Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Methods
2.2. Plasma Prostate Cancer Sample Preparation
2.3. Arginine Decarboxylase (ADC) Quantification
2.4. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Polyamine Analysis
3.3. Mono and Multivariate Analysis
3.4. Arginine Decarboxylase (ADC) Quantification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADC | arginine decarboxylase |
AISI | (neutrophils × monocytes × platelets)/lymphocyte ratio |
AO-Agm | isosteric-agmatine hydroxylamine analogue |
APAO | acetylated polyamine oxidase |
ASAP | Atypical Small Acinar Proliferation |
AUC | area under the curve |
BPH | benign prostatic hyperplasia |
Cad | cadaverine |
CTC | circulating cancer cells |
1,3-DAP | 1,3-diaminopropane |
dcAdoMet | decarboxylated S-adenosyl-l-methionine |
DRE | digital rectal examination |
HBFA | heptafluorobutyric acid |
IIEF | international index of erectile function |
IPSS | international prostatic symptoms score |
LC-HRMS | Liquid Chromatography-High Resolution Mass Spectrometry |
LDC | lysine decarboxylase |
MAD | median ± median absolute deviation |
MLR | monocyte/lymphocyte ratio |
NLR | neutrophil/lymphocyte ratio |
dNLR | derived NLR [dNLR = neutrophils/(white blood cells − neutrophils)] |
NO | nitric oxide |
ODC | ornithine decarboxylase |
OPLS-DA | orthogonal partial discriminant analysis of the minimum squares |
Orn | ornithine |
PAs | polyamines |
PAOs | polyamine oxidases |
PC | prostate cancer |
PHI | prostate health index |
PIN | prostatic intraepithelial neoplasia |
PL | precancerous lesion |
PLR | platelet/lymphocyte ratio |
PLS-DA | partial least squares discriminant analysis |
PSA | prostate-specific antigen |
fPSA | free PSA |
proPSA | PSA precursors |
tPSA | total PSA |
Put | putrescine |
QC | quality control |
ROC | receiver operational characteristics curve |
SIRI | (neutrophils × monocytes)/lymphocyte ratio |
Spd | spermidine |
SpdS | spermidine synthase |
Spm | spermine |
SpmS | spermine synthase |
SSAT | spermidine/spermine acetyltransferase |
TRUS | trans rectal ultrasound |
VIP | variable importance parameter |
References
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, W.; Sharp, D. Symptomatic diagnosis of prostate cancer in primary care: A structured review. Br. J. Gen. Pr. 2004, 54, 617–621. [Google Scholar]
- Boyle, H.; Alibhai, S.; Decoster, L.; Efstathiou, E.; Fizazi, K.; Mottet, N.; Oudard, S.; Payne, H.; Prentice, M.; Puts, M.; et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. Eur. J. Cancer 2019, 116, 116–136. [Google Scholar] [CrossRef]
- Hoffman, R.M. Screening for prostate cancer. N. Engl. J. Med. 2011, 365, 2013–2019. [Google Scholar] [CrossRef]
- Catalona, W.J.; Smith, D.S.; Ratliff, T.L.; Dodds, K.M.; Coplen, D.E.; Yuan, J.J.J.; Petros, J.A.; Andriole, G.L. Measurement of Prostate-Specific Antigen in Serum as a Screening Test for Prostate Cancer. N. Engl. J. Med. 1991, 324, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Catalona, W.J.; Partin, A.W.; Sanda, M.G.; Wei, J.T.; Klee, G.G.; Bangma, C.H.; Slawin, K.M.; Marks, L.S.; Loeb, S.; Broyles, D.L. A multicenter study of [-2] pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/mL prostate specific antigen range. J. Urol. 2011, 185, 1650–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kale, M.S.; Korenstein, D. Overdiagnosis in primary care: Framing the problem and finding solutions. BMJ 2018, 362, k2820. [Google Scholar] [CrossRef]
- Campos-Fernández, E.; Barcelos, L.S.; De Souza, A.G.; Goulart, L.R.; Alonso-Goulart, V. Research landscape of liquid biopsies in prostate cancer. Am. J. Cancer Res. 2019, 9, 1309–1328. [Google Scholar]
- Cooperberg, M.R.; Simko, J.P.; Cowan, J.E.; Reid, J.E.; Djalilvand, A.; Bhatnagar, S.; Gutin, A.; Lanchbury, J.S.; Swanson, G.P.; Stone, S.; et al. Validation of a Cell-Cycle Progression Gene Panel to Improve Risk Stratification in a Contemporary Prostatectomy Cohort. J. Clin. Oncol. 2013, 31, 1428–1434. [Google Scholar] [CrossRef]
- De Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.W.M.; Pienta, K.J.; Raghavan, D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008, 14, 6302–6309. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.D.; Javed, A.A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C.M.; Yip-Schneider, M.T.; Allen, P.J.; Schattner, M.; et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 10202–10207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 7–41. [Google Scholar] [CrossRef] [PubMed]
- Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C. A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A. Analytical validation of the oncotype dx prostate cancer assay—A clinical rt-pcr assay optimized for prostate needle biopsies. BMC Genom. 2013, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cullen, J.; Rosner, I.L.; Brand, T.C.; Zhang, N.; Tsiatis, A.C.; Moncur, J.; Ali, A.; Chen, Y.; Knezevic, D.; Maddala, T.; et al. A Biopsy-based 17-gene Genomic Prostate Score Predicts Recurrence After Radical Prostatectomy and Adverse Surgical Pathology in a Racially Diverse Population of Men with Clinically Low- and Intermediate-risk Prostate Cancer. Eur. Urol. 2015, 68, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Parekh, D.J.; Punnen, S.; Sjoberg, D.D.; Asroff, S.W.; Bailen, J.L.; Cochran, J.S.; Concepcion, R.; David, R.D.; Deck, K.B.; Dumbadze, I.; et al. A Multi-institutional Prospective Trial in the USA Confirms that the 4Kscore Accurately Identifies Men with High-grade Prostate Cancer. Eur. Urol. 2015, 68, 464–470. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Day, J.R.; Lonigro, R.J.; Hovelson, D.H.; Siddiqui, J.; Kunju, L.P.; Dunn, R.L.; Meyer, S.; Hodge, P.; Groskopf, J.; et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur. Urol. 2015, 70, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Hyvönen, M.T.; Keinänen, T.A.; Nuraeva, G.K.; Yanvarev, D.V.; Khomutov, M.; Khurs, E.N.; Kochetkov, S.N.; Vepsäläinen, J.; Zhgun, A.A.; Khomutov, A.R. Hydroxylamine analogue of agmatine: Magic bullet for arginine decarboxylase. Biomolecules 2020, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Meurling, L.; Márquez, M.; Nilsson, S.; Holmberg, A.R. Polymer-conjugated guanidine is a potentially useful anti-tumor agent. Int. J. Oncol. 2009, 35, 281–285. [Google Scholar] [PubMed]
- Keshet, R.; Erez, A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis. Model. Mech. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.; Bhaumik, J.; Babykutty, S.; Banerjee, U.C.; Fukumura, D. Arginine dependence of tumor cells: Targeting a chink in cancer’s armor. Oncogene 2016, 35, 4957–4972. [Google Scholar] [CrossRef] [PubMed]
- Al-Koussa, H.; El Mais, N.; Maalouf, H.; Abi-Habib, R.; El-Sibai, M. Arginine deprivation: A potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Bronte, V.; Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 2005, 5, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K. Amino Acids and Immune Response: A Role for Cysteine, Glutamine, Phenylalanine, Tryptophan and Arginine in T-cell Function and Cancer? Pathol. Oncol. Res. 2015, 21, 9–17. [Google Scholar] [CrossRef]
- Raber, P.; Ochoa, A.C.; Rodríguez, P.C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms of T cell suppression and therapeutic perspectives. Immunol. Investig. 2012, 41, 614–634. [Google Scholar] [CrossRef]
- Peranzoni, E.; Marigo, I.; Dolcetti, L.; Ugel, S.; Sonda, N.; Taschin, E.; Mantelli, B.; Bronte, V.; Zanovello, P. Role of arginine metabolism in immunity and immunopathology. Immunobiology 2008, 212, 795–812. [Google Scholar] [CrossRef]
- Pereira, A.B.C. Efeitos da nutrição imunomoduladora na recuperação cirurgica de doentes com cancro gástrico. 2019. Available online: https://repositorio-aberto.up.pt/bitstream/10216/122142/2/350047.pdf (accessed on 27 January 2022).
- García-Navas, R.; Munder, M.; Mollinedo, F. Depletion ofL-arginine induces autophagy as a cytoprotective response to endoplasmic reticulum stress in human T lymphocytes. Autophagy 2012, 8, 1557–1576. [Google Scholar] [CrossRef] [Green Version]
- Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. Remaining mysteries of Molecular Biology: The role of polyamines in the cell. J. Mol. Biol. 2015, 427, 3389–3406. [Google Scholar] [CrossRef]
- Flynn, A.T.; Hogarty, M.D. Myc, Oncogenic Protein Translation, and the Role of Polyamines. Med Sci. 2018, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, A.M.; Waite, I.; Neal, D.E.; Robson, C.N. Androgen regulation of ornithine decarboxylase in human prostatic cells identified using differential display. FEBS Lett. 1997, 405, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.A.; Keller, U.B.; Baudino, T.A.; Yang, C.; Norton, S.; Old, J.A.; Nilsson, L.M.; Neale, G.; Kramer, D.L.; Porter, C.W.; et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 2005, 7, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Synakiewicz, A.; Stachowicz-Stencel, T.; Adamkiewicz-Drozynska, E. The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin. Investig. Drugs 2014, 23, 1517–1529. [Google Scholar] [CrossRef]
- Dillon, B.J.; Holtsberg, F.W.; Ensor, M.; Bomalaski, J.S.; Clark, M.A. Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med. Sci. Monit. 2002, 8, BR248–BR253. [Google Scholar]
- Butler, M.; van der Meer, L.T.; van Leeuwen, F.N. Amino acid depletion therapies: Starving cancer cells to death. Trends Endocrinol. Metab. 2021, 32, 367–381. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Qian, J.; Frankel, K. The incidence of high grade prostatic intraepithelial neoplasia in needle biopsies. J. Urol. 1995, 154, 1791–1794. [Google Scholar] [CrossRef]
- Iczkowski, K.A.; MacLennan, G.T.; Bostwick, D.G. Atypical small acinar proliferation suspicious for malignancy in prostate needle biopsies: Clinical significance in 33 cases. Am. J. Surg. Pathol. 1997, 21, 1489–1495. [Google Scholar] [CrossRef]
- Scattoni, V.; Roscigno, M.; Freschi, M.; Dehò, F.; Raber, M.; Briganti, A.; Fantini, G.; Nava, L.; Montorsi, F.; Rigatti, P. Atypical small acinar proliferation (ASAP) on extended prostatic biopsies: Predictive factors of cancer detection on repeat biopsies. Arch. Ital. di Urol. e Androl. 2005, 77, 31–36. [Google Scholar]
- Epstein, J.I.; Herawi, M. Prostate Needle Biopsies Containing Prostatic Intraepithelial Neoplasia or Atypical Foci Suspicious for Carcinoma: Implications for Patient Care. J. Urol. 2006, 175, 820–834. [Google Scholar] [CrossRef]
- Zhou, M.; Chinnaiyan, A.M.; Kleer, C.G.; Lucas, P.C.; Rubin, M.A. Alpha-methylacyl-coa racemase: A novel tumor marker over-expressed in several human cancers and their precursor lesions. Am. J. Surg. Pathol. 2002, 26, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Halushka, M.; Kahane, H.; Epstein, J.I. Negative 34βE12 staining in a small focus of atypical glands on prostate needle biopsy: A follow-up study of 332 cases. Hum. Pathol. 2004, 35, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G. High grade prostatic intraepithelial neoplasia. The most likely precursor of prostate cancer. Cancer 1995, 75, 1823–1836. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Brawer, M.K. Prostatic Intra-Epithelial Neoplasia and Early Invasion in Prostate Cancer. Cancer 1987, 59, 788–794. [Google Scholar] [CrossRef]
- Gokden, N.; Roehl, K.A.; Catalona, W.J.; Humphrey, P.A. High-grade prostatic intraepithelial neoplasia in needle biopsy as risk factor for detection of adenocarcinoma: Current level of risk in screening population. Urology 2005, 65, 538–542. [Google Scholar] [CrossRef]
- Bishara, T.; Ramnani, D.M.; Epstein, J.I. High-grade prostatic intraepithelial neoplasia on needle biopsy: Risk of cancer on repeat biopsy related to number of involved cores and morphologic pattern. Am. J. Surg. Pathol. 2004, 28, 629–633. [Google Scholar] [CrossRef]
- Coradduzza, D.; Azara, E.; Medici, S.; Arru, C.; Solinas, T.; Madonia, M.; Zinellu, A. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J. Chromatogr. B 2020, 1162, 122468. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Qian, J. High-grade prostatic intraepithelial neoplasia. Mod. Pathol. 2004, 17, 360–379. [Google Scholar] [CrossRef]
- Andras, I.; Telecan, T.; Crisan, D.; Cata, E.; Kadula, P.; Andras, D.; Bungardean, M.; Coman, I.; Crisan, N. Different clinical significance of asap/hgpin pattern in systematic vs. Mri-us fusion guided prostate biopsy. Exp. Ther. Med. 2020, 20, 1. [Google Scholar] [CrossRef]
- van Leenders, G.J.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.; Smith, R. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Veter-Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Telesca, D.; Etzioni, R.; Gulati, R. Estimating Lead Time and Overdiagnosis Associated with PSA Screening from Prostate Cancer Incidence Trends. Biometrics 2007, 64, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Satriano, J.; Matsufuji, S.; Murakami, Y.; Lortie, M.J.; Schwartz, D.; Kelly, C.J.; Hayashi, S.-I.; Blantz, R.C. Agmatine Suppresses Proliferation by Frameshift Induction of Antizyme and Attenuation of Cellular Polyamine Levels. J. Biol. Chem. 1998, 273, 15313–15316. [Google Scholar] [CrossRef] [Green Version]
- Regunathan, S.; Youngson, C.; Raasch, W.; Wang, H.; Reis, D.J. Imidazoline receptors and agmatine in blood vessels: A novel system inhibiting vascular smooth muscle proliferation. J. Pharmacol. Exp. Ther. 1996, 276, 1272–1282. [Google Scholar] [PubMed]
- Vargiu, C.; Cabella, C.; Belliardo, S.; Cravanzola, C.; Grillo, M.A.; Colombatto, S. Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. Eur. J. Biochem. 1999, 259, 933–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-Y.; McCormack, S.; Viar, M.; Wang, H.; Tzen, C.-Y.; Scott, R.; Johnson, L. Decreased expression of protooncogenes c-fos, c-myc, and c-jun following polyamine depletion in iec-6 cells. Am. J. Physiol. -Gastrointest. Liver Physiol. 1993, 265, G331–G338. [Google Scholar] [CrossRef]
- Li, L.; Rao, J.N.; Bass, B.L.; Wang, J.-Y. Nf-κb activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am. J. Physiol. -Gastrointest. Liver Physiol. 2001, 280, G992–G1004. [Google Scholar] [CrossRef]
- Stephenson, A.; Christian, J.; Seidel, E. Polyamines regulate eukaryotic initiation factor 4E-binding protein 1 gene transcription. Biochem. Biophys. Res. Commun. 2004, 323, 204–212. [Google Scholar] [CrossRef]
- Patel, A.R.; Wang, J.Y. Polyamines modulate transcription but not posttranscription of c-myc and c-jun in IEC-6 cells. Am. J. Physiol. Content 1997, 273, C1020–C1029. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Rao, J.N.; Esmaili, A.; Strauch, E.D.; Bass, B.L.; Wang, J. JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion. Gastroenterology 2002, 123, 764–779. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Rao, J.N.; Li, M.; Bass, B.L.; Wang, J.-Y. Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis. Am. J. Physiol. Content 1999, 276, C946–C954. [Google Scholar] [CrossRef] [PubMed]
- Rowe, W.A.; Blackmon, D.L.; Montrose, M.H. Propionate activates multiple ion transport mechanisms in the HT29-18-C1 human colon cell line. Am. J. Physiol. Content 1993, 265, G564–G571. [Google Scholar] [CrossRef] [PubMed]
- Kapancık, S.; Çelik, V.; Kılıçkap, S.; Kacan, T.; Kapancik, S. The relationship of agmatine deficiency with the lung cancer. Uhod-Uluslararasi Hematoloji-Onkoloji Dergisi 2016, 26. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine metabolism and cancer. J. Surg. Oncol. 2017, 115, 273. [Google Scholar] [CrossRef]
- Raasch, W.; Schäfer, U.; Chun, J.; Dominiak, P. Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. J. Cereb. Blood Flow Metab. 2001, 133, 755–780. [Google Scholar] [CrossRef] [Green Version]
- Satriano, J.; Isome, M.; Casero, R.A.; Thomson, S.C.; Blantz, R.C. Polyamine transport system mediates agmatine transport in mammalian cells. Am. J. Physiol. Physiol. 2001, 281, C329–C334. [Google Scholar] [CrossRef]
- Choi, Y.S.; Cho, Y.D. Effects of agmatine on polyamine metabolism and the growth of prostate tumor cells. BMB Rep. 1999, 32, 173–180. [Google Scholar]
- Molderings, G.J.; Kribben, B.; Heinen, A.; Schröder, D.; Brüss, M.; Göthert, M. Intestinal tumor and agmatine (decarboxylated arginine) low content in colon carcinoma tissue specimens and inhibitory effect on tumor cell proliferation in vitro. Cancer 2004, 101, 858–868. [Google Scholar] [CrossRef]
- Wang, J.-F.; Su, R.-B.; Wu, N.; Xu, B.; Lu, X.-Q.; Liu, Y.; Li, J. Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism. Acta Pharmacol. Sin. 2005, 26, 616–622. [Google Scholar]
PC = 92 | PL = 26 | BPH = 49 | SIGNIFICANCE | |
---|---|---|---|---|
AGE | 70 ± 7.86 | 68 ± 7.87 | 65 ± 8.17 | ** p = 0.009 |
PSA | 21.28 ± 45.09 | 6.38 ± 4.57 | 6.87 ± 6.80 | ** p = 0.0013 |
INDEX | 12 ± 5.59 | 20 ± 11.11 | 19.48 ± 10.18 | * p = 0.009, ** p = 0.007 |
WBC | 7.73 ± 2.14 | 6.46 ± 1.45 | 7.33 ± 2.26 | N.S. |
RBC | 5.07 ± 0.59 | 5.18 ± 0.93 | 5.24 ± 0.51 | N.S. |
HGB | 14.20 ± 1.64 | 14.67 ± 2.16 | 14.75 ± 1.26 | N.S. |
RDW | 13.99 ± 1.51 | 13.51 ± 0.95 | 13.60 ± 0.99 | N.S. |
HDW | 2.64 ± 0.41 | 2.55 ± 0.35 | 2.52 ± 0.30 | N.S. |
PLT | 235.5 ± 66.15 | 217.35 ± 45.01 | 235.60 ± 55.80 | N.S. |
NEUT | 4.88 ± 1.89 | 3.96 ± 1.33 | 4.45 ± 1.91 | N.S. |
LYMPH | 1.97 ± 0.79 | 1.77 ± 0.50 | 2.04 ±0.79 | N.S. |
MONO | 0.50 ± 0.17 | 0.43 ± 0.13 | 0.47 ± 0.15 | N.S. |
EOS | 0.20 ± 0.14 | 0.17 ± 0.10 | 0.23 ± 0.15 | N.S. |
BASO | 0.04 ± 0.05 | 0.02 ± 0.04 | 0.04 ± 0.05 | N.S. |
LUC# | 0.14 ± 0.07 | 0.12 ± 0.04 | 0.14 ± 0.06 | N.S. |
LUC% | 1.96 ± 0.73 | 2.03 ± 0.57 | 2.13 ± 0.74 | N.S. |
LMR | 4.16 ± 1.50 | 4.49 ± 1.80 | 4.47 ± 1.40 | N.S. |
NLR | 2.92 ± 1.85 | 2.51 ± 1.67 | 2.47 ± 1.24 | N.S. |
PLR | 137.69 ± 63.58 | 131.05 ± 42.02 | 132.45 ± 58.93 | N.S. |
SIRI | 1.50 ± 1.28 | 1.15 ± 0.99 | 1.19 ± 0.94 | N.S. |
AISI | 367.07 ± 338.04 | 247.24 ± 206.44 | 292.39 ± 289.63 | N.S. |
PSA/AISI% | 0.10 ± 0.26 | 0.04 ± 0.03 | 0.04 ± 0.04 | N.S. |
INDEX/SIRI | 11.75 ± 11.98 | 24.10 ± 29.58 | 12.49 ± 15.34 | N.S. |
INDEX/AISI% | 0.06 ± 0.07 | 0.12 ± 0.16 | 0.06 ± 0.07 | N.S. |
FAMILIARITY | 8/92 (8.69%) | 6/26 (23.07%) | 6/49 (12.24%) | N.S. |
CHARLSON | 5.22 ± 1.62 | 2.47 ± 1.19 | 2.75 ± 1.37 | * p = 0.02, ** p = 0.013 |
G6PDH DEFICIT | 7/92 (7.60%) | 3/26 (11.53%) | 5/49 (10.2%) | N.S. |
BMI | 27.40 ± 3.67 | 26.87 ± 2.82 | 26.80 ± 4.01 | N.S. |
IPSS | 11.88 ± 6.43 | 12 ± 8.51 | 12.93 ± 9.47 | N.S. |
IIEF | 13.06 ± 7.40 | 17.29 ± 6.17 | 15.75 ± 8.43 | * p = 0.02 |
TRUS | 51.26 ± 24.98 | 60.31 ± 33.05 | 65.45 ± 35.46 | ** p = 0.009 |
SMOKE | 32/92 (34.78%) | 4/26 (15.38%) | 13/49 (26.53%) | N.S. |
ALCOHOL | 1/92 (1.09%) | 0/26 (0%) | 2/49 (4.08%) | N.S. |
POLYAMINES | PC | PL | BPH | SIGNIFICANCE |
---|---|---|---|---|
AGMATINE | 39.9 ± 12.06 | 55.31 ± 15.27 | 77.62 ± 15.05 | * p = 0.007, ** p = 0.01, *** p = 0.009 |
GABA | 30.03 ± 14.97 | 16.83 ± 12.54 | 22.02 ± 13.41 | * p = 0.01, ** p = 0.008 |
SPERMINE | 3.74 ± 2.20 | 2.8 ± 1.94 | 2.97 ± 1.76 | * p = 0.01, ** p = 0.01 |
SPERMIDINE | 8.43 ± 3.03 | 7.02 ± 1.78 | 5.31 ± 1.49 | * p = 0.009, ** p = 0.007, *** p = 0.01 |
PUTRESCINE | 14.28 ± 8.43 | 7.56 ± 1.62 | 6.45 ± 2.21 | * p = 0.01, ** p = 0.01, *** p = 0.01 |
ACETYLPUTRESCINE | 0.06 ± 0.04 | 0.14 ± 0.17 | 0.16 ± 0.10 | * p = 0.008, ** p = 0.01 |
ACETYLSPERMINE | 2.42 ± 0.77 | 2.68 ± 1.33 | 2.27 ± 0.49 | *** p = 0.007 |
ACETYLSPERMIDINE | 0.35 ± 0.24 | 0.4 ± 0.27 | 0.38 ± 0.24 | N.S. |
CADAVERINE | 2.53 ± 0.81 | 1.75 ± 0.68 | 1.75 ± 0.67 | * p = 0.01, ** p = 0.01 |
ARGININE | 6.02 ± 2.30 × 104 | 5.59 ± 1.87 | 5.39 ± 1.88 | N.S. |
LYSINE | 2.33 ± 0.86 × 104 | 1.64 ± 0.58 | 6.93 ± 2.06 | * p = 0.006, ** p = 0.01 |
ORNITHINE | 0.83 ± 0.29 × 104 | 0.91 ± 0.17 | 1.04 ± 0.41 | ** p = 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coradduzza, D.; Solinas, T.; Azara, E.; Culeddu, N.; Cruciani, S.; Zinellu, A.; Medici, S.; Maioli, M.; Madonia, M.; Carru, C. Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis. Biomolecules 2022, 12, 514. https://doi.org/10.3390/biom12040514
Coradduzza D, Solinas T, Azara E, Culeddu N, Cruciani S, Zinellu A, Medici S, Maioli M, Madonia M, Carru C. Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis. Biomolecules. 2022; 12(4):514. https://doi.org/10.3390/biom12040514
Chicago/Turabian StyleCoradduzza, Donatella, Tatiana Solinas, Emanuela Azara, Nicola Culeddu, Sara Cruciani, Angelo Zinellu, Serenella Medici, Margherita Maioli, Massimo Madonia, and Ciriaco Carru. 2022. "Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis" Biomolecules 12, no. 4: 514. https://doi.org/10.3390/biom12040514
APA StyleCoradduzza, D., Solinas, T., Azara, E., Culeddu, N., Cruciani, S., Zinellu, A., Medici, S., Maioli, M., Madonia, M., & Carru, C. (2022). Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis. Biomolecules, 12(4), 514. https://doi.org/10.3390/biom12040514