett. 2002, 522, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, T.S.; Bax, A.; Cole, N.B.; Nussbaum, R.L. Structure and dynamics of micelle-bound human alpha-synuclein. J. Biol. Chem. 2005, 280, 9595–9603. [Google Scholar] [CrossRef]
- Bartels, T.; Choi, J.G.; Selkoe, D.J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011, 477, 107–110. [Google Scholar] [CrossRef]
- Iwai, A.; Masliah, E.; Yoshimoto, M.; Ge, N.; Flanagan, L.; de Silva, H.A.; Kittel, A.; Saitoh, T. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995, 14, 467–475. [Google Scholar] [CrossRef]
- Cheng, F.; Vivacqua, G.; Yu, S. The role of alpha-synuclein in neurotransmission and synaptic plasticity. J. Chem. Neuroanat. 2011, 42, 242–248. [Google Scholar] [CrossRef]
- Burre, J. The Synaptic Function of alpha-Synuclein. J. Park. Dis. 2015, 5, 699–713. [Google Scholar] [CrossRef]
- Vargas, K.J.; Makani, S.; Davis, T.; Westphal, C.H.; Castillo, P.E.; Chandra, S.S. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci. 2014, 34, 9364–9376. [Google Scholar] [CrossRef] [PubMed]
- Logan, T.; Bendor, J.; Toupin, C.; Thorn, K.; Edwards, R.H. alpha-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci. 2017, 20, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Benskey, M.J.; Perez, R.G.; Manfredsson, F.P. The contribution of alpha synuclein to neuronal survival and function—Implications for Parkinson’s disease. J. Neurochem. 2016, 137, 331–359. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.T.; Lee, S.J.; Rochet, J.C.; Lansbury, P.T., Jr. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 2002, 41, 10209–10217. [Google Scholar] [CrossRef]
- Mahul-Mellier, A.-L.; Burtscher, J.; Maharjan, N.; Weerens, L.; Croisier, M.; Kuttler, F.; Leleu, M.; Knott, G.W.; Lashuel, H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. USA 2020, 117, 4971–4982. [Google Scholar] [CrossRef]
- Devi, L.; Raghavendran, V.; Prabhu, B.M.; Avadhani, N.G.; Anandatheerthavarada, H.K. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 2008, 283, 9089–9100. [Google Scholar] [CrossRef]
- Lin, K.J.; Lin, K.L.; Chen, S.D.; Liou, C.W.; Chuang, Y.C.; Lin, H.Y.; Lin, T.K. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 5312. [Google Scholar] [CrossRef]
- Wood, S.J.; Wypych, J.; Steavenson, S.; Louis, J.C.; Citron, M.; Biere, A.L. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 1999, 274, 19509–19512. [Google Scholar] [CrossRef]
- Volpicelli-Daley, L.A.; Luk, K.C.; Lee, V.M. Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat. Protoc. 2014, 9, 2135–2146. [Google Scholar] [CrossRef]
- Alam, P.; Bousset, L.; Melki, R.; Otzen, D.E. alpha-synuclein oligomers and fibrils: A spectrum of species, a spectrum of toxicities. J. Neurochem. 2019, 150, 522–534. [Google Scholar] [CrossRef]
- Peelaerts, W.; Baekelandt, V. a-Synuclein strains and the variable pathologies of synucleinopathies. J. Neurochem. 2016, 139 (Suppl. S1), 256–274. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Petersen, N.O.; Claessens, M.M.; Subramaniam, V. Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers. Biophys. J. 2014, 106, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Kurochka, A.S.; Yushchenko, D.A.; Bouř, P.; Shvadchak, V.V. Influence of Lipid Membranes on α-Synuclein Aggregation. ACS Chem. Neurosci. 2021, 12, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, N.P.; Soragni, A.; Rabe, M.; Verdes, D.; Liverani, E.; Handschin, S.; Riek, R.; Seeger, S. Mechanism of membrane interaction and disruption by alpha-synuclein. J. Am. Chem. Soc. 2011, 133, 19366–19375. [Google Scholar] [CrossRef]
- Musteikyte, G.; Jayaram, A.K.; Xu, C.K.; Vendruscolo, M.; Krainer, G.; Knowles, T.P.J. Interactions of alpha-synuclein oligomers with lipid membranes. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183536. [Google Scholar] [CrossRef]
- Rawat, A.; Langen, R.; Varkey, J. Membranes as modulators of amyloid protein misfolding and target of toxicity. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1863–1875. [Google Scholar] [CrossRef] [PubMed]
- Fusco, G.; De Simone, A.; Gopinath, T.; Vostrikov, V.; Vendruscolo, M.; Dobson, C.M.; Veglia, G. Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour. Nat. Commun. 2014, 5, 3827. [Google Scholar] [CrossRef]
- Galvagnion, C.; Buell, A.K.; Meisl, G.; Michaels, T.C.T.; Vendruscolo, M.; Knowles, T.P.J.; Dobson, C.M. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 2015, 11, 229–234. [Google Scholar] [CrossRef]
- Uversky, V.N.; Li, J.; Fink, A.L. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 2001, 276, 10737–10744. [Google Scholar] [CrossRef]
- Shvadchak, V.V.; Claessens, M.M.; Subramaniam, V. Fibril breaking accelerates alpha-synuclein fibrillization. J. Phys. Chem. B 2015, 119, 1912–1918. [Google Scholar] [CrossRef]
- Giehm, L.; Lorenzen, N.; Otzen, D.E. Assays for alpha-synuclein aggregation. Methods 2011, 53, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem. 1989, 177, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Haney, C.M.; Cleveland, C.L.; Wissner, R.F.; Owei, L.; Robustelli, J.; Daniels, M.J.; Canyurt, M.; Rodriguez, P.; Ischiropoulos, H.; Baumgart, T.; et al. Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules. Biochemistry 2017, 56, 683–691. [Google Scholar] [CrossRef]
- Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 2015, 17, 7606–7618. [Google Scholar] [CrossRef] [PubMed]
- Pancoe, S.X.; Wang, Y.J.; Shimogawa, M.; Perez, R.M.; Giannakoulias, S.; Petersson, E.J. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J. Mol. Biol. 2022, 434, 167859. [Google Scholar] [CrossRef]
- Fusco, G.; Chen, S.W.; Williamson, P.T.F.; Cascella, R.; Perni, M.; Jarvis, J.A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N.; et al. Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers. Science 2017, 358, 1440–1443. [Google Scholar] [CrossRef]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef]
- Krüger, R.; Kuhn, W.; Müller, T.; Woitalla, D.; Graeber, M.; Kösel, S.; Przuntek, H.; Epplen, J.T.; Schöls, L.; Riess, O. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 1998, 18, 106–108. [Google Scholar] [CrossRef]
- Zarranz, J.J.; Alegre, J.; Gómez-Esteban, J.C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atarés, B.; et al. The New Mutation, E46K, of α-Synuclein Causes Parkinson and Lewy Body Dementia. Ann. Neurol. 2004, 55, 164–173. [Google Scholar] [CrossRef]
- Appel-Cresswell, S.; Vilarino-Guell, C.; Encarnacion, M.; Sherman, H.; Yu, I.; Shah, B.; Weir, D.; Thompson, C.; Szu-Tu, C.; Trinh, J.; et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord. 2013, 28, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Proukakis, C.; Dudzik, C.G.; Brier, T.; MacKay, D.S.; Cooper, J.M.; Millhauser, G.L.; Houlden, H.; Schapira, A.H. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013, 80, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, P.; Myllykangas, L.; Siitonen, M.; Raunio, A.; Kaakkola, S.; Lyytinen, J.; Tienari, P.J.; Pöyhönen, M.; Paetau, A. A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol. Aging 2014, 35, 2180.e1–2180.e5. [Google Scholar] [CrossRef] [PubMed]
- Lesage, S.; Anheim, M.; Letournel, F.; Bousset, L.; Honore, A.; Rozas, N.; Pieri, L.; Madiona, K.; Durr, A.; Melki, R.; et al. G51D alpha-Synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann. Neurol. 2013, 73, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Hirano, M.; Stoessl, A.J.; Imamichi, Y.; Ikeda, A.; Li, Y.; Funayama, M.; Yamada, I.; Nakamura, Y.; Sossi, V.; et al. Homozygous alpha-synuclein p.A53V in familial Parkinson’s disease. Neurobiol. Aging 2017, 57, 248.e7–248.e12. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, N.J.; Moore, B.D.; Golde, T.E.; Giasson, B.I. Divergent effects of the H5OQ and G51D SNCA mutations on the aggregation of alpha-synuclein. J. Neurochem. 2014, 131, 859–867. [Google Scholar] [CrossRef]
- Alza, N.P.; Iglesias González, P.A.; Conde, M.A.; Uranga, R.M.; Salvador, G.A. Lipids at the Crossroad of α-Synuclein Function and Dysfunction: Biological and Pathological Implications. Front. Cell. Neurosci. 2019, 13, 175. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, S.; Zhao, K.; Long, H.; Liu, Z.; Gao, J.; Zhang, Y.; Su, X.D.; Li, D.; Liu, C. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res. 2020, 30, 360–362. [Google Scholar] [CrossRef]
- Jensen, P.H.; Nielsen, M.S.; Jakes, R.; Dotti, C.G.; Goedert, M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J. Biol. Chem. 1998, 273, 26292–26294. [Google Scholar] [CrossRef]
- Perrin, R.J.; Woods, W.S.; Clayton, D.F.; George, J.M. Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J. Biol. Chem. 2000, 275, 34393–34398. [Google Scholar] [CrossRef]
- Jo, E.; Fuller, N.; Rand, R.P.; St George-Hyslop, P.; Fraser, P.E. Defective membrane interactions of familial Parkinson’s disease mutant A30P alpha-synuclein. J. Mol. Biol. 2002, 315, 799–807. [Google Scholar] [CrossRef]
- Bussell, R., Jr.; Eliezer, D. Effects of Parkinson’s disease-linked mutations on the structure of lipid-associated alpha-synuclein. Biochemistry 2004, 43, 4810–4818. [Google Scholar] [CrossRef]
- Bodner, C.R.; Maltsev, A.S.; Dobson, C.M.; Bax, A. Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy. Biochemistry 2010, 49, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Ruf, V.C.; Nubling, G.S.; Willikens, S.; Shi, S.; Schmidt, F.; Levin, J.; Botzel, K.; Kamp, F.; Giese, A. Different Effects of alpha-Synuclein Mutants on Lipid Binding and Aggregation Detected by Single Molecule Fluorescence Spectroscopy and ThT Fluorescence-Based Measurements. ACS Chem. Neurosci. 2019, 10, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Brembati, V.; Faustini, G.; Longhena, F.; Bellucci, A. Alpha synuclein post translational modifications: Potential targets for Parkinson’s disease therapy? Front. Mol. Neurosci. 2023, 16, 1197853. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Li, J.D. The Roles of Post-translational Modifications on alpha-Synuclein in the Pathogenesis of Parkinson’s Diseases. Front. Neurosci. 2019, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H.; Hasegawa, M.; Dohmae, N.; Kawashima, A.; Masliah, E.; Goldberg, M.S.; Shen, J.; Takio, K.; Iwatsubo, T. α-synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 2002, 4, 160–164. [Google Scholar] [CrossRef]
- Rott, R.; Szargel, R.; Shani, V.; Hamza, H.; Savyon, M.; Abd Elghani, F.; Bandopadhyay, R.; Engelender, S. SUMOylation and ubiquitination reciprocally regulate alpha-synuclein degradation and pathological aggregation. Proc. Natl. Acad. Sci. USA 2017, 114, 13176–13181. [Google Scholar] [CrossRef]
- Anderson, J.P.; Walker, D.E.; Goldstein, J.M.; de Laat, R.; Banducci, K.; Caccavello, R.J.; Barbour, R.; Huang, J.; Kling, K.; Lee, M.; et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 2006, 281, 29739–29752. [Google Scholar] [CrossRef]
- Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.; Kendall, A.; et al. Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat. Struct. Mol. Biol. 2016, 23, 409–415. [Google Scholar] [CrossRef]
- Middleton, E.R.; Rhoades, E. Effects of curvature and composition on alpha-synuclein binding to lipid vesicles. Biophys. J. 2010, 99, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.R.; Lacy, M.M.; Ducas, V.C.; Rhoades, E.; Sachs, J.N. alpha-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J. Am. Chem. Soc. 2014, 136, 9962–9972. [Google Scholar] [CrossRef] [PubMed]
- Kamp, F.; Exner, N.; Lutz, A.K.; Wender, N.; Hegermann, J.; Brunner, B.; Nuscher, B.; Bartels, T.; Giese, A.; Beyer, K.; et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010, 29, 3571–3589. [Google Scholar] [CrossRef]
- Braun, A.R.; Sevcsik, E.; Chin, P.; Rhoades, E.; Tristram-Nagle, S.; Sachs, J.N. alpha-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes. J. Am. Chem. Soc. 2012, 134, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Dikiy, I.; Fauvet, B.; Jovicic, A.; Mahul-Mellier, A.L.; Desobry, C.; El-Turk, F.; Gitler, A.D.; Lashuel, H.A.; Eliezer, D. Semisynthetic and in Vitro Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations. ACS Chem. Biol. 2016, 11, 2428–2437. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, E.R.; Ramlall, T.F.; Borbat, P.P.; Freed, J.H.; Eliezer, D. The lipid-binding domain of wild type and mutant alpha-synuclein: Compactness and interconversion between the broken and extended helix forms. J. Biol. Chem. 2010, 285, 28261–28274. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Wilkes, M.M.; Das, T.; Holowka, D.; Eliezer, D.; Baird, B. Regulation of exocytosis and mitochondrial relocalization by Alpha-synuclein in a mammalian cell model. NPJ Park. Dis. 2019, 5, 12. [Google Scholar] [CrossRef]
- SUV vs. LUV: What’s the Difference? Available online: https://avantilipids.com/news/suv-vs-luv-whats-the-difference (accessed on 26 September 2023).
- Rhoades, E.; Ramlall, T.F.; Webb, W.W.; Eliezer, D. Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys. J. 2006, 90, 4692–4700. [Google Scholar] [CrossRef]
- Jo, E.; McLaurin, J.; Yip, C.M.; St George-Hyslop, P.; Fraser, P.E. alpha-Synuclein membrane interactions and lipid specificity. J. Biol. Chem. 2000, 275, 34328–34334. [Google Scholar] [CrossRef]
- Raben, D.M.; Barber, C.N. Phosphatidic acid and neurotransmission. Adv. Biol. Regul. 2017, 63, 15–21. [Google Scholar] [CrossRef]
- Fantini, J.; Carlus, D.; Yahi, N. The fusogenic tilted peptide (67–78) of alpha-synuclein is a cholesterol binding domain. Biochim. Biophys. Acta 2011, 1808, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pei, Y.; Zhang, Z.; Xu, L.; Liu, X.; Jiang, L.; Pielak, G.J.; Zhou, X.; Liu, M.; Li, C. C-terminal truncation modulates alpha-Synuclein’s cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Commun. Biol. 2022, 5, 798. [Google Scholar] [CrossRef]
- Galvagnion, C. The Role of Lipids Interacting with alpha-Synuclein in the Pathogenesis of Parkinson’s Disease. J. Park. Dis. 2017, 7, 433–450. [Google Scholar] [CrossRef]
- Galvagnion, C.; Brown, J.W.P.; Ouberai, M.M.; Flagmeier, P.; Vendruscolo, M.; Buell, A.K.; Sparr, E.; Dobson, C.M. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc. Natl. Acad. Sci. USA 2016, 113, 7065. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradian, S.H.; Lewis, A.J.; Genoud, C.; Hench, J.; Moors, T.E.; Navarro, P.P.; Castaño-Díez, D.; Schweighauser, G.; Graff-Meyer, A.; Goldie, K.N.; et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019, 22, 1099–1109. [Google Scholar] [CrossRef]
- Hellstrand, E.; Nowacka, A.; Topgaard, D.; Linse, S.; Sparr, E. Membrane lipid co-aggregation with α-synuclein fibrils. PLoS ONE 2013, 8, e77235. [Google Scholar] [CrossRef]
- Jiang, Z.; Flynn, J.D.; Teague, W.E., Jr.; Gawrisch, K.; Lee, J.C. Stimulation of α-synuclein amyloid formation by phosphatidylglycerol micellar tubules. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1840–1847. [Google Scholar] [CrossRef]
- Cholak, E.; Bucciarelli, S.; Bugge, K.; Johansen, N.T.; Vestergaard, B.; Arleth, L.; Kragelund, B.B.; Langkilde, A.E. Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry 2019, 58, 5052–5065. [Google Scholar] [CrossRef]
- West, A.; Brummel, B.E.; Braun, A.R.; Rhoades, E.; Sachs, J.N. Membrane remodeling and mechanics: Experiments and simulations of α-Synuclein. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1594–1609. [Google Scholar] [CrossRef]
- Cremades, N.; Cohen, S.I.A.; Deas, E.; Abramov, A.Y.; Chen, A.Y.; Orte, A.; Sandal, M.; Clarke, R.W.; Dunne, P.; Aprile, F.A.; et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012, 149, 1048–1059. [Google Scholar] [CrossRef]
- Stefanovic, A.N.D.; Stöckl, M.T.; Claessens, M.M.A.E.; Subramaniam, V. α-Synuclein oligomers distinctively permeabilize complex model membranes. FEBS J. 2014, 281, 2838–2850. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, E.I.; Jiang, Z.; Strub, M.-P.; Lee, J.C. Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated α-synuclein. J. Biol. Chem. 2018, 293, 11195–11205. [Google Scholar] [CrossRef]
- Martinez, Z.; Zhu, M.; Han, S.; Fink, A.L. GM1 Specifically Interacts with α-Synuclein and Inhibits Fibrillation. Biochemistry 2007, 46, 1868–1877. [Google Scholar] [CrossRef]
- Zhu, M.; Li, J.; Fink, A.L. The Association of α-Synuclein with Membranes Affects Bilayer Structure, Stability, and Fibril Formation. J. Biol. Chem. 2003, 278, 40186–40197. [Google Scholar] [CrossRef]
- O’Leary, E.I.; Lee, J.C. Interplay between α-synuclein amyloid formation and membrane structure. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2019, 1867, 483–491. [Google Scholar] [CrossRef]
- Brown, J.W.P.; Meisl, G.; Knowles, T.P.J.; Buell, A.K.; Dobson, C.M.; Galvagnion, C. Kinetic barriers to α-synuclein protofilament formation and conversion into mature fibrils. Chem. Commun. 2018, 54, 7854–7857. [Google Scholar] [CrossRef]
- Mahapatra, A.; Sarkar, S.; Biswas, S.C.; Chattopadhyay, K. An aminoglycoside antibiotic inhibits both lipid-induced and solution-phase fibrillation of α-synuclein in vitro. Chem. Commun. 2019, 55, 11052–11055. [Google Scholar] [CrossRef]
- Flagmeier, P.; Meisl, G.; Vendruscolo, M.; Knowles, T.P.J.; Dobson, C.M.; Buell, A.K.; Galvagnion, C. Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 2016, 113, 10328–10333. [Google Scholar] [CrossRef]
- Jiang, Z.; de Messieres, M.; Lee, J.C. Membrane Remodeling by α-Synuclein and Effects on Amyloid Formation. J. Am. Chem. Soc. 2013, 135, 15970–15973. [Google Scholar] [CrossRef]
- Zhu, M.; Fink, A.L. Lipid Binding Inhibits α-Synuclein Fibril Formation. J. Biol. Chem. 2003, 278, 16873–16877. [Google Scholar] [CrossRef]
- Hoover, B.M.; Shen, Z.; Gahan, C.G.; Lynn, D.M.; Van Lehn, R.C.; Murphy, R.M. Membrane Remodeling and Stimulation of Aggregation Following α-Synuclein Adsorption to Phosphotidylserine Vesicles. J. Phys. Chem. B 2021, 125, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Fecchio, C.; De Franceschi, G.; Relini, A.; Greggio, E.; Dalla Serra, M.; Bubacco, L.; Polverino de Laureto, P. α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity. PLoS ONE 2013, 8, e82732. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.; Pallbo, J.; Weininger, U.; Linse, S.; Sparr, E. Ganglioside lipids accelerate α-synuclein amyloid formation. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Bartels, T.; Kim, N.C.; Luth, E.S.; Selkoe, D.J. N-Alpha-Acetylation of alpha-Synuclein Increases Its Helical Folding Propensity, GM1 Binding Specificity and Resistance to Aggregation. PLoS ONE 2014, 9, 10. [Google Scholar] [CrossRef]
- Buell, A.K.; Galvagnion, C.; Gaspar, R.; Sparr, E.; Vendruscolo, M.; Knowles, T.P.J.; Linse, S.; Dobson, C.M. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 2014, 111, 7671–7676. [Google Scholar] [CrossRef]
- Fecchio, C.; Palazzi, L.; de Laureto, P.P. α-Synuclein and Polyunsaturated Fatty Acids: Molecular Basis of the Interaction and Implication in Neurodegeneration. Molecules 2018, 23, 1531. [Google Scholar] [CrossRef]
- De Franceschi, G.; Frare, E.; Pivato, M.; Relini, A.; Penco, A.; Greggio, E.; Bubacco, L.; Fontana, A.; de Laureto, P.P. Structural and Morphological Characterization of Aggregated Species of α-Synuclein Induced by Docosahexaenoic Acid. J. Biol. Chem. 2011, 286, 22262–22274. [Google Scholar] [CrossRef]
- Sardar Sinha, M.; Villamil Giraldo, A.M.; Öllinger, K.; Hallbeck, M.; Civitelli, L. Lipid vesicles affect the aggregation of 4-hydroxy-2-nonenal-modified α-synuclein oligomers. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 3060–3068. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mandal, N.; Chattopadhyay, K. Cholesterol in Synaptic Vesicle Membranes Regulates the Vesicle-Binding, Function, and Aggregation of α-Synuclein. J. Phys. Chem. B 2021, 125, 11099–11111. [Google Scholar] [CrossRef]
- Grey, M.; Dunning, C.J.; Gaspar, R.; Grey, C.; Brundin, P.; Sparr, E.; Linse, S. Acceleration of α-Synuclein Aggregation by Exosomes. J. Biol. Chem. 2015, 290, 2969–2982. [Google Scholar] [CrossRef]
- Burré, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Südhof, T.C. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Frieg, B.; Antonschmidt, L.; Dienemann, C.; Geraets, J.A.; Najbauer, E.E.; Matthes, D.; de Groot, B.L.; Andreas, L.B.; Becker, S.; Griesinger, C.; et al. The 3D structure of lipidic fibrils of alpha-synuclein. Nat. Commun. 2022, 13, 6810. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Ferreira, R.; Taylor, N.M.I.; Mona, D.; Ringler, P.; Lauer, M.E.; Riek, R.; Britschgi, M.; Stahlberg, H. Cryo-EM structure of alpha-synuclein fibrils. eLife 2018, 7, e36402. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Luo, F.; Liu, Z.; Gui, X.; Luo, Z.; Zhang, X.; Li, D.; Liu, C.; Li, X. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 2018, 28, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 2020, 585, 464–469. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Schweighauser, M.; Zhang, X.; Kotecha, A.; Murzin, A.G.; Garringer, H.J.; Cullinane, P.W.; Saito, Y.; Foroud, T.; et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 2022, 610, 791–795. [Google Scholar] [CrossRef]
Full Name | Abbreviation |
---|---|
Cerebroside | CB |
Ceramide | CE |
Cholesterol | Chol |
1,2-Dilauroyl-sn-glycero-3-phospho-L-serine | DLPS |
1,2-Dimyristoyl-sn-glycero-3-phospho-L-serine | DMPS |
1,2-Dioleoyl-sn-glycero-3-phospho-L-serine | DOPS |
1,2-Dipalmitoyl-sn-glycero-3-phosphate | DPPA |
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine | DPPC |
1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol | DPPG |
1,2-Dipalmitoyl-sn-glycero-3-phosphoserine | DPPS |
Ganglioside GM1 | GM1 |
Ganglioside GM2 | GM3 |
Ganglioside GM3 | GM3 |
4-Hydroxynonenal | HNE |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate | POPA |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine | POPC |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol | POPG |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoinositol | POPI |
1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine | POPS |
Sialic acid | SA |
Sphingomyelin | SM |
Sphingosine | SP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, J.; Pancoe, S.X.; Rhoades, E.; Petersson, E.J. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023, 13, 1476. https://doi.org/10.3390/biom13101476
Ramirez J, Pancoe SX, Rhoades E, Petersson EJ. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules. 2023; 13(10):1476. https://doi.org/10.3390/biom13101476
Chicago/Turabian StyleRamirez, Jennifer, Samantha X. Pancoe, Elizabeth Rhoades, and E. James Petersson. 2023. "The Effects of Lipids on α-Synuclein Aggregation In Vitro" Biomolecules 13, no. 10: 1476. https://doi.org/10.3390/biom13101476
APA StyleRamirez, J., Pancoe, S. X., Rhoades, E., & Petersson, E. J. (2023). The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules, 13(10), 1476. https://doi.org/10.3390/biom13101476