Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Expression Data of Breast Cancer Patients and Grouping of Patients
2.2. Selecting Core Genes
2.3. The Prognostic Power of Core Genes
- days_to_last_follow_up: time interval from the date of initial pathologic diagnosis to the date of the last follow-up, represented as a calculated number of days
- days_to_death: the number of days from the date of the initial pathologic diagnosis to the date of death for the case in the investigation
- vital_status: the state of being living or deceased for cases that are part of the investigation
2.4. Constructing Gene Correlation Networks
2.5. Finding Prognostic Genes for Two Groups of Patients
- Order the p-values as .
- Find the rank j for which .
- Declare the top j tests 1, 2, …, j as significant.
3. Results
3.1. Prognostic Genes and Gen Pairs for Two Patient Groups
3.2. A Comparison of TCGA-BRCA and an Independent Validation Cohort
3.3. Comparison of Gene Correlations with Gene Expressions in Classifying Subtypes of Breast Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GCNs | Gene correlation networks |
wtTP53 | a wild-type TP53 gene |
mTP53 | a mutated TP53 gene |
LumA | Luminal A breast cancer |
LumB | Luminal B breast cancer |
Her2 | HER2-enriched breast cancer |
Basal | Basal-like or Triple-negative breast cancer |
References
- Chin, K.; DeVries, S.; Fridly, J.; Spellman, P.T.; Roydasgupta, R.; Kuo, W.L.; Lapuk, A.; Neve, R.M.; Qian, Z.W.; Ryder, T.; et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006, 10, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamaschi, A.; Kim, Y.H.; Wang, P.; Sørlie, T.; Hernandez-Boussard, T.; Lonning, P.E.; Tibshirani, R.; Børresen-Dale, A.L.; Pollack, J.R. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosom. Cancer 2006, 45, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulkes, W.D.; Stefansson, I.M.; Chappuis, P.O.; Bégin, L.R.; Goffin, J.R.; Wong, N.; Trudel, M.; Akslen, L.A. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl. Cancer Inst. 2003, 95, 1482–1485. [Google Scholar] [CrossRef]
- Hua, Z.; White, J.; Zhou, J. Cancer stem cells in TNBC. Semin. Cancer Biol. 2022, 82, 26–34. [Google Scholar] [CrossRef]
- Mollah, F.; Varamini, P. Overcoming therapy resistance and relapse in TNBC: Emerging technologies to target breast cancer-associated fibroblasts. Biomedicines 2021, 9, 1921. [Google Scholar] [CrossRef]
- Tarantino, P.; Corti, C.; Schmid, P.; Cortes, J.; Mittendorf, E.; Rugo, H.; Tolaney, S.; Bianchini, G.; Andrè, F.; Curigliano, G. Immunotherapy for early triple negative breast cancer: Research agenda for the next decade. NPJ Breast Cancer 2022, 8, 1–7. [Google Scholar] [CrossRef]
- Yim, S.; Hwang, W.; Han, N.; Lee, D. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens. Front. Immunol. 2022, 15. [Google Scholar] [CrossRef]
- Gov, E.; Arga, K.Y. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer. Sci. Rep. 2017, 7, 4996. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zhang, L.; Qu, Y.; Hou, L.; Wang, L.; Zheng, M. Prognostic genes of breast cancer revealed by gene co-expression network analysis. Oncol. Lett. 2017, 14, 4535–4542. [Google Scholar] [CrossRef]
- Clarke, C.; Madden, S.F.; Doolan, P.; Aherne, S.T.; Joyce, H.; O’Driscoll, L.; Gallagher, W.M.; Hennessy, B.T.; Moriarty, M.; Crown, J.; et al. Correlating transcriptional networks to breast cancer survival: A large-scale coexpression analysis. Carcinogenesis 2013, 34, 2300–2308. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L.; Yuan, Y.; Li, J.; Hei, N.; Liang, H. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat. Commun. 2014, 5, 3231. [Google Scholar] [CrossRef] [Green Version]
- Paci, P.; Fiscon, G.; Conte, F.; Licursi, V.; Morrow, J.; Hersh, C.; Cho, M.; Castaldi, P.; Glass, K.; Silverman, E.K.; et al. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci. Rep. 2020, 19, 3261. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, H.; Ma, F.; Feng, F.; Lin, C.; Qian, H. Prognosis of lymph node-negative breast cancer: Association with clinicopathological factors and tumor associated gene expression. Oncol. Lett. 2014, 8, 1717–1724. [Google Scholar] [CrossRef] [Green Version]
- Walerych, D.; Napoli, M.; Collavin, L.; Del Sal, G. The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012, 33, 2007–2017. [Google Scholar] [CrossRef] [Green Version]
- Leroy, K.; Haioun, C.; Lepage, E.; Le Metayer, N.; Berger, F.; Labouyrie, E.; Meignin, V.; Petit, B.; Bastard, C.; Salles, G.; et al. p53 gene mutations are associated with poor survival in low and low-intermediate risk diffuse large B-cell lymphomas. Ann. Oncol. 2002, 13, 1108–1115. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar]
- Loi, S.; Sotiriou, C.; Haibe-Kains, B.; Lallem, F.; Conus, N.M.; Piccart, M.J.; Speed, T.P.; McArthur, G.A. Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer. BMC Med. Genom. 2009, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, N.; Twik, M.; Plaschkes, I.; Nudel, R.; Stein, T.I.; Levitt, J.; Gershoni, M.; Morrey, C.P.; Safran, M.; Lancet, D. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Research 2017, 45, D877–D887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harald, S.; Balaji, K.; Cary, D.O.; Philippe, L.; Raykar, V.C. On Ranking in Survival Analysis: Bounds on the Concordance Index. Adv. Neural Inf. Process. Syst. 2008, 20, 1209–1216. [Google Scholar]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.F.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, 13. [Google Scholar] [CrossRef]
- Blake, J.; Christie, K.; Dolan, M.; Drabkin, H.; Hill, D.; Ni, L.; Sitnikov, D.; Burgess, S.; Buza, T.; Gresham, C.; et al. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar]
- Jiao, X.L.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [Google Scholar] [CrossRef] [Green Version]
- Diedenhofen, B.; Musch, J. Cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 2001, 125, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, D. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines 2021, 9, 876. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, X.; Tang, C.; Guan, X.; Zhang, W. Progress and challenges of immunotherapy in triple-negative breast cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188593. [Google Scholar] [CrossRef]
Breast Cancer Subtype | mTP53 | wtTP53 | Total |
---|---|---|---|
Luminal A | 41 (16.1%) | 369 (74.4%) | 410 (54.7%) |
Luminal B | 50 (19.7%) | 95 (19.2%) | 145 (19.3%) |
HER2-enriched | 38 (15.0%) | 14 (2.8%) | 52 (6.9%) |
Basal-like | 125 (49.2%) | 18 (3.6%) | 143 (19.1%) |
Total | 254 (33.9%) | 496 (66.1%) | 750 (100.0%) |
Gene Pair | Large | Small | Log-Rank Test | Cox PH | ||
---|---|---|---|---|---|---|
PCC | PCC | p-value | adj. p-value | Hazard Ratio | p-value | |
MAPK10_PTK6 | 22 | 474 | 4.13E−08 | 1.80E−04 | 9.254 | 1.02E−06 |
ECT2_HIF1A-AS2 | 15 | 481 | 2.11E−05 | 1.48E−02 | 8.616 | 9.47E−05 |
HIF1A-AS2_KIF15 | 16 | 480 | 2.11E−05 | 1.48E−02 | 8.616 | 9.47E−05 |
CLDN7_MAPK10 | 16 | 480 | 1.75E−06 | 3.31E−03 | 8.611 | 1.02E−05 |
CDH3_FGFR2 | 13 | 483 | 3.88E−05 | 2.18E−02 | 7.950 | 9.13E−05 |
PTGS2_SUSD2 | 20 | 476 | 8.62E−09 | 5.36E−05 | 7.695 | 5.77E−06 |
LSINCT5_SUSD2 | 14 | 482 | 1.01E−05 | 9.59E−03 | 6.786 | 6.11E−05 |
AHR_SUSD2 | 29 | 467 | 5.06E−10 | 1.10E−05 | 6.557 | 7.85E−07 |
GLI1_RMST | 14 | 482 | 1.51E−06 | 3.14E−03 | 6.059 | 3.60E−05 |
CDH3_GLI1 | 32 | 464 | 1.38E−09 | 1.88E−05 | 5.945 | 1.72E−07 |
Gene Pair | Large | Small | Log-Rank Test | Cox PH | ||
---|---|---|---|---|---|---|
PCC | PCC | p-value | adj. p-value | Hazard Ratio | p-value | |
KDM5B_ST14 | 18 | 243 | 6.19E−06 | 4.07E−02 | 6.713 | 7.51E−06 |
NAT2_PBOV1 | 27 | 234 | 7.69E−06 | 4.07E−02 | 5.868 | 3.49E−05 |
KIT_RHOBTB2 | 24 | 237 | 5.24E−06 | 4.07E−02 | 5.703 | 1.09E−05 |
PBOV1_TWIST1 | 49 | 212 | 2.80E−07 | 1.21E−02 | 5.680 | 1.51E−06 |
FLT1_MDM2 | 30 | 231 | 5.81E−07 | 1.25E−02 | 5.247 | 7.97E−06 |
PIK3CA_PRLR | 33 | 228 | 1.13E−06 | 1.63E−02 | 5.139 | 6.96E−06 |
EPCAM_SERPINE1 | 28 | 233 | 6.46E−06 | 4.07E−02 | 4.714 | 1.85E−05 |
CDC27_MDM2 | 25 | 236 | 6.92E−06 | 4.07E−02 | 4.644 | 9.70E−05 |
CLDN7_PIK3CA | 38 | 223 | 8.50E−06 | 4.07E−02 | 4.082 | 6.79E−05 |
Feature | Subtype | AC | SE | SP | PPV | NPV | F-Score | MCC |
---|---|---|---|---|---|---|---|---|
Basal-like | 99.71 | 98.08 | 100.0 | 100.00 | 99.66 | 0.990 | 0.989 | |
PCCs & | HER2-enriched | 98.54 | 95.65 | 98.75 | 84.62 | 99.68 | 0.898 | 0.892 |
PCCs | Luminal A | 95.32 | 94.48 | 96.27 | 96.61 | 93.94 | 0.955 | 0.906 |
Luminal B | 95.91 | 90.32 | 97.14 | 87.50 | 97.84 | 0.889 | 0.864 | |
Basal-like | 99.10 | 96.15 | 100.00 | 100.00 | 98.84 | 0.980 | 0.975 | |
gene | HER2-enriched | 96.40 | 93.33 | 96.88 | 82.35 | 98.94 | 0.875 | 0.856 |
expressions | Luminal A | 94.59 | 97.83 | 92.31 | 90.00 | 98.36 | 0.938 | 0.892 |
Luminal B | 91.89 | 70.83 | 97.70 | 89.47 | 92.39 | 0.791 | 0.749 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.; Im, J.; Han, K. Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53. Biomolecules 2022, 12, 979. https://doi.org/10.3390/biom12070979
Park B, Im J, Han K. Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53. Biomolecules. 2022; 12(7):979. https://doi.org/10.3390/biom12070979
Chicago/Turabian StylePark, Byungkyu, Jinho Im, and Kyungsook Han. 2022. "Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53" Biomolecules 12, no. 7: 979. https://doi.org/10.3390/biom12070979
APA StylePark, B., Im, J., & Han, K. (2022). Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53. Biomolecules, 12(7), 979. https://doi.org/10.3390/biom12070979