Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors
Abstract
1. Introduction
2. XPO1 Cargo in NHL
2.1. Proteins as XPO1 Cargo
2.2. RNA as XPO1 Cargo
3. Preclinical Data on Selinexor as a Monotherapy
3.1. Preclinical Trials Investigating SINE Compounds in NHL
3.2. Preclinical Studies Investigating Selinexor
4. Preclinical Data on Selinexor in Combination with Other Agents
4.1. Selinexor + BTK Inhibitors
4.2. Selinexor + Proteasome Inhibitors
4.3. Selinexor + Salicylates
4.4. Selinexor + BCL-2 Inhibitors
4.5. Selinexor + Chemotherapy
5. Clinical Trials with Selinexor
5.1. Selinexor as a Monotherapy
5.2. Selinexor in Combination with Other Anti-Cancer Agents
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Timney, B.L.; Raveh, B.; Mironska, R.; Trivedi, J.M.; Kim, S.J.; Russel, D.; Wente, S.R.; Sali, A.; Rout, M.P. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 2016, 215, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Subhash, V.V.; Yeo, M.S.; Wang, L.; Tan, S.H.; Wong, F.Y.; Thuya, W.L.; Tan, W.L.; Peethala, P.C.; Soe, M.Y.; Tan, D.; et al. Anti-tumour efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumour suppressor. Sci. Rep. 2018, 8, 12248. [Google Scholar] [CrossRef]
- Chook, Y.M.; Süel, K.E. Nuclear import by karyopherin-βs: Recognition and inhibition. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, L.F.; Paschal, B.M. Mechanisms of Receptor-Mediated Nuclear Import and Nuclear Export. Traffic 2005, 6, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Kirli, K.; Karaca, S.; Dehne, H.J.; Samwer, M.; Pan, K.T.; Lenz, C.; Urlaub, H.; Görlich, D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015, 4, 11466. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Innao, V.; Allegra, A.G.; Leanza, R.; Musolino, C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. Clin. Lymphoma Myeloma Leuk. 2019, 19, 689–698. [Google Scholar] [CrossRef]
- Azmi, A.S.; Al-Katib, A.; Aboukameel, A.; McCauley, D.; Kauffman, M.; Shacham, S.; Mohammad, R.M. Selective inhibitors of nuclear export for the treatment of non-Hodgkin’s lymphomas. Haematologica 2013, 98, 1098–1106. [Google Scholar] [CrossRef]
- Ming, M.; Wu, W.; Xie, B.; Sukhanova, M.; Wang, W.; Kadri, S.; Wang, Y.L. XPO1 Inhibitor Selinexor Overcomes Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma via Nuclear Retention of IkappaB. Mol. Cancer Ther. 2018, 17, 2564–2574. [Google Scholar] [CrossRef]
- Miloudi, H.; Leroy, K.; Jardin, F.; Sola, B. STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma. Cell. Signal. 2018, 46, 76–82. [Google Scholar] [CrossRef]
- Tabe, Y.; Kojima, K.; Yamamoto, S.; Sekihara, K.; Matsushita, H.; Davis, R.E.; Wang, Z.; Ma, W.; Ishizawa, J.; Kazuno, S.; et al. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. PLoS ONE 2015, 10, e0137210. [Google Scholar] [CrossRef]
- Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016, 42, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ao, X.; Ding, W.; Ponnusamy, M.; Wu, W.; Hao, X.; Yu, W.; Wang, Y.; Li, P.; Wang, J. Critical role of FOXO3a in carcinogenesis. Mol. Cancer 2018, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Ishizawa, J.; Ruvolo, V.; Dilip, A.; Quintás-Cardama, A.; McDonnell, T.J.; Neelapu, S.S.; Kwak, L.W.; Shacham, S.; Kauffman, M.; et al. Induction of p53-mediated transcription and apoptosis by exportin-1 ( XPO 1) inhibition in mantle cell lymphoma. Cancer Sci. 2014, 105, 795–801. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, M.; Xu-Monette, Z.Y.; Pham, L.V.; Tzankov, A.; Visco, C.; Fang, X.; Bhagat, G.; Zhu, F.; Dybkaer, K.; et al. XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53. J. Hematol. Oncol. 2020, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Argueta, C.; Unger, T.; Klebanov, B.; Debler, S.; Senapedis, W.; Crochiere, M.L.; Lee, M.S.; Kauffman, M.; Shacham, S.; et al. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018, 9, 30773–30786. [Google Scholar] [CrossRef] [PubMed]
- Nachmias, B.; Schimmer, A.D. Targeting nuclear import and export in hematological malignancies. Leukemia 2020, 34, 2875–2886. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Argueta, C.; Aboukameel, A.; Unger, T.J.; Klebanov, B.; Mohammad, R.M.; Landesman, Y. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-kappaB deactivation and combines with proteasome inhibitors to synergistically induce tumour cell death. Oncotarget 2016, 7, 78883–78895. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Liao, Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef]
- Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809. [Google Scholar] [CrossRef]
- Yildiz, M.; Li, H.; Bernard, D.; Amin, N.A.; Ouillette, P.; Jones, S.; Saiya-Cork, K.; Parkin, B.; Jacobi, K.; Shedden, K.; et al. Activating STAT6 mutations in follicular lymphoma. Blood 2015, 125, 668–679. [Google Scholar] [CrossRef]
- Ritz, O.; Guiter, C.; Castellano, F.; Dorsch, K.; Melzner, J.; Jais, J.-P.; Dubois, G.; Gaulard, P.; Möller, P.; Leroy, K. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 2009, 114, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Morin, R.D.; Assouline, S.; Alcaide, M.; Mohajeri, A.; Johnston, R.L.; Chong, L.; Grewal, J.; Yu, S.; Fornika, D.; Bushell, K.; et al. Genetic Landscapes of Relapsed and Refractory Diffuse Large B-Cell Lymphomas. Clin. Cancer Res. 2016, 22, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Holloway, M.P.; Nguyen, K.; McCauley, D.; Landesman, Y.; Kauffman, M.G.; Shacham, S.; Altura, R.A. XPO1 (CRM1) Inhibition Represses STAT3 Activation to Drive a Survivin-Dependent Oncogenic Switch in Triple-Negative Breast Cancer. Mol. Cancer Ther. 2014, 13, 675–686. [Google Scholar] [CrossRef]
- Borden, K.L.B. The Nuclear Pore Complex and mRNA Export in Cancer. Cancers 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Culjkovic-Kraljacic, B.; Baguet, A.; Volpon, L.; Amri, A.; Borden, K.L. The Oncogene eIF4E Reprograms the Nuclear Pore Complex to Promote mRNA Export and Oncogenic Transformation. Cell Rep. 2012, 2, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Natalizio, B.J.; Wente, S.R. Postage for the messenger: Designating routes for nuclear mRNA export. Trends Cell Biol. 2013, 23, 365–373. [Google Scholar] [CrossRef]
- Culjkovic-Kraljacic, B.; Borden, K.L.B. The Impact of Post-transcriptional Control: Better Living Through RNA Regulons. Front. Genet. 2018, 9, 512. [Google Scholar] [CrossRef]
- Graff, J.R.; Zimmer, S.G. Translational control and metastatic progression: Enhanced activity of the mRNA cap-binding protein eIF4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis 2003, 20, 265–273. [Google Scholar] [CrossRef]
- Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J. Cell Biol. 2005, 169, 245–256. [Google Scholar] [CrossRef]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr virus-associated lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef]
- Hutten, S.; Kehlenbach, R.H. CRM1-mediated nuclear export: To the pore and beyond. Trends Cell Biol. 2007, 17, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Fields, C.; Aadland, K.; Wei, T.; Kolaczkowski, O.; Gu, T.; Kolaczkowski, B.; Xie, M. Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res. 2018, 46, 5737–5752. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Inose, H.; Masuda, S. RNA Export through the NPC in Eukaryotes. Genes 2015, 6, 124–149. [Google Scholar] [CrossRef] [PubMed]
- Moy, T.I.; Silver, P.A. Requirements for the nuclear export of the small ribosomal subunit. J. Cell Sci. 2002, 115, 2985–2995. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Shen, Y.; Zhang, N.; Wang, S.; Yao, J.; Shi, Y. CRM1 as a new therapeutic target for non-Hodgkin lymphoma. Leuk. Res. 2014, 39, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Abeykoon, J.P.; Paludo, J.; Nowakowski, K.E.; Stenson, M.J.; King, R.L.; Wellik, L.E.; Wu, X.; Witzig, T.E. The effect of CRM1 inhibition on human non-Hodgkin lymphoma cells. Blood Cancer J. 2019, 9, 24. [Google Scholar] [CrossRef]
- Xu, P.; Liu, X.; Ouyang, J.; Chen, B. TP53 mutation predicts the poor prognosis of non-Hodgkin lymphomas: Evidence from a meta-analysis. PLoS ONE 2017, 12, e0174809. [Google Scholar] [CrossRef]
- Zhang, K.J.; Wang, M. Potential effects of CRM1 inhibition in mantle cell lymphoma. Chin. J. Cancer Res. 2012, 24, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Kasamon, Y.L.; Price, L.S.; Okusanya, O.O.; Richardson, N.C.; Li, R.-J.; Ma, L.; Wu, Y.-T.; Theoret, M.; Pazdur, R.; Gormley, N.J. FDA Approval Summary: Selinexor for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Oncologist 2021, 26, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Tarantelli, C.; Zhang, L.; Curti, E.; Gaudio, E.; Spriano, F.; Priebe, V.; Cascione, L.; Arribas, A.J.; Zucca, E.; Rossi, D.; et al. The Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) demonstrated synergies with other anti-lymphoma targeted agents. Haematologica 2019, 104, e307–e309. [Google Scholar] [CrossRef]
- Abeykoon, J.P.; Wu, X.; Nowakowski, K.E.; Dasari, S.; Paludo, J.; Weroha, S.J.; Hu, C.; Hou, X.; Sarkaria, J.N.; Mladek, A.C.; et al. Salicylates enhance CRM1 inhibitor antitumour activity by induction of S-phase arrest and impairment of DNA-damage repair. Blood 2021, 137, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Elloul, S.; Chang, H.; Klebanov, B.; Kashyap, T.; Werman, M.; Lee, M.; Landesman, Y.; Shacham, S.; Kauffman, M.; Friedlander, S.Y. Abstract 1299: Selinexor, a selective inhibitor of nuclear export (SINE) compound shows enhanced anti-tumour activity when combined with either venetoclax or bendamustine in diffuse large B cell lymphoma (DLBCL) mouse models. Cancer Res. 2016, 76, 1299. [Google Scholar] [CrossRef]
- Seymour, E.K.; Khan, H.Y.; Li, Y.; Chaker, M.; Muqbil, I.; Aboukameel, A.; Ramchandren, R.; Houde, C.; Sterbis, G.; Yang, J.; et al. Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clin. Cancer Res. 2021, 27, 3307–3316. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, Y.; Bond, D.A.; Alinari, L. Evaluating the Therapeutic Potential of Zanubrutinib in the Treatment of Relapsed/Refractory Mantle Cell Lymphoma: Evidence to Date. OncoTargets Ther. 2020, 13, 6573–6581. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, B.; Song, Y.; Zhang, H.; Zhao, W.; Zou, D.-H.; Lv, F.; Guo, W.; Liu, A.; Li, C.; et al. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large B-cell lymphoma. Blood Adv. 2022, 6, 1629–1636. [Google Scholar] [CrossRef]
- Kashyap, T.; Muqbil, I.; Aboukameel, A.; Klebanov, B.; Mohammad, R.; Azmi, A.S.; Landesman, Y. Combination of Selinexor and the Proteasome Inhibitor, Bortezomib Shows Synergistic Cytotoxicity in Diffuse Large B-Cells Lymphoma Cells In Vitro and In Vivo. Blood 2016, 128, 4131. [Google Scholar] [CrossRef]
- Wang, R.; Shen, J.; Wang, Q.; Zhang, M. Bortezomib inhibited the progression of diffuse large B-cell lymphoma via targeting miR-198. Biomed. Pharmacother. 2018, 108, 43–49. [Google Scholar] [CrossRef]
- Stark, L.A.; Dunlop, M.G. Nucleolar sequestration of RelA (p65) regulates NF-kappaB-driven transcription and apoptosis. Mol. Cell Biol. 2005, 25, 5985–6004. [Google Scholar] [CrossRef]
- Ranganathan, P.; Kashyap, T.; Yu, X.; Meng, X.; Lai, T.H.; McNeil, B.; Garzon, R. XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIalpha to the Nucleus. Clin. Cancer Res. 2016, 22, 6142–6152. [Google Scholar] [CrossRef]
- Schuetz, J.M.; Johnson, N.A.; Morin, R.D.; Scott, D.W.; Tan, K.; Ben-Nierah, S.; Boyle, M.J.; Slack, G.W.; Marra, M.A.; Connors, J.M.; et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia 2011, 26, 1383–1390. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, B.; Peñalver, F.J.; Medina, A.; Guillén, H.; Calleja, M.; Gironella, M.; Arranz, R.; Sebastian, E.; de Oña, R.; Cánovas, A.; et al. Clinical experience of bendamustine treatment for non-Hodgkin lymphoma and chronic lymphocytic leukemia in Spain. Leuk. Res. 2012, 36, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Tilby, M. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev. 1992, 6, 163–173. [Google Scholar] [CrossRef]
- Herrera, A.; Ogbu, U.; Ku, G.; Chuo, C. Real-World Bendamustine Use in Relapsed/Refractory Diffuse Large B-Cell Lymphoma (R/R DLBCL). Hematol. Oncol. 2019, 37, 428–429. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yoon, D.H.; Suh, C.; Kim, W.S.; Kim, S.J.; Jo, J.-C.; Kim, J.S.; Lee, W.-S.; Oh, S.Y.; Park, Y.; et al. Bendamustine plus rituximab for relapsed or refractory diffuse large B cell lymphoma: A multicenter retrospective analysis. Ann. Hematol. 2018, 97, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Rabb, M.; Madureira, P.; Clements, D.; A Gujar, S.; Waisman, D.; A Giacomantonio, C.; Lee, P.W.K. Gemcitabine-mediated tumour regression and p53-dependent gene expression: Implications for colon and pancreatic cancer therapy. Cell Death Dis. 2013, 4, e791. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Young, K.H.; Medeiros, L.J. Diffuse large B-cell lymphoma. Pathology 2018, 50, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, J.; Savona, M.; Baz, R.; Mau-Sørensen, M.; Gabrail, N.; Garzon, R.; Stone, R.; Wang, M.; Savoie, L.; Martin, P.; et al. Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017, 129, 3175–3183. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, e511–e522. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D.M.; Huang, Y.; Agyeman, A.; Ruppert, A.S.; Hu, B.; Turner, N.; Vadeboncoeur, R.; A Rogers, K.; Bhat, S.A.; William, B.M.; et al. Selinexor Combined with Ibrutinib Demonstrates Tolerability and Efficacy in Advanced B-Cell Malignancies: A Phase I Study. Blood 2019, 134, 4310. [Google Scholar] [CrossRef]
- Tang, T.; Martin, P.; Somasundaram, N.; Lim, C.; Tao, M.; Poon, E.; Yunon, M.J.; Toh, S.Q.; Yan, S.X.; Farid, M.; et al. Phase I study of selinexor in combination with dexamethasone, ifosfamide, carboplatin, etoposide chemotherapy in patients with relapsed or refractory peripheral T-cell or natural-killer/T-cell lymphoma. Haematologica 2021, 106, 3170–31755. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Byrd, J.C.; Flynn, J.M.; Garzon, R.; Porcu, P.; Wagner-Johnston, N.; Shacham, S. The Oral Selective Inhibitor of Nuclear Export (SINE) Selinexor (KPT-330) Demonstrates Broad and Durable Clinical Activity in Relapsed/Refractory Non Hodgkin’s Lymphoma (NHL). Blood 2014, 124, 396. [Google Scholar] [CrossRef]
- Crespo, M.; Carabia, J.; Jiménez, I.; Bobillo, S.; Abrisqueta, P.; Palacio, C.; Carpio, C.; Castellvi, J.; Purroy, N.; Seoane, J.; et al. XPO1 Inhibition By Selinexor Synergizes with BCR Inhibition, Blocks Tumour Growth and Prolongs Survival in a Bioluminescent Animal Model of Primary Central Nervous System Lymphoma. Blood 2016, 128, 463. [Google Scholar] [CrossRef]
- Stephens, D.M.; Huang, Y.; Ruppert, A.S.; Walker, J.S.; Canfield, D.; Cempre, C.B.; Fu, Q.; Baker, S.; Hu, B.; Shah, H.; et al. Selinexor Combined with Ibrutinib Demonstrates Tolerability and Safety in Advanced B-Cell Malignancies: A Phase I Study. Clin. Cancer Res. 2022, 28, 3242–3247. [Google Scholar] [CrossRef] [PubMed]
Cargo Protein | Cargo Function | Discovered in | Methods |
---|---|---|---|
p53 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Immunofluroescence staining, Western blotting, and immunoprecipitation after NHL cells were treated with nuclear export inhibitor KPT-185 |
p73 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Immunofluroescence staining, Western blotting, and immunoprecipitation after NHL cells were treated with nuclear export inhibitor KPT-185 |
p21 [7] | Tumour suppressor protein; CDK inhibitor | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
p27 [7] | Tumour suppressor protein; CDK inhibitor | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
FOXO3 [7] | Tumour suppressor protein | Non-Hodgkin lymphoma | Western blotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
IkB [8] | Inhibitor of inflammation | Non-Hodgkin lymphoma | Fluorescence microscopy and flow cytometry in NHL cells treated with nuclear export inhibitor KPT-330 |
STAT6 [9] | Transcription factor for maturation of immune cells including B cells, T cells, and macrophages | Primary mediastinal B-cell lymphoma | Immunofluroescence staining with overlap showing interaction of XPO1 and STAT, and how nuclear export inhibitor KPT-330 disrupts this |
Cyclin D1 mRNA [10] | Cell cycle progression factor | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
PIM1 mRNA [10] | Cell cycle progression factor | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
c-Myc mRNA [10] | Transcription factor for cell proliferation | Mantle cell lymphoma | Immunoblotting after NHL cells were treated with nuclear export inhibitor KPT-185 |
Preclinical Model | Lymphoma Type | Results | Significance |
---|---|---|---|
Cell lines and patient tumour samples [35] | Non-Hodgkin lymphoma | Induction of caspase and PARP cleavage initiating apoptosis | SINE-induced apoptosis is initiated by several mechanisms |
Cell lines [7] | Non-Hodgkin lymphoma | Initiated apoptosis regardless of p53 function, but silencing other family members reduced efficacy | p53 and its family members play an important role in SINE-mediated cytotoxicity |
Cell lines [13] | Mantle cell lymphoma | Initiated expression of anti-cancer proteins and induced apoptosis regardless of p53 function, but p53-mutant cells were less sensitive | p53 plays an important role in SINE-mediated cytotoxicity |
Mouse models [7] | Non-Hodgkin lymphoma | Inhibition of tumour growth with anti-cancer activity equivalent to the chemotherapy standard of care (SOC), possibly due to enhancement of p73 | Enhanced expression and activity of p73 as a result of SINE compounds may be a mechanism behind their strong anti-cancer activity; provides a direct comparison of the treatment’s efficacy to the SOC with positive results |
Mouse models [35] | Non-Hodgkin lymphoma | Inhibition of tumour growth with minimal toxicity and weight loss | Demonstrates safety and efficacy in vivo |
Cell Lines [36] | Non-Hodgkin lymphoma | Strong anti-proliferative effects and cell cycle arrest were observed in T-cell lymphoma and mantle cell lymphoma, with less pronounced effects in diffuse large B-cell lymphoma | Demonstrates selinexor’s anti-cancer effects at the molecular level and how they vary in different non-Hodgkin lymphomas |
Combination Therapy | Drug Class | Used in | Preclinical Model | Outcomes/Relevant Data |
---|---|---|---|---|
S + zanubrutinib [40] | BTK inhibitor | Diffuse large B-cell lymphoma | Cell lines | Synergistic effects on lowering cell count |
S + zanubrutinib [40] | BTK inhibitor | Mantle cell lymphoma | Cell lines | Synergistic effects on lowering cell count |
S + bortezomib [36] | Proteasome inhibitor | Non-Hodgkin lymphoma | Cell Lines | Synergistic cytotoxic effects were seen in mantle cell lymphoma and T-cell lymphoma, but not diffuse large B-cell lymphoma |
S + gemcitabine [36] | Chemotherapy | Non-Hodgkin lymphoma | Cell Lines | Synergistic cytotoxic effects were seen in mantle cell lymphoma and T-cell lymphoma, but not diffuse large B-cell lymphoma |
S + choline salicylate [41] | Anti-inflammatory | Non-Hodgkin lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + venetoclax [42] | BCL-2 inhibitor | Diffuse large B-cell lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + bendamustine [42] | Chemotherapy | Diffuse large B-cell lymphoma | Cell lines and mouse models | Synergistic effects on apoptosis and tumour shrinkage |
S + CHO [43] | Chemotherapy combination | Non-Hodgkin lymphoma | Cell lines and mouse models | Synergistic cytotoxic effects, increased survival |
NCT | Treatment | Phase | Disease Type | Major Outcomes | Notable Toxicities |
---|---|---|---|---|---|
NCT01607892 [57] | Selinexor | I | Relapsed/refractory Non-Hodgkin lymphoma | ORR: 31% RP2D: 60 mg | 1 DLT of grade 4 thrombocytopenia MTD: not reached |
NCT02227251 [58] | Selinexor | II | Relapsed/refractory diffuse large B-cell lymphoma | ORR: 28% | Discontinuation of the 100 mg cohort due to higher toxicity with no significant added benefit |
NCT02303392 [59] | Selinexor + ibrutinib | I | Relapsed/refractory Non-Hodgkin lymphoma/Chronic lymphocytic leukemia | DCR: 81% ORR: 33% SD: 48% | MTD: 40 mg selinexor + 420 mg daily ibrutinib DLT: experienced in 2/33 patients |
NCT03147885 [43] | Selinexor + R-CHOP | I | Non-Hodgkin lymphoma | ORR: 100% CR: 90% RP2D: 60 mg selinexor | MTD: not reached Higher rate of grade 3 AEs in 80 mg group with no significant added benefit |
NCT03212937 [60] | Selinexor + DICE | I | Relapsed/refractory peripheral T-cell lymphoma/natural killer T-cell lymphoma | ORR: 91% CR: 82% | MTD: 40 mg selinexor DLT: 2 patients 45% of patients discontinuing treatment for reasons other than disease progression/poor response |
NCT Identifier | Treatment | Phase | Disease Type |
---|---|---|---|
NCT02741388 | Selinexor + R-DHAOx/R-GDP | II | Relapsed/refractory B-cell lymphoma |
NCT02227251 | Selinexor | IIb | Relapsed/refractory diffuse large B-cell lymphoma |
NCT02471911 | Selinexor + R-ICE | I | Relapsed/refractory B-cell lymphoma |
NCT03212937 | Selinexor + ICE | I | Peripheral T-cell lymphoma |
NCT04442022 | R-GDP +/− selinexor | II/III | Transplant/CAR-T ineligible relapsed/refractory B-cell lymphoma |
NCT02303392 | Selinexor + ibrutinib | I | Relapsed/refractory Non-Hodgkin lymphoma/Chronic lymphocytic leukemia |
NCT02436707 | Selinexor + R-GDP | II | Relapsed/refractory aggressive transplant ineligible B-cell lymphoma |
NCT03992339 | Selinexor | II | Relapsed/refractory diffuse large B-cell lymphoma |
NCT03147885 | Selinexor + RCHOP | Ib/II | B cell lymphoma |
NCT04640779 | Selinexor + choline salicylate | Ib | Relapsed/refractory Non-Hodgkin lymphoma |
NCT03955783 | Selinexor + venetoclax | Ib | High risk hematologic malignancies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trkulja, K.L.; Manji, F.; Kuruvilla, J.; Laister, R.C. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules 2023, 13, 111. https://doi.org/10.3390/biom13010111
Trkulja KL, Manji F, Kuruvilla J, Laister RC. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules. 2023; 13(1):111. https://doi.org/10.3390/biom13010111
Chicago/Turabian StyleTrkulja, Kyla L., Farheen Manji, John Kuruvilla, and Rob C. Laister. 2023. "Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors" Biomolecules 13, no. 1: 111. https://doi.org/10.3390/biom13010111
APA StyleTrkulja, K. L., Manji, F., Kuruvilla, J., & Laister, R. C. (2023). Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules, 13(1), 111. https://doi.org/10.3390/biom13010111