Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Hebb–Williams Maze
2.2.1. Animals
2.2.2. Experimental Setup
2.2.3. Task Procedure
2.3. PPI
2.4. ECoG and LFP Power Spectra and Coherence
2.4.1. Electrode Placement
2.4.2. Electrocorticogram and Local Field Potential Recordings
2.4.3. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Hebb–Williams Maze
3.2. PPI
3.3. Power Spectra and Coherence of Brain Activity
3.3.1. Power Spectra and Coherence after Saline Injections
3.3.2. Power Spectra and Coherence after Atomoxetine Injections
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranjbar-Slamloo, Y.; Fazlali, Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front. Mol. Neurosci. 2020, 12, 334. [Google Scholar] [CrossRef] [Green Version]
- Sara, S.J. The Locus Coeruleus and Noradrenergic Modulation of Cognition. Nat. Rev. Neurosci. 2009, 10, 211–223. [Google Scholar] [CrossRef]
- Clark, K.L.; Noudoost, B. The Role of Prefrontal Catecholamines in Attention and Working Memory. Front. Neural Circuits 2014, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiard, B.P.; El Mansari, M.; Blier, P. Cross-Talk between Dopaminergic and Noradrenergic Systems in the Rat Ventral Tegmental Area, Locus Ceruleus, and Dorsal Hippocampus. Mol. Pharmacol. 2008, 74, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Morón, J.A.; Brockington, A.; Wise, R.A.; Rocha, B.A.; Hope, B.T. Dopamine Uptake through the Norepinephrine Transporter in Brain Regions with Low Levels of the Dopamine Transporter: Evidence from Knock-out Mouse Lines. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Arnsten, A.F.T.; Pliszka, S.R. Catecholamine Influences on Prefrontal Cortical Function: Relevance to Treatment of Attention Deficit/Hyperactivity Disorder and Related Disorders. Pharmacol. Biochem. Behav. 2011, 99, 211–216. [Google Scholar] [CrossRef] [Green Version]
- El Mansari, M.; Guiard, B.P.; Chernoloz, O.; Ghanbari, R.; Katz, N.; Blier, P. Relevance of Norepinephrine-Dopamine Interactions in the Treatment of Major Depressive Disorder. CNS Neurosci. Ther. 2010, 16, e1–e17. [Google Scholar] [CrossRef] [Green Version]
- Drechsler, R.; Brem, S.; Brandeis, D.; Grünblatt, E.; Berger, G.; Walitza, S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics 2020, 51, 315–335. [Google Scholar] [CrossRef]
- Mayes, S.D.; Calhoun, S.L.; Crowell, E.W. Learning Disabilities and ADHD: Overlapping Spectrumn Disorders. J. Learn. Disabil. 2000, 33, 417–424. [Google Scholar] [CrossRef]
- Del Campo, N.; Chamberlain, S.R.; Sahakian, B.J.; Robbins, T.W. The Roles of Dopamine and Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2011, 69, e145–e157. [Google Scholar] [CrossRef]
- Scassellati, C.; Bonvicini, C. Role of Dopaminergic and Noradrenergic Systems as Potential Biomarkers in ADHD Diagnosis and Treatment. In Brain-Computer Interface; IntechOpen: London, UK, 2015; pp. 55–83. ISBN 978-953-51-2166-4. [Google Scholar]
- Scassellati, C.; Bonvicini, C.; Faraone, S.V.; Gennarelli, M. Biomarkers and Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analyses. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 1003–1019.e20. [Google Scholar] [CrossRef]
- Harris, S.S.; Green, S.M.; Kumar, M.; Urs, N.M. A Role for Cortical Dopamine in the Paradoxical Calming Effects of Psychostimulants. Sci. Rep. 2022, 12, 3129. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Wetsel, W.C.; Jones, S.R.; Levin, E.D.; Jaber, M.; Caron, M.G. Role of Serotonin in the Paradoxical Calming Effect of Psychostimulants on Hyperactivity. Science 1999, 283, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Garnock-Jones, K.P.; Keating, G.M. Atomoxetine. Pediatr. Drugs 2009, 11, 203–226. [Google Scholar] [CrossRef]
- Ledbetter, M. Atomoxetine: A Novel Treatment for Child and Adult ADHD. Neuropsychiatr. Dis. Treat. 2006, 2, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Wu, D.-D.; Guo, H.-L.; Hu, Y.-H.; Xia, Y.; Ji, X.; Fang, W.-R.; Li, Y.-M.; Xu, J.; Chen, F.; et al. The Mechanism, Clinical Efficacy, Safety, and Dosage Regimen of Atomoxetine for ADHD Therapy in Children: A Narrative Review. Front. Psychiatry 2022, 12, 780921. [Google Scholar] [CrossRef]
- Callahan, P.M.; Plagenhoef, M.R.; Blake, D.T.; Terry, A.V.J. Atomoxetine Improves Memory and Other Components of Executive Function in Young-Adult Rats and Aged Rhesus Monkeys. Neuropharmacology 2019, 155, 65–75. [Google Scholar] [CrossRef]
- Donnelly, C.; Bangs, M.; Trzepacz, P.; Jin, L.; Zhang, S.; Witte, M.M.; Ball, S.G.; Spencer, T.J. Safety and Tolerability of Atomoxetine over 3 to 4 Years in Children and Adolescents with ADHD. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 176–185. [Google Scholar] [CrossRef]
- Savill, N.C.; Buitelaar, J.K.; Anand, E.; Day, K.A.; Treuer, T.; Upadhyaya, H.P.; Coghill, D. The Efficacy of Atomoxetine for the Treatment of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: A Comprehensive Review of over a Decade of Clinical Research. CNS Drugs 2015, 29, 131–151. [Google Scholar] [CrossRef]
- Swanson, C.J.; Perry, K.W.; Koch-Krueger, S.; Katner, J.; Svensson, K.A.; Bymaster, F.P. Effect of the Attention Deficit/Hyperactivity Disorder Drug Atomoxetine on Extracellular Concentrations of Norepinephrine and Dopamine in Several Brain Regions of the Rat. Neuropharmacology 2006, 50, 755–760. [Google Scholar] [CrossRef]
- Leo, D.; Sukhanov, I.; Zoratto, F.; Illiano, P.; Caffino, L.; Sanna, F.; Messa, G.; Emanuele, M.; Esposito, A.; Dorofeikova, M.; et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J. Neurosci. 2018, 38, 1959–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adinolfi, A.; Zelli, S.; Leo, D.; Carbone, C.; Mus, L.; Illiano, P.; Alleva, E.; Gainetdinov, R.R.; Adriani, W. Behavioral Characterization of DAT-KO Rats and Evidence of Asocial-like Phenotypes in DAT-HET Rats: The Potential Involvement of Norepinephrine System. Behav. Brain Res. 2019, 359, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Kurzina, N.P.; Aristova, I.Y.; Volnova, A.B.; Gainetdinov, R.R. Deficit in Working Memory and Abnormal Behavioral Tactics in Dopamine Transporter Knockout Rats during Training in the 8-Arm Maze. Behav. Brain Res. 2020, 390, 112642. [Google Scholar] [CrossRef] [PubMed]
- Giros, B.; Jaber, M.; Jones, S.R.; Wightman, R.M.; Caron, M.G. Hyperlocomotion and Indifference to Cocaine and Amphetamine in Mice Lacking the Dopamine Transporter. Nature 1996, 379, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Kurzina, N.; Belskaya, A.; Gromova, A.; Ignashchenkova, A.; Gainetdinov, R.R.; Volnova, A. Modulation of Spatial Memory Deficit and Hyperactivity in Dopamine Transporter Knockout Rats via A2A-Adrenoceptors. Front. Psychiatry 2022, 13, 851296. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, A.; Carbone, C.; Leo, D.; Gainetdinov, R.R.; Laviola, G.; Adriani, W. Novelty-Related Behavior of Young and Adult Dopamine Transporter Knockout Rats: Implication for Cognitive and Emotional Phenotypic Patterns. Genes Brain Behav. 2018, 17, e12463. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Jones, S.R.; Caron, M.G. Functional Hyperdopaminergia in Dopamine Transporter Knock-out Mice. Biol. Psychiatry 1999, 46, 303–311. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Katner, J.S.; Nelson, D.L.; Hemrick-Luecke, S.K.; Threlkeld, P.G.; Heiligenstein, J.H.; Morin, S.M.; Gehlert, D.R.; Perry, K.W. Atomoxetine Increases Extracellular Levels of Norepinephrine and Dopamine in Prefrontal Cortex of Rat: A Potential Mechanism for Efficacy in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology 2002, 27, 699–711. [Google Scholar] [CrossRef]
- Ramos, B.P.; Arnsten, A.F.T. Adrenergic Pharmacology and Cognition: Focus on the Prefrontal Cortex. Pharmacol. Ther. 2007, 113, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Li, Y.-C.; Gao, W.-J. Norepinephrine versus Dopamine and Their Interaction in Modulating Synaptic Function in the Prefrontal Cortex. Brain Res. 2016, 1641, 217–233. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Hampshire, A.; Müller, U.; Rubia, K.; del Campo, N.; Craig, K.; Regenthal, R.; Suckling, J.; Roiser, J.P.; Grant, J.E.; et al. Atomoxetine Modulates Right Inferior Frontal Activation During Inhibitory Control: A Pharmacological Functional Magnetic Resonance Imaging Study. Biol. Psychiatry 2009, 65, 550–555. [Google Scholar] [CrossRef]
- Robinson, E.S.J.; Eagle, D.M.; Mar, A.C.; Bari, A.; Banerjee, G.; Jiang, X.; Dalley, J.W.; Robbins, T.W. Similar Effects of the Selective Noradrenaline Reuptake Inhibitor Atomoxetine on Three Distinct Forms of Impulsivity in the Rat. Neuropsychopharmacology 2008, 33, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, C.; Dellu-Hagedorn, F. Dimensional Analysis of ADHD Subtypes in Rats. Biol. Psychiatry 2007, 61, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.S.J. Blockade of Noradrenaline Re-Uptake Sites Improves Accuracy and Impulse Control in Rats Performing a Five-Choice Serial Reaction Time Tasks. Psychopharmacology 2012, 219, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Fernando, A.B.P.; Economidou, D.; Theobald, D.E.; Zou, M.-F.; Newman, A.H.; Spoelder, M.; Caprioli, D.; Moreno, M.; Hipόlito, L.; Aspinall, A.T.; et al. Modulation of High Impulsivity and Attentional Performance in Rats by Selective Direct and Indirect Dopaminergic and Noradrenergic Receptor Agonists. Psychopharmacology 2012, 219, 341–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibasaki, Y.; Hayata-Takano, A.; Hazama, K.; Nakazawa, T.; Shintani, N.; Kasai, A.; Nagayasu, K.; Hashimoto, R.; Tanida, M.; Katayama, T.; et al. Atomoxetine Reverses Locomotor Hyperactivity, Impaired Novel Object Recognition, and Prepulse Inhibition Impairment in Mice Lacking Pituitary Adenylate Cyclase-Activating Polypeptide. Neuroscience 2015, 297, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Pillidge, K.; Porter, A.J.; Vasili, T.; Heal, D.J.; Stanford, S.C. Atomoxetine Reduces Hyperactive/Impulsive Behaviours in Neurokinin-1 Receptor ‘Knockout’ Mice. Pharmacol. Biochem. Behav. 2014, 127, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Dommett, E.J. Using the Five-Choice Serial Reaction Time Task to Examine the Effects of Atomoxetine and Methylphenidate in the Male Spontaneously Hypertensive Rat. Pharmacol. Biochem. Behav. 2014, 124, 196–203. [Google Scholar] [CrossRef]
- Cinque, S.; Zoratto, F.; Poleggi, A.; Leo, D.; Cerniglia, L.; Cimino, S.; Tambelli, R.; Alleva, E.; Gainetdinov, R.R.; Laviola, G.; et al. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front. Psychiatry 2018, 9, 43. [Google Scholar] [CrossRef]
- Kurzina, N.P.; Volnova, A.B.; Aristova, I.Y.; Gainetdinov, R.R. A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition. Front. Behav. Neurosci. 2021, 15, 654469. [Google Scholar] [CrossRef]
- Sagvolden, T.; Johansen, E.B.; Aase, H.; Russell, V.A. A Dynamic Developmental Theory of Attention-Deficit/Hyperactivity Disorder (ADHD) Predominantly Hyperactive/Impulsive and Combined Subtypes. Behav. Brain Sci. 2005, 28, 368–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panwar, K.; Rutherford, H.J.V.; Mencl, W.E.; Lacadie, C.M.; Potenza, M.N.; Mayes, L.C. Differential Associations between Impulsivity and Risk-Taking and Brain Activations Underlying Working Memory in Adolescents. Addict. Behav. 2014, 39, 1606–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansquer, S.; Belin-Rauscent, A.; Dugast, E.; Duran, T.; Benatru, I.; Mar, A.C.; Houeto, J.-L.; Belin, D. Atomoxetine Decreases Vulnerability to Develop Compulsivity in High Impulsive Rats. Biol. Psychiatry 2014, 75, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.A.; Brown, M.; St John, J.; MacMillan, C.; Silenieks, L.B.; Thevarkunnel, S. Effects of 5-HT2C Receptor Modulation and the NA Reuptake Inhibitor Atomoxetine in Tests of Compulsive and Impulsive Behaviour. Neuropharmacology 2020, 170, 108064. [Google Scholar] [CrossRef]
- Grassi, G.; Micheli, L.; Di Cesare Mannelli, L.; Compagno, E.; Righi, L.; Ghelardini, C.; Pallanti, S. Atomoxetine for Hoarding Disorder: A Pre-Clinical and Clinical Investigation. J. Psychiatr. Res. 2016, 83, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Barr, A.M.; Lehmann-Masten, V.; Paulus, M.; Gainetdinov, R.R.; Caron, M.G.; Geyer, M.A. The Selective Serotonin-2A Receptor Antagonist M100907 Reverses Behavioral Deficits in Dopamine Transporter Knockout Mice. Neuropsychopharmacology 2004, 29, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralph, R.J.; Paulus, M.P.; Fumagalli, F.; Caron, M.G.; Geyer, M.A. Prepulse Inhibition Deficits and Perseverative Motor Patterns in Dopamine Transporter Knock-Out Mice: Differential Effects of D1 and D2 Receptor Antagonists. J. Neurosci. 2001, 21, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Fukushima, S.; Shen, H.; Hall, F.S.; Uhl, G.R.; Numachi, Y.; Kobayashi, H.; Sora, I. Norepinephrine Transporter Blockade Can Normalize the Prepulse Inhibition Deficits Found in Dopamine Transporter Knockout Mice. Neuropsychopharmacology 2006, 31, 2132–2139. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.; Park, S.J.; Lee, Y.; Kwon, G.; Gao, Q.; Lee, H.E.; Ahn, Y.J.; Shin, C.Y.; Cheong, J.H.; Ryu, J.H. The Effects of Atomoxetine and Methylphenidate on the Prepulse Inhibition of the Acoustic Startle Response in Mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 54, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.J.; Rukstalis, M.; Lewis, M.C. Atomoxetine and Nicotine Enhance Prepulse Inhibition of Acoustic Startle in C57BL/6 Mice. Neurosci. Lett. 2005, 377, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Feifel, D.; Minassian, A.; Perry, W. Prepulse Inhibition of Startle in Adults with ADHD. J. Psychiatr. Res. 2009, 43, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braff, D.L.; Geyer, M.A.; Swerdlow, N.R. Human Studies of Prepulse Inhibition of Startle: Normal Subjects, Patient Groups, and Pharmacological Studies. Psychopharmacology 2001, 156, 234–258. [Google Scholar] [CrossRef]
- Olincy, A.; Ross, R.G.; Harris, J.G.; Young, D.A.; McAndrews, M.A.; Cawthra, E.; McRae, K.A.; Sullivan, B.; Adler, L.E.; Freedman, R. The P50 Auditory Event-Evoked Potential in Adult Attention-Deficit Disorder: Comparison with Schizophrenia. Biol. Psychiatry 2000, 47, 969–977. [Google Scholar] [CrossRef]
- Holstein, D.H.; Vollenweider, F.X.; Geyer, M.A.; Csomor, P.A.; Belser, N.; Eich, D. Sensory and Sensorimotor Gating in Adult Attention-Deficit/Hyperactivity Disorder (ADHD). Psychiatry Res. 2013, 205, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Ahmari, S.E.; Risbrough, V.B.; Geyer, M.A.; Simpson, H.B. 58 Inhibition Deficits in Obsessive-Compulsive Disorder Are More Pronounced in Females. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2016, 41, 2963–2964. [Google Scholar] [CrossRef] [Green Version]
- Hoenig, K.; Hochrein, A.; Quednow, B.B.; Maier, W.; Wagner, M. Impaired Prepulse Inhibition of Acoustic Startle in Obsessive-Compulsive Disorder. Biol. Psychiatry 2005, 57, 1153–1158. [Google Scholar] [CrossRef]
- Sato, K. Why Is Prepulse Inhibition Disrupted in Schizophrenia? Med. Hypotheses 2020, 143, 109901. [Google Scholar] [CrossRef]
- Mena, A.; Ruiz-Salas, J.C.; Puentes, A.; Dorado, I.; Ruiz-Veguilla, M.; De la Casa, L.G. Reduced Prepulse Inhibition as a Biomarker of Schizophrenia. Front. Behav. Neurosci. 2016, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Lenartowicz, A.; Loo, S.K. Use of EEG to Diagnose ADHD. Curr. Psychiatry Rep. 2014, 16, 498. [Google Scholar] [CrossRef] [Green Version]
- Adamou, M.; Fullen, T.; Jones, S.L. EEG for Diagnosis of Adult ADHD: A Systematic Review With Narrative Analysis. Front. Psychiatry 2020, 11, 871. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; Hajos, M.; McCarthy, R.; Selikowitz, M.; Bruggemann, J.M. Acute Atomoxetine Effects on the EEG of Children with Attention-Deficit/Hyperactivity Disorder. Neuropharmacology 2009, 57, 702–707. [Google Scholar] [CrossRef]
- Chiarenza, G.A.; Chabot, R.; Isenhart, R.; Montaldi, L.; Chiarenza, M.P.; Lo Torto, M.G.; Prichep, L.S. The Quantified EEG Characteristics of Responders and Non-Responders to Long-Term Treatment with Atomoxetine in Children with Attention Deficit Hyperactivity Disorders. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2016, 104, 44–52. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; McCarthy, R.; Selikowitz, M. EEG Coherence in Children with Attention-Deficit/Hyperactivity Disorder and Autistic Features. J. Dev. Phys. Disabil. 2021, 33, 583–598. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; Heaven, P.C.L.; McCarthy, R.; Selikowitz, M.; Byrne, M.K. EEG Coherence in Adults with Attention-Deficit/Hyperactivity Disorder. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2008, 67, 35–40. [Google Scholar] [CrossRef]
- Barry, R.J.; Clarke, A.R.; McCarthy, R.; Selikowitz, M. EEG Coherence in Attention-Deficit/Hyperactivity Disorder: A Comparative Study of Two DSM-IV Types. Clin. Neurophysiol. 2002, 113, 579–585. [Google Scholar] [CrossRef]
- Arnsten, A.F. Catecholamine Modulation of Prefrontal Cortical Cognitive Function. Trends Cogn. Sci. 1998, 2, 436–447. [Google Scholar] [CrossRef]
- Russell, V.A. Hypodopaminergic and Hypernoradrenergic Activity in Prefrontal Cortex Slices of an Animal Model for Attention-Deficit Hyperactivity Disorder—The Spontaneously Hypertensive Rat. Behav. Brain Res. 2002, 130, 191–196. [Google Scholar] [CrossRef]
- Weinberger, D.R. Implications of Normal Brain Development for the Pathogenesis of Schizophrenia. Arch. Gen. Psychiatry 1987, 44, 660–669. [Google Scholar] [CrossRef]
- John, J.P.; Rangaswamy, M.; Thennarasu, K.; Khanna, S.; Nagaraj, R.B.; Mukundan, C.R.; Pradhan, N. EEG Power Spectra Differentiate Positive and Negative Subgroups in Neuroleptic-Naive Schizophrenia Patients. J. Neuropsychiatry Clin. Neurosci. 2009, 21, 160–172. [Google Scholar] [CrossRef]
- Perrottelli, A.; Giordano, G.M.; Brando, F.; Giuliani, L.; Mucci, A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front. Psychiatry 2021, 12, 653642. [Google Scholar] [CrossRef]
- Klimesch, W.; Doppelmayr, M.; Russegger, H.; Pachinger, T. Theta Band Power in the Human Scalp EEG and the Encoding of New Information. Neuroreport 1996, 7, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Schimke, H.; Schwaiger, J. Episodic and Semantic Memory: An Analysis in the EEG Theta and Alpha Band. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 428–441. [Google Scholar] [CrossRef]
- Burgess, A.P.; Gruzelier, J.H. Short Duration Synchronization of Human Theta Rhythm during Recognition Memory. Neuroreport 1997, 8, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptukha, M.; Fesenko, Z.; Belskaya, A.; Gromova, A.; Pelevin, A.; Kurzina, N.; Gainetdinov, R.R.; Volnova, A. Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules 2022, 12, 1484. https://doi.org/10.3390/biom12101484
Ptukha M, Fesenko Z, Belskaya A, Gromova A, Pelevin A, Kurzina N, Gainetdinov RR, Volnova A. Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules. 2022; 12(10):1484. https://doi.org/10.3390/biom12101484
Chicago/Turabian StylePtukha, Maria, Zoia Fesenko, Anastasia Belskaya, Arina Gromova, Arseniy Pelevin, Natalia Kurzina, Raul R. Gainetdinov, and Anna Volnova. 2022. "Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats" Biomolecules 12, no. 10: 1484. https://doi.org/10.3390/biom12101484
APA StylePtukha, M., Fesenko, Z., Belskaya, A., Gromova, A., Pelevin, A., Kurzina, N., Gainetdinov, R. R., & Volnova, A. (2022). Effects of Atomoxetine on Motor and Cognitive Behaviors and Brain Electrophysiological Activity of Dopamine Transporter Knockout Rats. Biomolecules, 12(10), 1484. https://doi.org/10.3390/biom12101484