Heat Stress Impairs Maternal Endometrial Integrity and Results in Embryo Implantation Failure by Regulating Transport-Related Gene Expression in Tongcheng Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Electron Microscopy Observation
2.3. Histological Analysis
2.4. Western Blot
2.5. RNA Extraction and Sequencing
2.6. GO and KEGG Enrichment Analysis
2.7. Protein–Protein Interaction Network Analysis (STRING Analysis)
2.8. RT-qPCR
2.9. Cell Preparation and Culture Conditions
2.10. Cell Cycle Analysis
2.11. Cell Apoptosis Analysis
2.12. Statistical Analysis
3. Results
3.1. Effects of Heat Stress on Porcine Uteri
3.2. Heat Stress Regulated the Integrity of the Endometrium
3.3. Transcriptome Analysis and DEG Identification
3.4. GO and KEGG Enrichment Analysis of DEGs
3.5. DEG Network and Validation of Real-Time PCR Results
3.6. Effects of Heat Stress on Porcine Endometrial Epithelial Cells
3.7. Effect of HS on S100A9 and Determination of Its Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindenberg, S.J. Experimental studies on the initial trophoblast endometrial interaction. Dan. Med. Bull. 1991, 38, 371–380. [Google Scholar] [PubMed]
- Zhang, S.; Lin, H.; Kong, S.; Wang, S.; Wang, H.; Wang, H.; Armant, D.R. Physiological and molecular determinants of embryo implantation. Mol. Asp. Med. 2013, 34, 939–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-M.; Kim, J.-S.J.D. A review of mechanisms of implantation. Dev. Reprod. 2017, 21, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Liang, Y.-X.; Luo, J.-M.; Gu, X.-W.; Chen, Z.-C.; Fu, T.; Zhu, Y.-Y.; Lin, S.; Diao, H.-L.; Jia, B.J.C.D.; et al. Nucleolar stress regulation of endometrial receptivity in mouse models and human cell lines. Cell Death Dis. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Zheng, H.T.; Zhang, H.Y.; Chen, S.T.; Li, M.Y.; Fu, T.; Yang, Z. The detrimental effects of stress-induced glucocorticoid exposure on mouse uterine receptivity and decidualization. FASEB J. 2020, 34, 14200–14216. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yang, D.; Liu, Z.; Tian, L.; Yan, J.; Li, K.; Fang, Z.; Chen, Q.; Lin, B.; Zhang, W.J.L.S. The damage effect of heat stress and psychological stress combined exposure on uterus in female rats. Life Sci. 2021, 286, 120053. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, M.A.; Alaniz, A.J.; Gutiérrez-Gómez, C.; Vergara, P.M.; Sejian, V.; Bozinovic, F. Increasing importance of heat stress for cattle farming under future global climate scenarios. Sci. Total Environ. 2021, 801, 149661. [Google Scholar] [CrossRef]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob. Chang. Biol. 2021, 27, 5762–5772. [Google Scholar] [CrossRef]
- Vandana, G.; Sejian, V.; Lees, A.; Pragna, P.; Silpa, M.; Maloney, S.K. Heat stress and poultry production: Impact and amelioration. Int. J. Biometeorol. 2021, 65, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Stott, G.H. What is animal stress and how is it measured? J. Anim. Sci. 1981, 52, 150–153. [Google Scholar] [CrossRef] [PubMed]
- D’Allaire, S.; Drolet, R.; Brodeur, D. Sow mortality associated with high ambient temperatures. Can. Vet. J. 1996, 37, 237. [Google Scholar] [PubMed]
- Baumgard, L.H.; Rhoads, R.R., Jr. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kang, H.-G.; Jeong, P.-S.; Kim, M.J.; Park, S.-H.; Song, B.-S.; Sim, B.-W.; Kim, S.-U. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs. Sci. Total Environ. 2021, 755, 144144. [Google Scholar] [CrossRef] [PubMed]
- Serviento, A.M.; Labussière, E.; Castex, M.; Renaudeau, D.J.J. Effect of heat stress and feeding management on growth performance and physiological responses of finishing pigs. J. Anim. Sci. 2020, 98, skaa387. [Google Scholar] [CrossRef]
- Serviento, A.M.; Lebret, B.; Renaudeau, D.J.J. Chronic prenatal heat stress alters growth, carcass composition, and physiological response of growing pigs subjected to postnatal heat stress. J. Anim. Sci. 2020, 98, skaa161. [Google Scholar] [CrossRef] [PubMed]
- Fausnacht, D.W.; Kroscher, K.A.; McMillan, R.P.; Martello, L.S.; Davy, K.P.; Baumgard, L.H.; Selsby, J.T.; Hulver, M.W.; Rhoads, R.R., Jr. Heat Stress Reduces Metabolic Rate While Increasing Respiratory Exchange Ratio in Growing Pigs. Animals 2021, 11, 215. [Google Scholar] [CrossRef]
- Teixeira, A.; Veroneze, R.; Moreira, V.; Campos, L.; Januário Raimundi, S.; Campos, P.H.R.F. Effects of heat stress on performance and thermoregulatory responses of Piau purebred growing pigs. J. Therm. Biol. 2021, 99, 103009. [Google Scholar] [CrossRef]
- Isom, S.C.; Prather, R.S.; Rucker, E.B., III. Heat stress-induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantation-stage embryos. Mol. Reprod. Dev. 2007, 74, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Bidne, K.L.; Romoser, M.R.; Ross, J.W.; Baumgard, L.H.; Keating, A.F.J.J. Heat stress during the luteal phase decreases luteal size but does not affect circulating progesterone in gilts. J. Dairy Sci. 2019, 97, 4314–4322. [Google Scholar]
- Hale, B.J.; Hager, C.L.; Seibert, J.T.; Selsby, J.T.; Baumgard, L.H.; Keating, A.F.; Ross, J.W. Heat stress induces autophagy in pig ovaries during follicular development. Biol. Reprod. 2017, 97, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Hale, B.J.; Li, Y.; Adur, M.K.; Keating, A.F.; Baumgard, L.H.; Ross, J.W. Characterization of the effects of heat stress on autophagy induction in the pig oocyte. Reprod. Biol. Endocrinol. 2021, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.W.; Ashworth, M.D.; Stein, D.R.; Couture, O.P.; Tuggle, C.K.; Geisert, R.D.J.P.G. Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium. Physiol. Genom. 2009, 36, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Kligman, L.; Lessey, G.J.; Palomino, W.J.R.B.E. Estrogen receptor-alpha and defects in uterine receptivity in women. Reprod. Biol. Endocrinol. 2006, 4, 1–10. [Google Scholar]
- Senturk, L.M.; Erel, C. Thin endometrium in assisted reproductive technology. J. Hum. Reprod. Sci. 2008, 20, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, E.; Kyrou, D.; Zervakakou, G.; Paggou, E.; Humaidan, P. Follicular HCG endometrium priming for IVF patients experiencing resisting thin endometrium. A proof of concept study. J. Assist. Reprod. Genet. 2013, 30, 1341–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, S.; Lim, H.; Das, S.K.; Reese, J.; Paria, B.; Daikoku, T.; Wang, H.J.E.R. Molecular cues to implantation. Endocr. Rev. 2004, 25, 341–373. [Google Scholar] [CrossRef] [PubMed]
- Red-Horse, K.; Zhou, Y.; Genbacev, O.; Prakobphol, A.; Foulk, R.; McMaster, M.; Fisher, S.J. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Investig. 2004, 114, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, X.; Dey, S.K.J.C.R. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep. 2015, 11, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.R.J.C.R. Uterine receptivity and the plasma membrane transformation. Cell Res. 2004, 14, 259–267. [Google Scholar] [CrossRef]
- Jalali, B.M.; Lukasik, K.; Witek, K.; Baclawska, A.; Skarzynski, D.J.J.T. Changes in the expression and distribution of junction and polarity proteins in the porcine endometrium during early pregnancy period. Theriogenology 2020, 142, 196–206. [Google Scholar] [CrossRef]
- Kiewisz, J.; Kaczmarek, M.M.; Andronowska, A.; Blitek, A.; Ziecik, A.J.J.T. Gene expression of WNTs, β-catenin and E-cadherin during the periimplantation period of pregnancy in pigs-involvement of steroid hormones. Theriogenology 2011, 76, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hua, R.; Xue, S.; Li, W.; Wu, L.; Kang, T.; Lei, M. mRNA/lncRNA expression patterns and the function of fibrinogen-like protein 2 in Meishan pig endometrium during the preimplantation phases. Mol. Reprod. Dev. 2019, 86, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Borroni, E.M.; Bonecchi, R.; Buracchi, C.; Savino, B.; Mantovani, A.; Locati, M.J.I.I. Chemokine decoy receptors: New players in reproductive immunology. Immunol. Investig. 2008, 37, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Anholts, J.; Kolbe, U.; Stegehuis-Kamp, J.A.; Claas, F.H.; Eikmans, M. Calcium-binding proteins S100A8 and S100A9: Investigation of their immune regulatory effect in myeloid cells. Int. J. Mol. Sci. 2018, 19, 1833. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Jang, H.; Seo, H.; Yoo, I.; Han, J.; Kim, M.; Lee, S.; Ka, H. Changes in calcium levels in the endometrium throughout pregnancy and the role of calcium on endometrial gene expression at the time of conceptus implantation in pigs. Mol. Reprod. Dev. 2019, 86, 883–895. [Google Scholar] [CrossRef]
- Ren, Q.; Guan, S.; Fu, J.; Wang, A. Temporal and spatial expression of Muc1 during implantation in sows. Int. J. Mol. Sci. 2010, 11, 2322–2335. [Google Scholar] [CrossRef] [Green Version]
- Costa, K.A.; Soares, A.D.N.; Wanner, S.P.; Santos, R.D.G.C.D.; Fernandes, S.O.A.; Martins, F.D.S.; Nicoli, J.R.; Coimbra, C.C.; Cardoso, V.N. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss mice subjected to physical exercise under environmental heat stress. J. Nutr. 2014, 144, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Cao, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; Shang, H.; Zhao, H. The protective effect of selenium from heat stress-induced porcine small intestinal epithelial cell line (IPEC-J2) injury is associated with regulation expression of selenoproteins. Br. J. Nutr. 2019, 122, 1081–1090. [Google Scholar] [CrossRef]
- Koch, F.; Thom, U.; Albrecht, E.; Weikard, R.; Nolte, W.; Kuhla, B.; Kuehn, C.J. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc. Natl. Acad. Sci. USA 2019, 116, 10333–10338. [Google Scholar] [CrossRef] [Green Version]
- Craciunas, L.; Gallos, I.; Chu, J.; Bourne, T.; Quenby, S.; Brosens, J.J.; Coomarasamy, A.J.H.R.U. Conventional and modern markers of endometrial receptivity: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 202–223. [Google Scholar] [CrossRef]
- Color-Aparicio, V.M.; Cervantes-Villagrana, R.D.; García-Jiménez, I.; Beltrán-Navarro, Y.M.; Castillo-Kauil, A.; Escobar-Islas, E.; Reyes-Cruz, G.; Vázquez-Prado, J.J.B. Endothelial cell sprouting driven by RhoJ directly activated by a membrane-anchored Intersectin 1 (ITSN1) RhoGEF module. Biochem. Biophys. Res. Commun. 2020, 524, 109–116. [Google Scholar] [CrossRef]
- Luo, J.; Hu, Q.; Gou, M.; Liu, X.; Qin, Y.; Zhu, J.; Cai, C.; Tian, T.; Tu, Z.; Du, Y.J.F.I.O. Expression of Microtubule-Associated Proteins in Relation to Prognosis and Efficacy of Immunotherapy in Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Padh, H.; Nivsarkar, M. Hormonal crosstalk with calcium channel blocker during implantation. Syst. Biol. Reprod. Med. 2011, 57, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, S.; Liu, X.; Liu, H.; Hu, T.; Qiu, X.; Zhang, J.; Lei, M.J.S.R. Analyses of long non-coding RNA and mRNA profiling using RNA sequencing during the pre-implantation phases in pig endometrium. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yoo, Y.M.; Jung, E.M.; Choi, K.C.; Jeung, E.-B. Uterine expression of sodium/potassium/calcium exchanger 3 and its regulation by sex-steroid hormones during the estrous cycle of rats. Mol. Reprod. Dev. 2010, 77, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Kao, Y.-H.; Huang, C.-F.; Cheng, C.-C.; Chen, Y.-J.; Chen, S.-A. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes. J. Mol. Cell. Cardiol. 2010, 48, 781–788. [Google Scholar] [CrossRef]
- Jiang, X.; Xue, S.; Kang, T.; Liu, H.; Ren, H.; Hua, R.; Ni, D.; Lei, M.J.R.I.D.A. Annexin A8 (ANXA8) regulates proliferation of porcine endometrial cells via Akt signalling pathway. Reprod. Domest. Anim. 2019, 54, 3–10. [Google Scholar] [CrossRef]
- Mori, H.; Yamada, H.; Toyama, K.; Takahashi, K.; Akama, T.; Inoue, T.; Nakamura, T. Developmental and age-related changes to the elastic lamina of Bruch’s membrane in mice. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.; Jeffery, R.; May, R.; Mathies, M.; Spencer-Dene, B.; Poulsom, R.; Hogg, N.J.D.D. Distinct roles for S100a8 in early embryo development and in the maternal deciduum. Dev. Dyn. 2011, 240, 2194–2203. [Google Scholar] [CrossRef]
- Huang, N.; Zhao, G.; Yang, Q.; Tan, J.; Tan, Y.; Zhang, J.; Cheng, Y.; Chen, J.J.A. Intracellular and extracellular S100A9 trigger epithelial-mesenchymal transition and promote the invasive phenotype of pituitary adenoma through activation of AKT1. Aging 2020, 12, 23114. [Google Scholar] [CrossRef]
- Gibson, C.; de Ruijter-Villani, M.; Rietveld, J.; Stout, T.A.E. Amino acid transporter expression in the endometrium and conceptus membranes during early equine pregnancy. Reprod. Fertil. Dev. 2018, 30, 1675–1688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Liu, F.; Marth, C.D.; Green, M.P.; Le, H.H.; Leury, B.J.; Bell, A.W.; Dunshea, F.R.; Cottrell, J.J. Maternal Heat Stress Alters Expression of Genes Associated with Nutrient Transport Activity and Metabolism in Female Placentae from Mid-Gestating Pigs. Int. J. Mol. Sci. 2021, 22, 4147. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, Y.; Furugen, A.; Narumi, K.; Nishimura, A.; Hirano, T.; Kobayashi, M.; Iseki, K. Valproic acid transport in the choriocarcinoma placenta cell line JEG-3 proceeds independently of the proton-dependent transporters MCT1 and MCT4. Drug Metab. Pharmacokinet. 2018, 33, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, X.; Ao, L.; Yin, T.; Yang, J. Transcriptomic changes and potential regulatory mechanism of intrauterine human chorionic gonadotropin co-cultured with peripheral blood mononuclear cells infusion in mice with embryonic implantation dysfunction. Ann. Transl. Med. 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Reads | Clean Reads | Clean Bases | Error Rate | Q30 | GC pct |
---|---|---|---|---|---|---|
C1 | 53,298,596 | 52,575,622 (98.64%) | 7.89 G | 0.02 | 94.62 | 52.96 |
C2 | 66,589,734 | 65,620,474 (98.54%) | 9.84 G | 0.03 | 94.07 | 52.74 |
C3 | 53,313,686 | 52,579,282 (98.62%) | 7.89 G | 0.02 | 94.34 | 52.48 |
HS_1 | 64,540,558 | 63,720,642 (98.72%) | 9.56 G | 0.02 | 94.43 | 51.78 |
HS_2 | 65,701,188 | 64,863,356 (98.72%) | 9.73 G | 0.03 | 94.28 | 52.8 |
HS_3 | 53,889,090 | 53,227,774 (98.77%) | 7.98 G | 0.03 | 94.13 | 52.57 |
Gene Symbol | Primers Sequences | Size (bp) | Tm (℃) |
---|---|---|---|
ANXA8 | F: CTTCTGAGTGCAGCAGGGG | 183 | 63.3 |
R: GTCGGGGTCTGGGTTGAAG | |||
AQP9 | F: CAGTCGCGGACATTTTGGAG | 127 | 59.0 |
R: CAAGGCAAAAGACACGGCTG | |||
CCL5 | F: CACACCCTGCTGTTTTTCC | 151 | 58.0 |
R: CCATTTCTTCTCTGGGTTGG | |||
CCL21 | F: TGGCTCAGTCACTGGTTCTG | 144 | 60.0 |
R: GGTAGCTGCGTACAACGTGA | |||
COL5A2 | F: TAGTGCTGAAAGAAGAGCCCG | 128 | 61.3 |
R: GTCTTGCTTCTGCCCAGTTTG | |||
FBN1 | F: ACCGGAGATGGCTTCACTTG | 235 | 61.3 |
R: TCTCACACTCACAGCGGAAC | |||
MIPEP | F: CCACGGAGATGGCTTCACTTG | 114 | 60.0 |
R: CCCGCGACATCAGGTATGAG | |||
S100A9 | F: TCCTGGGCTTGGACAGAGT | 133 | 61.3 |
R: CTTTCTGGTTCAGGGTGTCCC | |||
SLC16A1 | F: GCATGGGCATCAACTACCGA | 166 | 61.3 |
R: TTGGGGCTTCCTTCTATGCC | |||
WNT7A | F: TCTTGCCCTCAGCATCACAG | 219 | 58.0 |
R: ACAGGCTTTGTCCACACCTC | |||
PCNA | F: ATGCCTTCTGGTGAATTTGC | 116 | 58.0 |
R: TTTCCGAGTTCTCCACTTGC | |||
MUC1 | F: GGGCTTCTGGGACTCTTT | 143 | 56.0 |
R: AGGTTATAGGTGCCTGCTT | |||
ZO-1 | F: GCCATCCACTCCTGCCTAT | 111 | 59.7 |
R: GGGACCTGCTCATAACTTCG | |||
β-Actin | F: GCCTCACTGTCCACCTTCCA | 184 | 59.0 |
R: AGCCATGCCAATGTTGTCTCTT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, W.; Gao, D.; Huang, C.; Zhong, Q.; Hua, R.; Lei, M. Heat Stress Impairs Maternal Endometrial Integrity and Results in Embryo Implantation Failure by Regulating Transport-Related Gene Expression in Tongcheng Pigs. Biomolecules 2022, 12, 388. https://doi.org/10.3390/biom12030388
Lian W, Gao D, Huang C, Zhong Q, Hua R, Lei M. Heat Stress Impairs Maternal Endometrial Integrity and Results in Embryo Implantation Failure by Regulating Transport-Related Gene Expression in Tongcheng Pigs. Biomolecules. 2022; 12(3):388. https://doi.org/10.3390/biom12030388
Chicago/Turabian StyleLian, Weisi, Dengying Gao, Cheng Huang, Qiqi Zhong, Renwu Hua, and Minggang Lei. 2022. "Heat Stress Impairs Maternal Endometrial Integrity and Results in Embryo Implantation Failure by Regulating Transport-Related Gene Expression in Tongcheng Pigs" Biomolecules 12, no. 3: 388. https://doi.org/10.3390/biom12030388
APA StyleLian, W., Gao, D., Huang, C., Zhong, Q., Hua, R., & Lei, M. (2022). Heat Stress Impairs Maternal Endometrial Integrity and Results in Embryo Implantation Failure by Regulating Transport-Related Gene Expression in Tongcheng Pigs. Biomolecules, 12(3), 388. https://doi.org/10.3390/biom12030388