The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders
Abstract
:1. Introduction
2. Division of MSCs
3. Tissue Sources of MSCs
4. Autologous and Allogeneic MSCs
5. Immunumodulatory Properties of MSCs
6. Application of MSCs in Veterinary Medicine–Musculoskeletal System Disorders
6.1. Degenerative Joint Disease
6.2. Tendon and Ligament Injury
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banas, A. Stem Cells—Perspective and Dangers. Med. J. Rzesz. Univ. 2010, 2, 117–127. [Google Scholar]
- Krampera, M.; Franchini, M.; Pizzolo, G.; Aprili, G. Mesenchymal Stem Cells: From Biology to Clinical Use. Blood Transfus. 2007, 5, 120. [Google Scholar] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Dziubińska, P.; Jaskólska, M.; Przyborowska, P.; Adamiak, Z. Stem Cells in Dentistry–Review of Literature. Pol. J. Vet. Sci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Dennis, J.E. Mesenchymal Stem Cells as Trophic Mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.; Zuba-Surma, E.; Ratajczak, J. Stem Cell Therapeutics—Hope and Concerns. Acta Haematol. Pol. 2009, 40, 289–303. [Google Scholar]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S. Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells. Cell Stem Cell 2007, 1, 39–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, S. Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell 2012, 10, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Emadedin, M.; Aghdami, N.; Taghiyar, L.; Fazeli, R.; Moghadasali, R.; Jahangir, S.; Farjad, R.; Eslaminejad, M.B. Intra-Articular Injection of Autologous Mesenchymal Stem Cells in Six Patients with Knee Osteoarthritis. Arch. Iran. Med. 2012, 15, 422–428. [Google Scholar] [PubMed]
- Frisbie, D.; Smith, R. Clinical Update on the Use of Mesenchymal Stem Cells in Equine Orthopaedics. Equine Vet. J. 2010, 42, 86–89. [Google Scholar] [CrossRef]
- Guercio, A.; Di Marco, P.; Casella, S.; Cannella, V.; Russotto, L.; Purpari, G.; Di Bella, S.; Piccione, G. Production of Canine Mesenchymal Stem Cells from Adipose Tissue and Their Application in Dogs with Chronic Osteoarthritis of the Humeroradial Joints. Cell Biol. Int. 2012, 36, 189–194. [Google Scholar] [CrossRef]
- Chopra, H.; Hans, M.K.; Shetty, S. Stem Cells—The Hidden Treasure: A Strategic Review. Dent. Res. J. 2013, 10, 421. [Google Scholar]
- Emura, M. Stem Cells of the Respiratory Epithelium and Their in Vitro Cultivation. Vitr. Cell. Dev. Biol. Anim. 1997, 33, 3–14. [Google Scholar] [CrossRef]
- Burdzinska, A.; Idziak, M. Stem Cells in Veterinary Medicine—Facts and Myths. Mag. Weter. 2013, 7, 695–704. [Google Scholar]
- Lin, C.-S.; Lin, G.; Lue, T.F. Allogeneic and Xenogeneic Transplantation of Adipose-Derived Stem Cells in Immunocompetent Recipients without Immunosuppressants. Stem Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef] [Green Version]
- Kalisiak, O.; Cegielski, M. Stem Cells in Treatment of Tendon Disorders in Horses. Życie Weter. 2013, 88, 112–114. [Google Scholar]
- Cegielski, M.; Dziewiszek, W.; Zabel, M.; Dziegiel, P.; Kuryszko, J.; Izykowska, I.; Zatoński, M.; Bochnia, M. Experimental Xenoimplantation of Antlerogenic Cells into Mandibular Bone Lesions in Rabbits: Two-Year Follow-Up. Vivo 2010, 24, 165–172. [Google Scholar]
- Cegielski, M.; Izykowska, I.; Chmielewska, M.; Dziewiszek, W.; Bochnia, M.; Calkosinski, I.; Dziegiel, P. Characteristics of MIC-1 Antlerogenic Stem Cells and Their Effect on Hair Growth in Rabbits. In Vivo 2013, 27, 97–106. [Google Scholar]
- Cegielski, M.; Kalisiak, O. Stem Cells Therapy—A Hope For the Treatment of Tendons in Horses. Życie Weter. 2008, 83, 754–756. [Google Scholar]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Johansson, C.B.; Momma, S.; Clarke, D.L.; Risling, M.; Lendahl, U.; Frisén, J. Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System. Cell 1999, 96, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A. Why Are MSCs Therapeutic? New Data: New Insight. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2009, 217, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.; McGonagle, D. Human Bone Marrow Mesenchymal Stem Cells in Vivo. Rheumatology 2008, 47, 126–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, D.-I.; Ha, J.; Kang, B.-T.; Kim, J.-W.; Quan, F.-S.; Lee, J.-H.; Woo, E.-J.; Park, H.-M. A Comparison of Autologous and Allogenic Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Canine Spinal Cord Injury. J. Neurol. Sci. 2009, 285, 67–77. [Google Scholar] [CrossRef]
- Ding, D.-C.; Shyu, W.-C.; Lin, S.-Z. Mesenchymal Stem Cells. Cell Transplant. 2011, 20, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearden, R.N.; Huggins, S.S.; Cummings, K.J.; Smith, R.; Gregory, C.A.; Saunders, W.B. In-Vitro Characterization of Canine Multipotent Stromal Cells Isolated from Synovium, Bone Marrow, and Adipose Tissue: A Donor-Matched Comparative Study. Stem Cell Res. Ther. 2017, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Voga, M.; Adamic, N.; Vengust, M.; Majdic, G. Stem Cells in Veterinary Medicine—Current State and Treatment Options. Front. Vet. Sci. 2020, 7, 278. [Google Scholar] [CrossRef]
- Orbay, H.; Tobita, M.; Mizuno, H. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications. Stem Cells Int. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Godwin, E.; Young, N.; Dudhia, J.; Beamish, I.; Smith, R. Implantation of Bone Marrow-derived Mesenchymal Stem Cells Demonstrates Improved Outcome in Horses with Overstrain Injury of the Superficial Digital Flexor Tendon. Equine Vet. J. 2012, 44, 25–32. [Google Scholar] [CrossRef]
- Jung, D.-I.; Ha, J.-I.; Kim, J.-W.; Kang, B.-T.; Yoo, J.-H.; Park, C.; Lee, J.-H.; Park, H.-M. Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in Vitro. J. Vet. Clin. 2008, 25, 458–465. [Google Scholar]
- Peters, A.E.; Watts, A.E. Biopsy Needle Advancement during Bone Marrow Aspiration Increases Mesenchymal Stem Cell Concentration. Front. Vet. Sci. 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, R.; Kociba, G.; Ruoff, W. Monoclonal Gammopathy in a Horse with Defective Hemostasis. Vet. Pathol. 1983, 20, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durando, M.; Zarucco, L.; Schaer, T.; Ross, M.; Reef, V. Pneumopericardium in a Horse Secondary to Sternal Bone Marrow Aspiration. Equine Vet. Educ. 2006, 18, 75–79. [Google Scholar] [CrossRef]
- Désévaux, C.; Laverty, S.; Doizé, B. Sternal Bone Biopsy in Standing Horses. Vet. Surg. 2000, 29, 303–308. [Google Scholar]
- Kasashima, Y.; Ueno, T.; Tomita, A.; Goodship, A.; Smith, R. Optimisation of Bone Marrow Aspiration from the Equine Sternum for the Safe Recovery of Mesenchymal Stem Cells. Equine Vet. J. 2011, 43, 288–294. [Google Scholar] [CrossRef]
- Rebelatto, C.; Aguiar, A.; Moretao, M.; Senegaglia, A.; Hansen, P.; Barchiki, F.; Oliveira, J.; Martins, J.; Kuligovski, C.; Mansur, F. Dissimilar Differentiation of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue. Exp. Biol. Med. 2008, 233, 901–913. [Google Scholar] [CrossRef]
- Webb, T.L.; Quimby, J.M.; Dow, S.W. In Vitro Comparison of Feline Bone Marrow-Derived and Adipose Tissue-Derived Mesenchymal Stem Cells. J. Feline Med. Surg. 2012, 14, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Black, L.L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of Adipose-Derived Mesenchymal Stem and Regenerative Cells on Lameness in Dogs with Chronic Osteoarthritis of the Coxofemoral Joints: A Randomized, Double-Blinded, Multicenter Controlled Trial. Vet. Ther. 2007, 8, 272. [Google Scholar] [PubMed]
- Cuervo, B.; Rubio, M.; Sopena, J.; Dominguez, J.M.; Vilar, J.; Morales, M.; Cugat, R.; Carrillo, J.M. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors. Int. J. Mol. Sci. 2014, 15, 13437–13460. [Google Scholar] [CrossRef]
- Nicpon, J.; Marycz, K.; Grzesiak, J. Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cell Injection in Horses Suffering from Bone Spavin. Pol. J. Vet. Sci. 2013, 16, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Vilar, J.M.; Morales, M.; Santana, A.; Spinella, G.; Rubio, M.; Cuervo, B.; Cugat, R.; Carrillo, J.M. Controlled, Blinded Force Platform Analysis of the Effect of Intraarticular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells Associated to PRGF-Endoret in Osteoarthritic Dogs. BMC Vet. Res. 2013, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.A.; Mankani, M.H.; Gronthos, S.; Satomura, K.; Bianco, P.; Robey, P.G. Circulating Skeletal Stem Cells. J. Cell Biol. 2001, 153, 1133–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koerner, J.; Nesic, D.; Romero, J.D.; Brehm, W.; Grogan, S.P. Equine Peripheral Blood-Derived Progenitors in Comparison to Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells 2006, 24, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Dhar, M.; Neilsen, N.; Beatty, K.; Eaker, S.; Adair, H.; Geiser, D. Equine Peripheral Blood-Derived Mesenchymal Stem Cells: Isolation, Identification, Trilineage Differentiation and Effect of Hyperbaric Oxygen Treatment. Equine Vet. J. 2012, 44, 600–605. [Google Scholar] [CrossRef]
- Spaas, J.H.; De Schauwer, C.; Cornillie, P.; Meyer, E.; Van Soom, A.; Van de Walle, G.R. Culture and Characterisation of Equine Peripheral Blood Mesenchymal Stromal Cells. Vet. J. 2013, 195, 107–113. [Google Scholar] [CrossRef]
- Bieback, K.; Kern, S.; Klüter, H.; Eichler, H. Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood. Stem Cells 2004, 22, 625–634. [Google Scholar] [CrossRef] [Green Version]
- In’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; de Groot-Swings, G.M.; Claas, F.H.; Fibbe, W.E.; Kanhai, H.H. Isolation of Mesenchymal Stem Cells of Fetal or Maternal Origin from Human Placenta. Stem Cells 2004, 22, 1338–1345. [Google Scholar] [CrossRef]
- In’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.J.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H.H. Amniotic Fluid as a Novel Source of Mesenchymal Stem Cells for Therapeutic Transplantation. Blood 2003, 102, 1548–1549. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Lie, P.-C.; Li, Z.-L.; Wei, X. Endothelial Differentiation of Wharton’s Jelly–Derived Mesenchymal Stem Cells in Comparison with Bone Marrow–Derived Mesenchymal Stem Cells. Exp. Hematol. 2009, 37, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, S.G.; Imreh, M.P.; Ährlund-Richter, L.; Allen, W.R. Horse Embryonic Stem Cell Lines from the Proliferation of Inner Cell Mass Cells. Stem Cells Dev. 2006, 15, 523–531. [Google Scholar] [CrossRef]
- Hoynowski, S.M.; Fry, M.M.; Gardner, B.M.; Leming, M.T.; Tucker, J.R.; Black, L.; Sand, T.; Mitchell, K.E. Characterization and Differentiation of Equine Umbilical Cord-Derived Matrix Cells. Biochem. Biophys. Res. Commun. 2007, 362, 347–353. [Google Scholar] [CrossRef]
- Passeri, S.; Nocchi, F.; Lamanna, R.; Lapi, S.; Miragliotta, V.; Giannessi, E.; Abramo, F.; Stornelli, M.R.; Matarazzo, M.; Plenteda, D.; et al. Isolation and Expansion of Equine Umbilical Cord-Derived Matrix Cells (EUCMCs). Cell Biol. Int. 2009, 33, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Prządka, P.; Kiełbowicz, Z.; Osiński, B.; Dzimira, S.; Madej, J.A.; Nowacki, W.; Kubiak, K.; Reichert, P.; Cegielski, M. Reconstruction of Cranial Cruciate Ligament in Rabbits Using Polyester Implants Saturated with PRP, Antlerogenic Stem Cells MIC-1 and Their Homogenate. Connect. Tissue Res. 2017, 58, 464–478. [Google Scholar] [CrossRef]
- Penha, E.M.; Meira, C.S.; Guimarães, E.T.; Mendonça, M.V.P.; Gravely, F.A.; Pinheiro, C.M.B.; Pinheiro, T.M.B.; Barrouin-Melo, S.M.; Ribeiro-dos-Santos, R.; Soares, M.B.P. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs. Stem Cells Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Lu, A.; Gao, H.; Qian, C.; Zhang, J.; Lin, T.; Zhao, Y. Safety of Allogeneic Umbilical Cord Blood Stem Cells Therapy in Patients with Severe Cerebral Palsy: A Retrospective Study. Stem Cells Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kim, W.; Lim, C.; Chung, S.G. Treatment of Lateral Epicondylosis by Using Allogeneic Adipose-Derived Mesenchymal Stem Cells: A Pilot Study. Stem Cells 2015, 33, 2995–3005. [Google Scholar] [CrossRef]
- Sullivan, M.J. Banking on Cord Blood Stem Cells. Nat. Rev. Cancer 2008, 8, 555–563. [Google Scholar] [CrossRef]
- Bertoni, L.; Branly, T.; Jacquet, S.; Desance, M.; Desquilbet, L.; Pascaline, R.; Hartmann, D.-J.; Denoix, J.-M.; Audigie, F.; Galera, P.; et al. Intra-Articular Injection of 2 Different Dosages of Autologous and Allogeneic Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells Triggers a Variable Inflammatory Response of the Fetlock Joint on 12 Sound Experimental Horses. Stem Cells Int. 2019. [Google Scholar] [CrossRef]
- Devine, S.M.; Bartholomew, A.M.; Mahmud, N.; Nelson, M.; Patil, S.; Hardy, W.; Sturgeon, C.; Hewett, T.; Chung, T.; Stock, W.; et al. Mesenchymal Stem Cells Are Capable of Homing to the Bone Marrow of Non-Human Primates Following Systemic Infusion. Exp. Hematol. 2001, 29, 244–255. [Google Scholar] [CrossRef]
- Saito, T.; Kuang, J.-Q.; Bittira, B.; Al-Khaldi, A.; Chiu, R.C.-J. Xenotransplant Cardiac Chimera: Immune Tolerance of Adult Stem Cells. Ann. Thorac. Surg. 2002, 74, 19–24. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, J.-B.; Lee, J.K.; Park, E.-Y.; Park, E.-A.; Riew, K.D.; Rhee, S.-K. Transplanted Xenogenic Bone Marrow Stem Cells Survive and Generate New Bone Formation in the Posterolateral Lumbar Spine of Non-Immunosuppressed Rabbits. Eur. Spine J. 2008, 17, 1515–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, R.; Gopinath, C.; Rao, N.M.; Banerjee, P.; Krishnamoorthy, V.; Venkataramana, N.K.; Totey, S. Functional Recovery after Transplantation of Bone Marrow-Derived Human Mesenchymal Stromal Cells in a Rat Model of Spinal Cord Injury. Cytotherapy 2010, 12, 792–806. [Google Scholar] [CrossRef]
- Guan, M.; Yao, W.; Liu, R.; Lam, K.S.; Nolta, J.; Jia, J.; Panganiban, B.; Meng, L.; Zhou, P.; Shahnazari, M.; et al. Directing Mesenchymal Stem Cells to Bone to Augment Bone Formation and Increase Bone Mass. Nat. Med. 2012, 18, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Kumar, P.; Sharma, R. The Major Histocompatibility Complex: A Review. Asian J. Pharm. Clin. Res. 2017, 10, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; et al. Mesenchymal Stem Cells Suppress Lymphocyte Proliferation in Vitro and Prolong Skin Graft Survival in Vivo. Exp. Hematol. 2002, 30, 42–48. [Google Scholar] [CrossRef]
- Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; et al. Human Mesenchymal Stem Cells Modulate B-Cell Functions. Blood 2006, 107, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Javazon, E.H.; Beggs, K.J.; Flake, A.W. Mesenchymal Stem Cells: Paradoxes of Passaging. Exp. Hematol. 2004, 32, 414–425. [Google Scholar] [CrossRef]
- Opiela, J.; Samiec, M. Characterization of Mesenchymal Stem Cells and Their Application in Experimental Embryology. Pol. J. Vet. Sci. 2013, 16, 593–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vasconcellos Machado, C.; da Silva Telles, P.D.; Nascimento, I.L.O. Immunological Characteristics of Mesenchymal Stem Cells. Rev. Bras. Hematol. Hemoter. 2013, 35, 62–67. [Google Scholar] [CrossRef]
- Guest, D.; Smith, M.; Allen, W. Monitoring the Fate of Autologous and Allogeneic Mesenchymal Progenitor Cells Injected into the Superficial Digital Flexor Tendon of Horses: Preliminary Study. Equine Vet. J. 2008, 40, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.A. Stem Cells: Classifications, Controversies, and Clinical Applications. Vet. Surg. 2005, 34, 415–423. [Google Scholar] [CrossRef]
- Barussi, F.C.; Bastos, F.Z.; Leite, L.M.; Fragoso, F.Y.; Senegaglia, A.C.; Brofman, P.R.; Nishiyama, A.; Pimpão, C.T.; Michelotto Jr, P.V. Intratracheal Therapy with Autologous Bone Marrow-Derived Mononuclear Cells Reduces Airway Inflammation in Horses with Recurrent Airway Obstruction. Respir. Physiol. Neurobiol. 2016, 232, 35–42. [Google Scholar] [CrossRef]
- Quimby, J.M.; Webb, T.L.; Habenicht, L.M.; Dow, S.W. Safety and Efficacy of Intravenous Infusion of Allogeneic Cryopreserved Mesenchymal Stem Cells for Treatment of Chronic Kidney Disease in Cats: Results of Three Sequential Pilot Studies. Stem Cell Res. Ther. 2013, 4, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quimby, J.M.; Webb, T.L.; Gibbons, D.S.; Dow, S.W. Evaluation of Intrarenal Mesenchymal Stem Cell Injection for Treatment of Chronic Kidney Disease in Cats: A Pilot Study. J. Feline Med. Surg. 2011, 13, 418–426. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, K.C.; Lee, J.U.; Kim, K.-J.; Kim, D.-G. Therapeutic Potential of Adipose Tissue-Derived Stem Cells for Liver Failure According to the Transplantation Routes. J. Korean Surg. Soc. 2011, 81, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Osaki, M.; Kawamata, M.; Kato, T.; Okochi, H.; Ochiya, T. IFATS Collection: In Vivo Therapeutic Potential of Human Adipose Tissue Mesenchymal Stem Cells after Transplantation into Mice with Liver Injury. Stem Cells 2008, 26, 2705–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.W.; Dorrell, C.; Grompe, M. Stem Cells and Liver Regeneration. Gastroenterology 2009, 137, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Miguelañez, I.; Salinas-Gomez, J.; Fernandez-Luengas, D.; Villar-Zarra, K.; Clemente, L.V.; Garcia-Arranz, M.; Olmo, D.G. Systemic Treatment of Acute Liver Failure with Adipose Derived Stem Cells. J. Investig. Surg. 2015, 28, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Fang, J.; Wen, X.; Teng, X.; Li, B.; Zhou, Z.; Peng, S.; Arisha, A.H.; Liu, W.; Hua, J. Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells on Acute Liver Injury in Canines. Res. Vet. Sci. 2019, 126, 233–239. [Google Scholar] [CrossRef]
- Ryu, H.-H.; Kang, B.-J.; Park, S.-S.; Kim, Y.; Sung, G.-J.; Woo, H.-M.; Kim, W.H.; Kweon, O.-K. Comparison of Mesenchymal Stem Cells Derived from Fat, Bone Marrow, Wharton’s Jelly, and Umbilical Cord Blood for Treating Spinal Cord Injuries in Dogs. J. Vet. Med. Sci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Strasser, H.; Berjukow, S.; Marksteiner, R.; Margreiter, E.; Hering, S.; Bartsch, G.; Hering, S. Stem Cell Therapy for Urinary Stress Incontinence. J. Urol. 2006, 175, 1801. [Google Scholar] [CrossRef]
- El-Menoufy, H.; Aly, L.; Aziz, M.; Atta, H.; Roshdy, N.; Rashed, L.; Sabry, D. The Role of Bone Marrow-derived Mesenchymal Stem Cells in Treating Formocresol Induced Oral Ulcers in Dogs. J. Oral Pathol. Med. 2010, 39, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Nitahara-Kasahara, Y.; Hayashita-Kinoh, H.; Ohshima-Hosoyama, S.; Okada, H.; Wada-Maeda, M.; Nakamura, A.; Okada, T.; Takeda, S. Long-Term Engraftment of Multipotent Mesenchymal Stromal Cells That Differentiate to Form Myogenic Cells in Dogs with Duchenne Muscular Dystrophy. Mol. Ther. 2012, 20, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Bigham-Sadegh, A.; Mirshokraei, P.; Karimi, I.; Oryan, A.; Aparviz, A.; Shafiei-Sarvestani, Z. Effects of Adipose Tissue Stem Cell Concurrent with Greater Omentum on Experimental Long-Bone Healing in Dog. Connect. Tissue Res. 2012, 53, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Min, B.-H.; Woo, J.-I.; Kim, W.H.; Kweon, O.-K.; Triffitt, J.T.; Choi, B.H.; Park, S.R. The Fate of Implanted Autologous Chondrocytes in Regenerated Articular Cartilage. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2007, 221, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lu, Y.; Zhu, J.; Xu, J.; Huang, H.; Zhu, M.; Chen, Y.; Zhou, Y.; Fan, X.; Wang, Z. Effects of Intrahepatic Bone-Derived Mesenchymal Stem Cells Autotransplantation on the Diabetic Beagle Dogs. J. Surg. Res. 2011, 168, 213–223. [Google Scholar] [CrossRef]
- Kirkby Shaw, K.; Alvarez, L.; Foster, S.A.; Tomlinson, J.E.; Shaw, A.J.; Pozzi, A. Fundamental Principles of Rehabilitation and Musculoskeletal Tissue Healing. Vet. Surg. 2020, 49, 22–32. [Google Scholar] [CrossRef]
- Anderson, A. Treatment of Hip Dysplasia. J. Small Anim. Pract. 2011, 52, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, B.D.X.; Brown, D.C.; Conzemius, M.G.; Gill, M.; Oshinsky, M.L.; Sharkey, M. Measurement of Chronic Pain in Companion Animals: Discussions from the Pain in Animals Workshop (PAW) 2017. Vet. J. 2019, 250, 71–78. [Google Scholar] [CrossRef]
- Magri, C.; Schramme, M.; Febre, M.; Cauvin, E.; Labadie, F.; Saulnier, N.; François, I.; Lechartier, A.; Aebischer, D.; Moncelet, A.-S. Comparison of Efficacy and Safety of Single versus Repeated Intra-Articular Injection of Allogeneic Neonatal Mesenchymal Stem Cells for Treatment of Osteoarthritis of the Metacarpophalangeal/Metatarsophalangeal Joint in Horses: A Clinical Pilot Study. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Kim, S.E.; Pozzi, A.; Yeh, J.; Lopez-Velazquez, M.; Au Yong, J.A.; Townsend, S.; Dunlap, A.E.; Christopher, S.A.; Lewis, D.D.; Johnson, M.D. Intra-Articular Umbilical Cord Derived Mesenchymal Stem Cell Therapy for Chronic Elbow Osteoarthritis in Dogs: A Double-Blinded, Placebo-Controlled Clinical Trial. Front. Vet. Sci. 2019, 6, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, L.L.; Gaynor, J.; Adams, C.; Dhupa, S.; Sams, A.E.; Taylor, R.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of Intraarticular Injection of Autologous Adipose-Derived Mesenchymal Stem and Regenerative Cells on Clinical Signs of Chronic Osteoarthritis of the Elbow Joint in Dogs. Vet. Ther. Res. Appl. Vet. Med. 2008, 9, 192–200. [Google Scholar]
- Broeckx, S.Y.; Seys, B.; Suls, M.; Vandenberghe, A.; Mariën, T.; Adriaensen, E.; Declercq, J.; Van Hecke, L.; Braun, G.; Hellmann, K. Equine Allogeneic Chondrogenic Induced Mesenchymal Stem Cells Are an Effective Treatment for Degenerative Joint Disease in Horses. Stem Cells 2019, 28, 410–422. [Google Scholar] [CrossRef]
- Marx, C.; Silveira, M.D.; Selbach, I.; da Silva, A.S.; Gomes de Macedo Braga, L.M.; Camassola, M.; Nardi, N.B. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs. Stem Cells Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- McIlwraith, C.W.; Frisbie, D.D.; Rodkey, W.G.; Kisiday, J.D.; Werpy, N.M.; Kawcak, C.E.; Steadman, J.R. Evaluation of Intra-Articular Mesenchymal Stem Cells to Augment Healing of Microfractured Chondral Defects. Arthrosc. J. Arthrosc. Relat. Surg. 2011, 27, 1552–1561. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.; Li, S.; Luo, D.; Zhan, X.; Chen, S.; Chen, Z.; Liu, C.; Ji, H.; Bai, Y. Evaluation of the Curative Effect of Umbilical Cord Mesenchymal Stem Cell Therapy for Knee Arthritis in Dogs Using Imaging Technology. Stem Cells Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.; Ku, S.-K.; Kwon, Y.-S. Adipose-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma Synergistically Ameliorate the Surgical-Induced Osteoarthritis in Beagle Dogs. J. Orthop. Surg. Res. 2016, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kemilew, J.; Sobczyńska-Rak, A.; Żylińska, B.; Szponder, T.; Nowicka, B.; Urban, B. The Use of Allogenic Stromal Vascular Fraction (SVF) Cells in Degenerative Joint Disease of the Spine in Dogs. In Vivo 2019, 33, 1109–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeckx, S.; Suls, M.; Beerts, C.; Vandenberghe, A.; Seys, B.; Wuertz-Kozak, K.; Duchateau, L.; H Spaas, J. Allogenic Mesenchymal Stem Cells as a Treatment for Equine Degenerative Joint Disease: A Pilot Study. Curr. Stem Cell Res. Ther. 2014, 9, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Beerts, C.; Suls, M.; Broeckx, S.Y.; Seys, B.; Vandenberghe, A.; Declercq, J.; Duchateau, L.; Vidal, M.A.; Spaas, J.H. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front. Vet. Sci. 2017, 4, 158. [Google Scholar] [CrossRef]
- Canapp Jr, S.O.; Leasure, C.S.; Cox, C.; Ibrahim, V.; Carr, B.J. Partial Cranial Cruciate Ligament Tears Treated with Stem Cell and Platelet-Rich Plasma Combination Therapy in 36 Dogs: A Retrospective Study. Front. Vet. Sci. 2016, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Romero, A.; Barrachina, L.; Ranera, B.; Remacha, A.; Moreno, B.; De Blas, I.; Sanz, A.; Vázquez, F.; Vitoria, A.; Junquera, C. Comparison of Autologous Bone Marrow and Adipose Tissue Derived Mesenchymal Stem Cells, and Platelet Rich Plasma, for Treating Surgically Induced Lesions of the Equine Superficial Digital Flexor Tendon. Vet. J. 2017, 224, 76–84. [Google Scholar] [CrossRef]
- McDougall, R.A.; Canapp, S.O.; Canapp, D.A. Ultrasonographic Findings in 41 Dogs Treated with Bone Marrow Aspirate Concentrate and Platelet-Rich Plasma for a Supraspinatus Tendinopathy: A Retrospective Study. Front. Vet. Sci. 2018, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Canapp, S.O., Jr.; Canapp, D.A.; Ibrahim, V.; Carr, B.J.; Cox, C.; Barrett, J.G. The Use of Adipose-Derived Progenitor Cells and Platelet-Rich Plasma Combination for the Treatment of Supraspinatus Tendinopathy in 55 Dogs: A Retrospective Study. Front. Vet. Sci. 2016, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.M.; Badial, P.R.; Álvarez, L.E.C.; Yamada, A.L.M.; Borges, A.S.; Deffune, E.; Hussni, C.A.; Alves, A.L.G. Equine Tendonitis Therapy Using Mesenchymal Stem Cells and Platelet Concentrates: A Randomized Controlled Trial. Stem Cell Res. Ther. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacini, S.; Spinabella, S.; Trombi, L.; Fazzi, R.; Galimberti, S.; Dini, F.; Carlucci, F.; Petrini, M. Suspension of Bone Marrow–Derived Undifferentiated Mesenchymal Stromal Cells for Repair of Superficial Digital Flexor Tendon in Race Horses. Tissue Eng. 2007, 13, 2949–2955. [Google Scholar] [CrossRef] [Green Version]
- Malek, S.; Sample, S.J.; Schwartz, Z.; Nemke, B.; Jacobson, P.B.; Cozzi, E.M.; Schaefer, S.L.; Bleedorn, J.A.; Holzman, G.; Muir, P. Effect of Analgesic Therapy on Clinical Outcome Measures in a Randomized Controlled Trial Using Client-Owned Dogs with Hip Osteoarthritis. BMC Vet. Res. 2012, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rychel, J.K. Diagnosis and Treatment of Osteoarthritis. Top. Companion Anim. Med. 2010, 25, 20–25. [Google Scholar] [CrossRef]
- Jüni, P.; Reichenbach, S.; Dieppe, P. Osteoarthritis: Rational Approach to Treating the Individual. Best Pract. Res. Clin. Rheumatol. 2006, 20, 721–740. [Google Scholar] [CrossRef]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal Models of Osteoarthritis: Classification, Update, and Measurement of Outcomes. J. Orthop. Surg. Res. 2016, 11, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, A.; Mizuno, M.; Mochizuki, M.; Sekiya, I. Mesenchymal Stem Cells for Cartilage Regeneration in Dogs. World J. Stem Cells 2019, 11, 254. [Google Scholar] [CrossRef]
- Clegg, P.; Booth, T. Drugs Used to Treat Osteoarthritis in the Horse. In Pract. 2000, 22, 594–603. [Google Scholar] [CrossRef]
- Li, F.; Jia, H.; Yu, C. ACL Reconstruction in a Rabbit Model Using Irradiated Achilles Allograft Seeded with Mesenchymal Stem Cells or PDGF-B Gene-Transfected Mesenchymal Stem Cells. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 1219–1227. [Google Scholar] [CrossRef]
- Sharma, P.; Maffulli, N. Tendon Injury and Tendinopathy: Healing and Repair. J. Bone Jt. Surg. 2005, 87, 187–202. [Google Scholar]
- Ortved, K.F. Regenerative Medicine and Rehabilitation for Tendinous and Ligamentous Injuries in Sport Horses. Vet. Clin. Equine Pract. 2018, 34, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Lipman, K.; Wang, C.; Ting, K.; Soo, C.; Zheng, Z. Tendinopathy: Injury, Repair, and Current Exploration. Drug Des. Dev. Ther. 2018, 12, 591. [Google Scholar] [CrossRef] [Green Version]
- Snow, L.A.; White, R.; Gustafson, S.; Xie, L.; Hosgood, G.; Monroe, W.T.; Casey, J.P.; Lopez, M.J. Ex Vivo Comparison of Three Surgical Techniques to Stabilize Canine Cranial Cruciate Ligament Deficient Stifles. Vet. Surg. 2010, 39, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-L.; Liang, R.; Woo, S.L. Functional Tissue Engineering of Ligament Healing. BMC Sports Sci. Med. Rehabil. 2010, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.H.; Cooper, J.A., Jr.; Manuel, S.; Freeman, J.W.; Attawia, M.A.; Ko, F.K.; Laurencin, C.T. Anterior Cruciate Ligament Regeneration Using Braided Biodegradable Scaffolds: In Vitro Optimization Studies. Biomaterials 2005, 26, 4805–4816. [Google Scholar] [CrossRef] [PubMed]
- Witte, S.; Dedman, C.; Harriss, F.; Kelly, G.; Chang, Y.-M.; Witte, T. Comparison of Treatment Outcomes for Superficial Digital Flexor Tendonitis in National Hunt Racehorses. Vet. J. 2016, 216, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canapp, S.O.; Canapp, D.A.; Carr, B.J.; Cox, C.; Barrett, J.G. Supraspinatus Tendinopathy in 327 Dogs: A Retrospective Study. Vet. Evid. 2016, 1. [Google Scholar] [CrossRef]
- Becker, W.; Kowaleski, M.P.; McCarthy, R.J.; Blake, C.A. Extracorporeal Shockwave Therapy for Shoulder Lameness in Dogs. J. Am. Anim. Hosp. Assoc. 2015, 51, 15–19. [Google Scholar] [CrossRef]
- Mora, M.V.; Ibán, M.A.R.; Heredia, J.D.; Laakso, R.B.; Cuéllar, R.; Arranz, M.G. Stem Cell Therapy in the Management of Shoulder Rotator Cuff Disorders. World J. Stem Cells 2015, 7, 691. [Google Scholar] [CrossRef]
- Herthel, D.J. Enhanced Suspensory Ligament Healing in 100 Horses by Stem Cells and Other Bone Marrow Components. Am. Assoc. Equine Pract. 2001, 47, 319–321. [Google Scholar]
- Smith, R.; Korda, M.; Blunn, G.; Goodship, A. Isolation and Implantation of Autologous Equine Mesenchymal Stem Cells from Bone Marrow into the Superficial Digital Flexor Tendon as a Potential Novel Treatment. Equine Vet. J. 2003, 35, 99–102. [Google Scholar] [CrossRef]
- Richardson, L.E.; Dudhia, J.; Clegg, P.D.; Smith, R. Stem Cells in Veterinary Medicine–Attempts at Regenerating Equine Tendon after Injury. Trends Biotechnol. 2007, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Nixon, A.J.; Dahlgren, L.A.; Haupt, J.L.; Yeager, A.E.; Ward, D.L. Effect of Adipose-Derived Nucleated Cell Fractions on Tendon Repair in Horses with Collagenase-Induced Tendinitis. Am. J. Vet. Res. 2008, 69, 928–937. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.K.W.; Werling, N.J.; Dakin, S.G.; Alam, R.; Goodship, A.E.; Dudhia, J. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Smith, R.; Webbon, P. Harnessing the Stem Cell for the Treatment of Tendon Injuries: Heralding a New Dawn? Br. J. Sports Med. 2005, 39, 582–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.K. Mesenchymal Stem Cell Therapy for Equine Tendinopathy. Disabil. Rehabil. 2008, 30, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.S.; Johnson, D.S.; Hardingham, T.E. The Potential of Stem Cells in the Treatment of Knee Cartilage Defects. Knee 2010, 17, 369–374. [Google Scholar] [CrossRef]
- Bianchi, F.; Maioli, M.; Leonardi, E.; Olivi, E.; Pasquinelli, G.; Valente, S.; Mendez, A.J.; Ricordi, C.; Raffaini, M.; Tremolada, C. A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-like Elements by Mild Mechanical Forces from Human Lipoaspirates. Cell Transplant. 2013, 22, 2063–2077. [Google Scholar] [CrossRef]
- Zomorodian, E.; Baghaban Eslaminejad, M. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration. Stem Cells Int. 2012, 2012. [Google Scholar] [CrossRef]
Disease | Cell Therapy and Type of Injection | Species | Number of Test Animals | Control Group | Number of Control Animals | Observation Period | Effect of Therapy |
---|---|---|---|---|---|---|---|
OA hip joint [40] | autologous AD-MSCs, 4.2–5 × 106 cells, single intraarticular injection | dog | Group A (18 animals in total divided in groups) | yes, injection of placebo (PBS) | Group B | 90 d | Positive therapeutic outcome of applied therapy. |
OA elbow joint [95] | autologous AD-MSCs 3–5 × 106 viable cells, single intraarticular injection | dog | 14 | lack | 0 | 30, 60, 90, 180 d | Positive therapeutic outcome of applied therapy. |
Degenerative fetlock joint disease [96] | allogeneic chondrogenic induced MSCs 2 × 106, single intraarticular injection | horse | 50 | yes, injection of placebo | 25 | 3, 6, 12, 18 w | Significant improvement in motor skills in the group of animals treated with MSCs. |
OA hip joint [41] | AD-MSCs 30 × 106 versus plasma rich in growth factors (PRGF), single intraarticular injection | dog | 18 | yes, injection of PRGF | 17 | 1, 3, 6 m | Significant improvement in motor skills and the abolition of pain sensation in both groups. |
OA elbow joint [13] | autologous AD-MSCs 3–5 × 106 cells, single intraarticular injection with addition of PRP or HA as a scaffolds | dog | 4 | lack | 0 | 1, 4 w | Positive therapeutic outcome of applied therapy. |
OA metacarpophalangeal joint [93] | allogeneic UCB-MSCs, 10 × 106 cells, single and repeated intraarticular injections | horse | 14 | MSC1 group received MSCs in M0 and placebo in M1 (D-PBS). | 14 | 1, 2, 6 m | Positive therapeutic outcome in both test groups. |
OA elbow joint [94] | allogeneic UCB-MSCs 7 × 106 cells, single intraarticular injections | dog | 30 | saline (0,9% NaCl) placebo | 25 | 1, 3, 6 m | Reduction in symptoms related to OA in the group of dogs that received a single injection of UCB-MSCs. |
OA hip joint [97] | autologous stromal vascular fraction (SVF) 2–5 × 106 and allogeneic AD-MSCs 2–8 × 105, single acupuncture point injections | dog | 9 | lack | 0 | 7, 15, 30 d | Positive therapeutic outcome of applied therapy. |
OA lower hock joint [42] | autologous AD-MSCs, 5 × 106 cells, single intraarticular injection | horse | 10 | Horses in group II received betamethasone intraarticularly, animals from group III had only limited movement during observation. | 6 | 30, 60, 90, 180 d | Long-term benefits of MSCs therapy have been observed, as opposed to the short-term effects of steroids. |
OA hip joint [43] | autologous AD-MSCs, 30 × 106 cells, single intraarticular injection | dog | 8 | yes | 5 | 30, 60, 90, 180 d | Increase in functionality and less discomfort associated with pain sensation caused by OA were found. |
OA medial femoral condyle defect [98] | autologous BM-MSCs 20 × 106 with addition of HA | horse | 10 | In the control group, only the intra-articular injection of HA was performed in the opposite stifle joint. | 10 | 12 m | No significant clinical improvement was found after the completion of the follow-up. |
OA stifle joint [99] | allogeneic UCB-MSCs, 1 × 106 cells, single intraarticular injection | dog | 4 | Yes, saline injection of the same volume as in the group of animals tested. | 4 | 3, 7, 14, 28, 35 d | Positive therapeutic outcome of applied therapy. |
OA stifle joint [100] | allogeneic AD-MSCs 10 × 106 with the addition of PBS, multiple intraarticular injections | dog | 6 dogs in group III MSCs with PBS and 6 dogs in group IV MSCs and PRP | Yes, intra-articular injection of PBS in the control group. | 6 dogs in group I PBS and 6 dogs in group II PRP | 1, 2, 3 m | Beneficial effect of the medicinal PRP and MSCs preparations were found. |
OA spinal region [101] | Allogeneic SVF-MSCs, 2 × 106 cells per 1 kg of body mass, single intravenous injection | dog | 10 | Yes, blood samples were taken from the control animals to measure the level of VEGF. | 10 | 2, 8, 24 w | Positive therapeutic outcome of applied therapy. |
OA stifle, fetlock, pastern and coffin joints [102] | allogeneic PB-MSCs (chondrogenic induced and native) with PRP, single intraarticular injection | horse | 165 (stifle n = 30, fetlock n = 58, pastern n = 34, coffin n = 43) | lack | 0 | 6, 18 w | Positive therapeutic outcome of applied therapy. |
Disease | Cell therapy and Type of Injection | Species | Number of Test Animals | Control Group | Number of Control Animals | Observation Period | Effect of Therapy |
---|---|---|---|---|---|---|---|
CrCL partial rupture [104] | autologous BMAC, ADPC with the addition of PRP, single intraarticular injection | dog | 36 (19 dogs received BM-MSCs and 17 AD-MSCs) | lack | 0 | 90 d | Promising clinical use of tissue-engineered products were observed. |
Supraspinatus tendinopathy [106] | autologous BM-MSCs with PRP 1:1 ratio, ultrasound-guided single intratendionous injection | dog | 41 | lack | 0 | 45, 90 d | Posttreatment ultrasound examination showed improvement in the structure of the tendon. |
Supraspinatus tendinopathy [107] | autologous AD-MSCs 5 × 106 cells/mL with PRP, ultrasound-guided single intratendinous injection | dog | 55 | lack | 0 | 30, 60, 90 d | The applied MSCs therapy seems to be promising in comparison to conservative treatment. |
SL and SDFT lesion [103] | allogeneic PB-MSCs 2–3 × 106 cells with PRP, ultrasound-guided single intralesional injection | horse | 104 (SL lesion in 68 individuals and SDFT in 36 individuals) | lack | 0 | 6, 12 w, another survey 12 and 24 m after treatment | Positive therapeutic outcome of applied therapy. |
SDFT lesion [108] | AD-MSCs 10 × 106 cells with platelet concentrate, ultrasound-guided intralesional injection | horse | 4 | yes, PBS was used in the control group | 4 | every 2 weeks up to 16 w | Positive therapeutic outcome of applied therapy. |
SDFT tendinopathy [31] | autologous BM-MSCs 10 × 106 cells, ultrasound-guided intralesional injection | horse | 141 | lack | 0 | 2 y follow up | The study showed that MSCs implantation is safe and appears to reduce the risk of recurrent tendon injury. |
SDFT lesion [109] | autologous BM-MSCs (range 0.6–31.2 × 106 cells), local or systemic injections | horse | 11 | yes | 15 | 1, 3, 6 m | In 9 out of 11 horses, a significant improvement in movement and structure of the injured tendon (USG) was observed. |
SDFT moderate to marked lesions [131] | autologous BM-MSCs 10 × 106 cells, ultrasound-guided intra-tendinous injection | horse | 6 | yes, analogous injection of placebo (saline) | 6 | 6 m | Cell therapy with autologous MSCs brought significant benefits over untreated tendon injuries in the control group. |
Surgically induced SDFT lesion [105] | autologous BM-MSCs 20 × 106 cells, AD-MSCs 20 × 106 cells or PRP, single ultrasound-guided intralesional injection | horse | 12 (24 tendons in the thoracic limbs were used for the study) | yes, 6 subjects received an injection directly into the tendon from the lactated Ringer | 6 subjects received an injection directly into the tendon from the lactated Ringer | 2, 6, 10, 20, 45 w | Favorable final effect was noticed in all groups of tested animals compared to the control group. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prządka, P.; Buczak, K.; Frejlich, E.; Gąsior, L.; Suliga, K.; Kiełbowicz, Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules 2021, 11, 1141. https://doi.org/10.3390/biom11081141
Prządka P, Buczak K, Frejlich E, Gąsior L, Suliga K, Kiełbowicz Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules. 2021; 11(8):1141. https://doi.org/10.3390/biom11081141
Chicago/Turabian StylePrządka, Przemysław, Krzysztof Buczak, Ewelina Frejlich, Ludwika Gąsior, Kamil Suliga, and Zdzisław Kiełbowicz. 2021. "The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders" Biomolecules 11, no. 8: 1141. https://doi.org/10.3390/biom11081141
APA StylePrządka, P., Buczak, K., Frejlich, E., Gąsior, L., Suliga, K., & Kiełbowicz, Z. (2021). The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules, 11(8), 1141. https://doi.org/10.3390/biom11081141