Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Contents and Antioxidants Activities of NSO and MTSO
2.1.1. Seed Oils Preparation
2.1.2. Determination of Lipid Contents
2.1.3. Determination of Tocopherol and Polyphenol Contents
2.1.4. DPPH Free Radical Scavenging Activity
2.1.5. Ferric Reducing-Antioxidant Power (FRAP)
2.1.6. Chelation Power on Ferrous (Fe2+) Ions
2.2. In Vitro Study
2.2.1. Cell Culture
2.2.2. Cell Treatments
2.2.3. Cell Viability by MTT Assay
2.2.4. Cell Counting by Trypan Blue Exclusion Test
2.2.5. Intracellular ROS Measurement by H2DCFDA Fluorescence Assay
2.2.6. Determination of the Enzymatic and Non-Enzymatic Antioxidants Levels
2.2.7. Determination of Lipid Peroxidation Product Levels
2.2.8. Determination of Protein Oxidation Products
2.2.9. Nitrotyrosination Study by Immunocytochemistry
2.2.10. Caspase 3 Activation Study
2.3. Statistical Analysis
3. Results
3.1. Biochemical Composition and Antioxidants Activities of NSO and MTSO
3.1.1. NSO and MTSO Contents Analysis
3.1.2. Antioxidant Activities of NSO and MTSO
3.2. Evaluation of the Cytotoxicity and the Pro-Oxidative Activity of 7β-OHC
3.2.1. The Effect of 7β-OHC on Cell Viability and Proliferation
3.2.2. The effect of 7β-OHC on Intracellular ROS Production
3.2.3. The Effect of 7β-OHC on Cellular Oxidative Stress
3.3. The Cytoprotective Study of NSO and MTSO
3.3.1. The Effect of NSO and MTSO Associated with 7β-OHC on Cell Viability and Proliferation
3.3.2. The Effect of NSO and MTSO Associated with 7β-OHC on the Enzymatic and Non-Enzymatic Cellular Antioxidants Defense System
3.3.3. The Effect of NSO and MTSO Associated with 7β-OHC on the Lipid Peroxidation Levels
3.3.4. The Effect of NSO and MTSO Associated with 7β-OHC on the Protein Oxidation and Nitrotyrosinantion
3.3.5. NSO and MTSO Protects against Apoptosis Induced by 7β-OHC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannaoui, S.; Shim, S.; Cheng, Y.; Corda, E.; Gilch, S. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease. Viruses 2014, 6, 4505–4535. [Google Scholar] [CrossRef] [Green Version]
- Testa, G.; Staurenghi, E.; Zerbinati, C.; Gargiulo, S.; Iuliano, L.; Giaccone, G.; Fantò, F.; Poli, G.; Leonarduzzi, G.; Gamba, P. Changes in Brain Oxysterols at Different Stages of Alzheimer’s Disease: Their Involvement in Neuroinflammation. Redox Biol. 2016, 10, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammouda, S.; Ghzaiel, I.; Khamlaoui, W.; Hammami, S.; Mhenni, S.Y.; Samet, S.; Hammami, M.; Zarrouk, A. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer’s disease in the Tunisian population. Prostaglandins Leukot. Essent. Fatty Acids 2020, 160, 102159. [Google Scholar] [CrossRef]
- Zarrouk, A.; Hammouda, S.; Ghzaiel, I.; Hammami, S.; Khamlaoui, W.; Ahmed, S.H.; Lizard, G.; Hammami, M. Association between oxidative stress and altered cholesterol metabolism in Alzheimer’s disease patients. Curr. Alzheimer Res. 2021, 17, 823–834. [Google Scholar] [CrossRef]
- Poli, G.; Biasi, F.; Leonarduzzi, G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013, 1, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrouk, A.; Vejux, A.; Mackrill, J.; O’Callaghan, Y.; Hammami, M.; O’Brien, N.; Lizard, G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res. Rev. 2014, 18, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Björkhem, I. Crossing the barrier: Oxysterols as cholesterol transporters and metabolic modulators in the brain. J. Intern. Med. 2006, 260, 493–508. [Google Scholar] [CrossRef]
- Cheng, D.; Jenner, A.M.; Shui, G.; Cheong, W.F.; Mitchell, T.W.; Nealon, J.R.; Kim, W.S.; McCann, H.; Wenk, M.R.; Halliday, G.M.; et al. Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS ONE 2011, 6, e17299. [Google Scholar] [CrossRef] [Green Version]
- Kreilaus, F.; Spiro, A.S.; McLean, C.A.; Garner, B.; Jenner, A.M. Evidence for altered cholesterol metabolism in Huntington’s Disease Post Mortem brain tissue: Altered cholesterol metabolism in Huntington’s Disease. Neuropathol. Appl. NeuroBiol. 2016, 42, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Nelson, T.J.; Alkon, D.L. Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem. 2005, 280, 7377–7387. [Google Scholar] [CrossRef] [Green Version]
- Nury, T.; Sghaier, R.; Zarrouk, A.; Ménétrier, F.; Uzun, T.; Leoni, V.; Caccia, C.; Meddeb, W.; Namsi, A.; Sassi, K.; et al. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie 2018, 153, 181–202. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Ebers, G.C. Environmental factors and multiple sclerosis. Lancet Neurol. 2008, 7, 268–277. [Google Scholar] [CrossRef]
- Balandrin, M.; Klocke, J.; Wurtele, E.; Bollinger, W. Natural Plant Chemicals: Sources of Industrial and Medicinal Materials. Science 1985, 228, 1154–1160. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [Green Version]
- Cilla, A.; Alegría, A.; Attanzio, A.; Garcia-Llatas, G.; Tesoriere, L.; Livrea, M.A. Dietary phytochemicals in the protection against oxysterol-induced damage. Chem. Phys. Lipids 2017, 207, 192–205. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef]
- Ikhsan, M.; Hiedayati, N.; Maeyama, K.; Nurwidya, F. Nigella Sativa as an anti-inflammatory agent in asthma. BMC Res. Notes 2018, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, W.; Rezig, L.; Zarrouk, A.; Nury, T.; Vejux, A.; Prost, M.; Bretillon, L.; Mejri, M.; Lizard, G. Cytoprotective activities of milk thistle seed oil used in traditional Tunisian medicine on 7-ketocholesterol and 24S-hydroxycholesterol-induced toxicity on 158N murine oligodendrocytes. Antioxidants 2018, 7, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, N.K.; AbdManap, M.Y.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; MeorHussin, A.S. The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella Sativa L.) oil. Evid. Based Complement. Alternat. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isik, S.; Kartal, M.; Erdem, S.A. Quantitative analysis of thymoquinone in Nigella sativa L. (black cumin) seeds and commercial seed oils and seed oil capsules from Turkey. Ankara Univ. Eczacilik Fak. Derg 2017, 41, 34–41. [Google Scholar] [CrossRef]
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Amer. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
- Kittur, S.; Wilasrusmee, S.; Pedersen, W.A.; Mattson, M.P.; Straube-West, K.; Wilasrusmee, C.; Jubelt, B.; Kittur, D.S. Neurotrophic and neuroprotective effects of milk thistle (Silybum Marianum) on neurons in culture. J. Mol. Neurosci. 2002, 18, 265–270. [Google Scholar] [CrossRef]
- Moilanen, T.; Nikkari, T. The effect of storage on the fatty acid composition of human serum. Clin. Chim. Acta 1981, 114, 111–116. [Google Scholar] [CrossRef]
- Zarrouk, A.; Martine, L.; Grégoire, S.; Nury, T.; Meddeb, W.; Camus, E.; Badreddine, A.; Durand, P.; Namsi, A.; Yammine, A.; et al. Profile of fatty acids, tocopherols, phytosterols and polyphenols in mediterranean oils (argan oils, olive oils, milk thistle seed oils and nigella seed oil) and evaluation of their antioxidant and cytoprotective activities. Curr. Pharm. Des. 2019, 25, 1791–1805. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007, 103, 1003–1008. [Google Scholar] [CrossRef]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Ragot, K.; Mackrill, J.J.; Zarrouk, A.; Nury, T.; Aires, V.; Jacquin, A.; Athias, A.; de Barros, J.-P.P.; Véjux, A.; Riedinger, J.-M.; et al. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem. Pharmacol. 2013, 86, 67–79. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Egea, J.; Rosa, A.O.; Cuadrado, A.; García, A.G.; López, M.G. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress: Epibatidine induces heme oxygenase-1 and protects against reactive oxygen species. J. Neurochem. 2007, 102, 1842–1852. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of Glutathione Peroxidase. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 114–120. [Google Scholar]
- Faure, P.; Lafond, J.-L. Measurement of Plasma Sulfhydryl and Carbonyl Groups as a Possible Indicator of Protein Oxidation. In Analysis of Free Radicals in Biological Systems; Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M., Pierre, J.-L., Eds.; Birkhäuser Basel: Basel, Switzerland, 1995; pp. 237–248. [Google Scholar]
- Bradford, M.M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yoshioka, T.; Kawada, K.; Shimada, T.; Mori, M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am. J. Obstet. Gynecol. 1979, 135, 372–376. [Google Scholar] [CrossRef]
- Esterbauer, H.; Striegl, G.; Puhl, H.; Rotheneder, M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 1989, 6, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, R.; Zarrouk, A.; Nury, T.; Badreddine, I.; O’Brien, N.; Mackrill, J.J.; Vejux, A.; Samadi, M.; Nasser, B.; Caccia, C.; et al. Biotin attenuation of oxidative stress, mitochondrial dysfunction, lipid metabolism alteration and 7β-hydroxycholesterol-induced cell death in 158n murine oligodendrocytes. Free Radic. Res. 2019, 53, 535–561. [Google Scholar] [CrossRef] [Green Version]
- Lemaire-Ewing, S.; Prunet, C.; Montange, T.; Vejux, A.; Berthier, A.; Bessède, G.; Corcos, L.; Gambert, P.; Néel, D.; Lizard, G. Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol. Toxicol. 2005, 21, 97–114. [Google Scholar] [CrossRef]
- Lordan, S.; Mackrill, J.J.; O’Brien, N.M. Oxysterols and mechanisms of apoptotic signaling: Implications in the pathology of degenerative diseases. J. Nutr. Biochem. 2009, 20, 321–336. [Google Scholar] [CrossRef]
- Nury, T.; Zarrouk, A.; Mackrill, J.J.; Samadi, M.; Durand, P.; Riedinger, J.-M.; Doria, M.; Vejux, A.; Limagne, E.; Delmas, D.; et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA.; C22:6 n-3). Steroids 2015, 99, 194–203. [Google Scholar] [CrossRef]
- Coma, M.; Guix, F.X.; Uribesalgo, I.; Espuña, G.; Solé, M.; Andreu, D.; Muñoz, F.J. Lack of oestrogen protection in amyloid-mediated endothelial damage due to protein nitrotyrosination. Brain 2005, 128, 1613–1621. [Google Scholar] [CrossRef] [Green Version]
- Mutemberezi, V.; Guillemot-Legris, O.; Muccioli, G.G. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res. 2016, 64, 152–169. [Google Scholar] [CrossRef]
- O’Brien, R.D. Fats and Oils: Formulating and Processing for Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Zarrouk, A.; Nury, T.; Samadi, M.; O’Callaghan, Y.; Hammami, M.; O’Brien, N.M.; Lizard, G.; Mackrill, J.J. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA.; C22:6 n-3). Steroids 2015, 99, 238–247. [Google Scholar] [CrossRef]
- Zarrouk, A.; Ben Salem, Y.; Hafsa, J.; Sghaier, R.; Charfeddine, B.; Limem, K.; Hammami, M.; Majdoub, H. 7β-hydroxycholesterol-induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg oil. Biochimie 2018, 153, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Lemaire-Ewing, S.; Berthier, A.; Royer, M.C.; Logette, E.; Corcos, L.; Bouchot, A.; Monier, S.; Prunet, C.; Raveneau, M.; Rébé, C.; et al. 7β-hydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-Fos via the ERK1/2 signaling pathway in THP-1 cells: Oxysterols-induced il-8 secretion is calcium-dependent. Cell Biol. Toxicol. 2009, 25, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Gamba, P.; Badilli, U.; Gargiulo, S.; Maina, M.; Guina, T.; Calfapietra, S.; Biasi, F.; Cavalli, R.; Poli, G.; et al. Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols. PLoS ONE 2014, 9, e96795. [Google Scholar] [CrossRef] [Green Version]
- Kloudova, A.; Guengerich, F.P.; Soucek, P. The role of oxysterols in human cancer. Trends Endrocrinol. Metab. 2017, 28, 485–496. [Google Scholar] [CrossRef]
- O’Callaghan, Y.C.; Woods, J.A.; O’Brien, N.M. Oxysterol-induced cell death in U937 and HepG2 cells at reduced and normal serum concentrations. Eur. J. Nutr. 1999, 38, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Lyons, N.M.; Woods, J.A.; O’Brien, N.M. α -tocopherol, but not γ -tocopherol inhibits 7 β -hydroxycholesterol-induced apoptosis in human U937 cells. Free Radic. Res. 2001, 35, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Roussi, S.; Winter, A.; Gosse, F.; Werner, D.; Zhang, X.; Marchioni, E.; Geoffroy, P.; Miesch, M.; Raul, F. Different apoptotic mechanisms are involved in the antiproliferative effects of 7β-hydroxysitosterol and 7β-hydroxycholesterol in human colon cancer cells. Cell Death Differ. 2005, 12, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Wielkoszyński, T.; Zalejska-Fiolka, J.; Strzelczyk, J.K.; Owczarek, A.J.; Cholewka, A.; Kokoszczyk, K.; Stanek, A. 5α,6α-epoxyphytosterols and 5α,6α-epoxycholesterol increase nitrosative stress and inflammatory cytokine production in rats on low-cholesterol diet. Oxid. Med. Cell. Longev. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- El-Dakak, A.M.; Ahmed, M.H.; Ismail, S.A. Effect of some natural antioxidants on ox sterol formed endogenously in hypecholesterolemia rats. Egypt. J. Biomed. Sci. 2008, 28, 1–18. [Google Scholar]
- Halliwell, B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 1997, 411, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Picón-Pagès, P.; Garcia-Buendia, J.; Muñoz, F.J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1949–1967. [Google Scholar] [CrossRef]
- Cruz, D.F.; Fardilha, M. Relevance of peroxynitrite formation and 3-nitrotyrosine on spermatozoa physiology. Porto Biomed. J. 2016, 1, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.M.; Peluffo, G.; Radi, R. Protein tyrosine nitration—Functional alteration or just a biomarker? Free Radic. Biol. Med. 2008, 45, 357–366. [Google Scholar] [CrossRef]
- Bartesaghi, S.; Radi, R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018, 14, 618–625. [Google Scholar] [CrossRef]
- Tesoriere, L.; Attanzio, A.; Allegra, M.; Gentile, C.; Livrea, M.A. Phytochemical Indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca2+ increase and oxidative stress. Br. J. Nutr. 2013, 110, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Guina, T.; Deiana, M.; Calfapietra, S.; Cabboi, B.; Maina, M.; Tuberoso, C.I.; Leonarduzzi, G.; Gamba, P.; Gargiulo, S.; Testa, G.; et al. The role of P38 MAPK in the induction of intestinal inflammation by dietary oxysterols: Modulation by wine phenolics. Food Funct. 2015, 6, 1218–1228. [Google Scholar] [CrossRef]
- Zarrouk, A.; Nury, T.; Karym, E.-M.; Vejux, A.; Sghaier, R.; Gondcaille, C.; Andreoletti, P.; Trompier, D.; Savary, S.; Cherkaoui-Malki, M.; et al. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158 N murine oligodendrocytes. J. Steroid Biochem. Mol. Biol. 2017, 169, 29–38. [Google Scholar] [CrossRef]
- Debbabi, M.; Zarrouk, A.; Bezine, M.; Meddeb, W.; Nury, T.; Badreddine, A.; Karym, E.M.; Sghaier, R.; Bretillon, L.; Guyot, S.; et al. Comparison of the effects of major fatty acids present in the mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem. Phys. Lipids 2017, 207, 151–170. [Google Scholar] [CrossRef] [PubMed]
NSO | MTSO | |
---|---|---|
Fatty acid content (% of total Fatty acids) | ||
Ʃ unsaturated fatty acids | 82.85 ± 0.14 | 83.83 ± 4.26 |
Oleic acid C18:1n-9 | 22.76 ± 0.02 | 21.39 ± 0.02 |
Linoleic acid C18:2n-6 | 54.56 ± 0.14 | 56.77 ± 0.57 |
α-Linolenic acid C18:3n-3 | 1.54 ± 0.02 | 0.49 ± 0.01 |
Tocopherol content (mg/kg) | ||
γ- Tocopherol | undetectable | 92.00 ± 7.00 (220.88 ± 16.78 μmol/L) |
α-Tocopherol | undetectable | 202.00 ± 17.00 (468.67 ± 39.44 μmol/L) |
Total Tocopherols Content | undetectable | 274.00 ± 24.00 |
Polyphenol content (mg equivalent quercetin/kg of oil) | ||
Thymoquinone | 7.00 ± 0.58 | Undetectable |
Vanillin | 2.30 ± 0.06 | Undetectable |
Homovanillic Acid | 1.90 ± 0.00 | Undetectable |
Quercetin | 1.30 ± 0.02 | 1.20 ± 0.04 |
Apigenin | undetectable | 0.90 ± 0.10 |
IC50 Values (mg/mL) | |||
---|---|---|---|
Samples | DPPH | FRAP | Iron Chelating |
NSO | 4.11 ± 0.16 | 1.85 ± 0.18 | 4.86 ± 0.11 |
MTSO | 4.30 ± 0.33 | 4.53 ± 0.23 | 5.75 ± 0.24 |
EDTA (standard) | − | − | 0.60 ± 0.09 |
AA (standard) | 0.81 ± 0.27 | 0.41 ± 0.16 | − |
SOD (% Control) | GPx (% Control) | Thiols (µmol/mg of Protein) | |
---|---|---|---|
Control | 100 ± 0.00 | 100 ± 0.00 | 0.95 ± 0.01 |
(EtOH 0.2%) | 97.85 ± 0.76 | 91.18 ± 9.36 | 0.92 ± 0.14 |
(DMSO 0.4%) | 98.17 ± 2.34 | 98.25 ± 4.18 | 0.97 ± 0.09 |
(EtOH + DMSO) | 97.88 ± 1.50 | 99.18 ± 9.28 | 0.95 ± 0.01 |
NSO (100 µg/mL) | 99.30 ± 4.18 | 97.41 ± 5.40 | 0.94 ± 0.02 |
MTSO (100 µg/mL) | 101.47 ± 2.78 | 96.81 ± 1.14 | 0.98 ± 0.07 |
7β-OHC (40 µg/mL) | 34.73 ± 1.43 * | 56.42 ± 5.25 * | 0.48 ± 0.08 * |
7β-OHC + NSO (100 µg/mL) | 47.77 ± 0.89 # | 75.65 ± 5.10 | 0.45 ± 0.08 |
7β-OHC + MTSO (100 µg/mL) | 109.63 ± 7.73 # | 106.26 ± 10.30 # | 0.59 ± 0.04 |
MDA (µmol/mg of Protein) | CD (µmol/mg of Protein) | |
---|---|---|
Control | 68.09 ± 3.43 | 0.55 ± 0.83 |
(EtOH 0.2%) | 70.05 ± 5.70 | 0.40 ± 0.10 |
(DMSO 0.4%) | 73.43 ± 1.11 | 0.54 ± 0.04 |
(EtOH + DMSO) | 71.32 ± 0.43 | 0.56 ± 0.04 |
NSO (100 µg/mL) | 69.96 ± 2.60 | 0.59 ± 0.03 |
MTSO (100 µg/mL) | 70.93 ± 2.38 | 0.44 ± 0.01 |
7β-OHC (40 µg/mL) | 99.39 ± 2.50 * | 0.89 ± 0.07 * |
7β-OHC + NSO (100 µg/mL) | 79.64 ± 1.60 # | 0.52 ± 0.12 # |
7β-OHC + MTSO (100 µg/mL) | 75.02 ± 0.90 # | 0.68 ± 0.19 |
CP (µmol/mg of Protein) | |
---|---|
Control | 0.13 ± 0.01 |
(EtOH 0.2%) | 0.12 ± 0.02 |
(DMSO 0.4%) | 0.15 ± 0.01 |
(EtOH + DMSO) | 0.12 ± 0.02 |
NSO (100 µg/mL) | 0.13 ± 0.01 |
MTSO (100 µg/mL) | 0.12 ± 0.02 |
7β-OHC (40 µg/mL) | 0.39 ± 0.04 * |
7β-OHC + NSO (100 µg/mL) | 0.28 ± 0.03 |
7β-OHC + MTSO (100 µg/mL) | 0.17 ± 0.02 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammouda, S.; Ghzaiel, I.; Picón-Pagès, P.; Meddeb, W.; Khamlaoui, W.; Hammami, S.; Muñoz, F.J.; Hammami, M.; Zarrouk, A. Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells. Biomolecules 2021, 11, 797. https://doi.org/10.3390/biom11060797
Hammouda S, Ghzaiel I, Picón-Pagès P, Meddeb W, Khamlaoui W, Hammami S, Muñoz FJ, Hammami M, Zarrouk A. Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells. Biomolecules. 2021; 11(6):797. https://doi.org/10.3390/biom11060797
Chicago/Turabian StyleHammouda, Souha, Imen Ghzaiel, Pol Picón-Pagès, Wiem Meddeb, Wided Khamlaoui, Sonia Hammami, Francisco J. Muñoz, Mohamed Hammami, and Amira Zarrouk. 2021. "Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells" Biomolecules 11, no. 6: 797. https://doi.org/10.3390/biom11060797
APA StyleHammouda, S., Ghzaiel, I., Picón-Pagès, P., Meddeb, W., Khamlaoui, W., Hammami, S., Muñoz, F. J., Hammami, M., & Zarrouk, A. (2021). Nigella and Milk Thistle Seed Oils: Potential Cytoprotective Effects against 7β-Hydroxycholesterol-Induced Toxicity on SH-SY5Y Cells. Biomolecules, 11(6), 797. https://doi.org/10.3390/biom11060797