Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Sample Size
2.2.2. Selection of Patients
2.2.3. Randomization
2.3. Data Collection
2.3.1. Endoscopic and Histopathological Examination
2.3.2. Determination of Serum Biomarkers
2.3.3. Intervention
- ∘
- Four strains of Lactobacillus:
- ▪
- Lactobacillus acidophilus DSM 24735®
- ▪
- Lactobacillus plantarum DSM 24730®
- ▪
- Lactobacillus paracasei DSM 24733®
- ▪
- Lactobacillus delbrueckii subsp. bulgaricus DSM 24734®
- ∘
- Three strains of Bifidobacterium:
- ▪
- Bifidobacterium breve DSM 24732®
- ▪
- Bifidobacterium longum DSM 24736®
- ▪
- Bifidobacterium infantis DSM 24737®
- ∘
- One strain of Streptococcus:
- ▪
- Streptococcus thermophilus DSM 24731®
2.4. Procedure
2.4.1. Surgery and Follow-Up
2.4.2. Blinding
2.4.3. Assessment Criteria
2.5. Statistical Analysis
2.6. Ethical Aspects
3. Results
3.1. Sociodemographics
3.2. Serological Biomarkers
3.3. Endoscopic/Histological Severity and Serological Biomarkers
3.4. Safety and Adverse Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szczepkowski, M.; Banasiewicz, T.; Kobus, A. Diversion colitis 25 years later: The phenomenon of the disease. Int. J. Color. Dis. 2017, 32, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Glotzer, D.J.; Glick, M.E.; Goldman, H. Proctitis and colitis following diversion of the fecal stream. Gastroenterol. 1981, 80, 438–441. [Google Scholar] [CrossRef]
- Costa, M.D.; Vieira de Melo, C.Y.; Amorim, A.C.; Cipriano Torres De, O.; Dos Santos, A.C. Association Between Nutritional Status, Inflammatory Condition, and Prognostic Indexes with Postoperative Complications and Clinical Outcome of Patients with Gastrointestinal Neoplasia. Nutr. Cancer 2016, 68(7), 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Delcea, C.; Dima, A.; Jurcut, C.; Caraiola, S.; Badea, C.; Nitescu, D.; Balanescu, E.; Nicolau, A.; Pompilian, V.; Ionescu, R.; et al. FRI0581 Utility of the Glasgow Prognostic Score in Systemic Lupus Erythematosus, In a Single Center Cohort of 130 Patients. Ann. Rheum. Dis. 2015, 74, 638.2–638. [Google Scholar] [CrossRef]
- Zhao, C.; Ding, C.; Xie, T.; Zhang, T.; Dai, X.; Wei, Y.; Li, Y.; Gong, J.; Zhu, W. Validation and optimization of the Systemic Inflammation-Based modified Glasgow Prognostic Score in predicting postoperative outcome of inflammatory bowel disease: Preliminary data. Sci. Rep. 2018, 8, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namiuchi, S.; Sugie, T.; Saji, K.; Takii, T.; Suda, A.; Kato, A. The systemic inflammation-based Glasgow Prognostic Score as a prognostic factor in patients with acute heart failure. J. Cardiovasc. Med. 2015, 16, 409–415. [Google Scholar] [CrossRef]
- McMillan, D.C. The systemic inflammation-based Glasgow Prognostic Score: A decade of experience in patients with cancer. Cancer Treat. Rev. 2013, 39, 534–540. [Google Scholar] [CrossRef]
- Hirahara, N.; Fujii, Y.; Yamamoto, T.; Hyakudomi, R.; Hirayama, T.; Taniura, T.; Ishitobi, K.; Tajima, Y. Validation of a novel prognostic scoring system using inflammatory response biomarkers in patients undergoing curative thoracoscopic esophagectomy for esophageal squamous cell carcinoma. OncoTargets Ther. 2017, 10, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Kabir, S.; Richards, R.; Ahmed, J.; MacFie, J. Pathophysiology, clinical presentation and management of diversion colitis: A review of current literature. Int. J. Surg. 2014, 12, 1088–1092. [Google Scholar] [CrossRef] [Green Version]
- Keane, C.; Park, J.; Öberg, S.; Wedin, A.; Bock, D.; O’Grady, G.; Bissett, I.; Rosenberg, J.; Angenete, E. Functional outcomes from a randomized trial of early closure of temporary ileostomy after rectal excision for cancer. Br. J. Surg. 2019, 106, 645–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rombey, T.; Panagiotopoulou, I.G.; Hind, D.; Fearnhead, N.S. Preoperative bowel stimulation prior to ileostomy closure to restore bowel function more quickly and improve postoperative outcomes: A systematic review. Colorectal Dis. 2019, 21, 994–1003. [Google Scholar] [CrossRef]
- Garfinkle, R.; Trabulsi, N.; Morin, N.; Phang, T.; Liberman, S.; Feldman, L.; Fried, G.; Boutros, M. Study protocol evaluating the use of bowel stimulation before loop ileostomy closure to reduce postoperative ileus: A multicenter randomized controlled trial. Colorectal Dis. 2017, 19, 1024–1029. [Google Scholar] [CrossRef]
- Biagioli, M.; Capobianco, D.; Carino, A.; Marchianò, S.; Fiorucci, C.; Ricci, P.; Distrutti, E.; Fiorucci, S. Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure Depends on Metabolic Properties. Nutrients 2019, 11, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartor, R.B.; Wu, G.D. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 2017, 152, 327–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L.J.; Cho, J.H.; Gevers, D.; Chu, H. Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterol. 2019, 156, 2174–2189. [Google Scholar] [CrossRef] [Green Version]
- Basso, P.J.; Câmara, N.O.S.; Sales-Campos, H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease – An Overview of Human Studies. Front. Pharmacol. 2019, 9, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.-H.; Zhu, C.-X.; Quan, Y.-S.; Yang, Z.-Y.; Wu, S.; Luo, W.-W.; Tan, B.; Wang, X.-Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018, 24, 5–14. [Google Scholar] [CrossRef]
- Harig, J.M.; Soergel, K.H.; Komorowski, R.A.; Wood, C.M. Treatment of Diversion Colitis with Short-Chain-Fatty Acid Irrigation. N. Engl. J. Med. 1989, 320, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, V., Jr.; Pacheco, R.G.; Esposito, C.C.; Buongusto, F.; Castelo-Branco, M.T.L.; Madi, K.; Belmiro, C.R.; Pavão, M.S.G.; de Souza, H.S.P.; Schanaider, A. Ascidian (chordate-tunicate) and mammalian heparin enemas attenuate experimental diversion colitis. Surgery 2014, 155, 217–227. [Google Scholar] [CrossRef]
- Pacheco, R.G.; Esposito, C.C.; Müller, L.C.; Castelo-Branco, M.T.; Quintella, L.P.; Chagas, V.L.A.; De Souza, H.S.P.; Schanaider, A. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis. World J. Gastroenterol. 2012, 18, 4278–4287. [Google Scholar] [CrossRef]
- Williams, L.; Armstrong, M.J.; Finan, P.; Sagar, P.; Burke, D. The effect of faecal diversion on human ileum. Gut 2007, 56, 796–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beamish, E.L.; Johnson, J.; Shaw, E.J.; Scott, N.A.; Bhowmick, A.; Rigby, R.J. Loop ileostomy-mediated fecal stream diversion is associated with microbial dysbiosis. Gut Microbes 2017, 8, 467–478. [Google Scholar] [CrossRef]
- Schauber, J.; Bark, T.; Jaramillo, E.; Katouli, M.; Sandstedt, B.; Svenberg, T. Local short-chain fatty acids supplementation without beneficial effect on inflammation in excluded rectum. Scand. J. Gastoenterol. 2000, 35, 184–189. [Google Scholar] [CrossRef]
- Guillemot, F.; Colombel, J.F.; Neut, C.; Verplanck, N.; LeComte, M.; Romond, C.; Paris, J.C.; Cortot, A. Treatment of diversion colitis by short-chain fatty acids. Prospective and double-blind study. Dis. Colon Rectum 1991, 34, 861–864. [Google Scholar] [CrossRef]
- Martinez, C.A.R.; De Almeida, M.G.; Da Silva, C.M.G.; Ribeiro, M.L.; Da Cunha, F.L.; Rodrigues, M.R.; Sato, D.T.; Pereira, J.A. Enemas with n-Acetylcysteine Can Reduce the Level of Oxidative Damage in Cells of the Colonic Mucosa Diverted from the Faecal Stream. Dig. Dis. Sci. 2013, 58, 3452–3459. [Google Scholar] [CrossRef] [PubMed]
- Buanaim, R.P.; Pereira, J.A.; Campos, F.G.; Kotze, P.G.; Goto, E.F.K.; Mendonça, R.L.S.; Kanno, D.T.; Martinez, C.A.R. Effects of anti-TNF-α in experimental diversion colitis. Acta Cir. Bras. 2019, 34, e201901004. [Google Scholar] [CrossRef]
- Biagioli, M.; Laghi, L.; Carino, A.; Cipriani, S.; Distrutti, E.; Marchianò, S.; Parolin, C.; Scarpelli, P.; Vitali, B.; Fiorucci, S. Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory Activity. Front. Pharmacol. 2017, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Sanders, M.E.; Klaenhammer, T.R.; Ouwehand, A.C.; Pot, B.; Johansen, E.; Heimbach, J.T.; Marco, M.L.; Tennilä, J.; Ross, R.P.; Franz, C.; et al. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann. N. Y. Acad. Sci. 2014, 1309, 1–18. [Google Scholar] [CrossRef]
- Corridoni, D.; Pastorelli, L.; Mattioli, B.; Locovei, S.; Ishikawa, D.; Arseneau, K.O.; Chieppa, M.; Cominelli, F.; Pizarro, T.T. Probiotic Bacteria Regulate Intestinal Epithelial Permeability in Experimental Ileitis by a TNF-Dependent Mechanism. PLOS ONE 2012, 7, e42067. [Google Scholar] [CrossRef] [Green Version]
- Guarner, F.; Khan, A.G.; Garisch, J.; Eliakim, R.; Gangl, A.; Thomson, A.; Krabshuis, J.; Lemair, T. Probiotics and Prebiotics; World Gastroenterology Organisation Global Guidelines; World Gastroenterology Organisation: Milwaukee, WI, USA, 2017; Volume 46, pp. 468–481. [Google Scholar]
- Sanders, M.E.; Merenstein, D.J.; Ouwehand, A.C.; Reid, G.; Salminen, S.; Cabana, M.D.; Paraskevakos, G.; Leyer, G. Probiotic use in at-risk populations. J. Am. Pharm. Assoc. 2016, 56, 680–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, R.D.C.S.O.; Balbino, K.P.; de Paula Jorge, M.; Ribeiro, A.Q.; Martino, H.S.D.; Alfenas, R.D.C.G. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: A systematic review. Nutr. Hosp. 2018, 35, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Grossi, E.; Buresta, R.; Abbiati, R.; Cerutti, R.; Pro-DIA Study Group. Clinical trial on the efficacy of a new symbiotic formulation, Flortec, in patients with acute diarrhea: A multicenter, randomized study in primary care. J. Clin. Gastroenterol. 2010, 44 (Suppl. 1), S35–S41. [Google Scholar] [CrossRef]
- Gionchetti, P.; Rizzello, F.; Morselli, C.; Poggioli, G.; Tambasco, R.; Calabrese, C.; Brigidi, P.; Vitali, B.; Straforini, G.; Campieri, M. High-Dose Probiotics for the Treatment of Active Pouchitis. Dis. Colon Rectum 2007, 50, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Barra, M.; Danino, T.; Garrido, D. Engineered Probiotics for Detection and Treatment of Inflammatory Intestinal Diseases. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Hod, K.; Sperber, A.D.; Ron, Y.; Boaz, M.; Dickman, R.; Berliner, S.; Halpern, Z.; Maharshak, N.; Dekel, R. A double-blind, placebo-controlled study to assess the effect of a probiotic mixture on symptoms and inflammatory markers in women with diarrhea-predominant IBS. Neurogastroenterol. Motil. 2017, 29, e13037. [Google Scholar] [CrossRef]
- Tenorio-Jiménez, C.; Martínez-Ramírez, M.J.; Castillo-Codes, D.; Arraiza-Irigoyen, C.; Tercero-Lozano, M.; Camacho, J.; Chueca, N.; García, F.; Olza, J.; Plaza-Díaz, J.; et al. Lactobacillus reuteri V3401 Reduces Inflammatory Biomarkers and Modifies the Gastrointestinal Microbiome in Adults with Metabolic Syndrome: The PROSIR Study. Nutrients 2019, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.M.; Cao, Y.; Miller, K.; McGoldrick, J.; Bellavance, D.; Chin, S.M.; Halvorsen, S.; Maxner, B.; Richter, J.M.; Sassi, S.; et al. Microscopic Colitis Is Characterized by Intestinal Dysbiosis. Clin. Gastroenterol. Hepatol. 2020, 18, 984–986. [Google Scholar] [CrossRef]
- Rossi, M.; Amaretti, A. Bifidobacteria: Genomics and molecular aspects. In Probiotic Properties of Bifidobacterial; Mayo, B., Van Sinderen, D., Eds.; Horizon Scientific Press: Poole, UK, 2010; pp. 97–123. [Google Scholar]
- Yang, Y.J.; Chuang, C.C.; Yang, H.B.; Lu, C.C.; Sheu, B.S. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFkappaB pathways. BMC Microbiol. 2012, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Borthakur, A.; Bhattacharyya, S.; Kumar, A.; Anbazhagan, A.N.; Tobacman, J.K.; Dudeja, P.K. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS ONE 2013, 8, e75664. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, L.; Chen, L.; Zhu, Q.; Wang, W.; Qiao, J. Lactobacillus acidophilus alleviates the inflammatory response to enterotoxigenic Escherichia coli K88 via inhibition of the NF-kappaB and p38 mitogen-activated protein kinase signaling pathways in piglets. BMC Microbiol. 2016, 16, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenman, L.; Waget, A.; Garret, C.; Klopp, P.; Burcelin, R.; Lahtinen, S. Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef. Microbes 2014, 5, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajifaraji, M.; Jahanjou, F.; Abbasalizadeh, F.; Aghamohammadzadeh, N.; Abbasi, M.M.; Dolatkhah, N. Effect of probiotic supplements in women with gestational diabetes mellitus on inflammation and oxidative stress biomarkers: A randomized clinical trial. Asia Pac. J. Clin. Nutr. 2018, 27, 581–591. [Google Scholar] [CrossRef]
- Jafarnejad, S.; Saremi, S.; Jafarnejad, F.; Arab, A. Effects of a Multispecies Probiotic Mixture on Glycemic Control and Inflammatory Status in Women with Gestational Diabetes: A Randomized Controlled Clinical Trial. J. Nutr. Metab. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michail, S.; Kenche, H. Gut Microbiota is Not Modified by Randomized, Double-Blind, Placebo-Controlled Trial of VSL#3 in Diarrhea-Predominant Irritable Bowel Syndrome. Probiotics Antimicrob. Proteins 2010, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Afsar, N.; Afroze, I.A.; Tahniath, H.; Abid, Z. Role of Mean platelet Volume as an adjunct in evaluation of acute inflammation. Ann. Pathol. Lab. Med. 2017, 4, A466–A469. [Google Scholar] [CrossRef] [Green Version]
- Korniluk, A.; Koper-Lenkiewicz, O.M.; Kamińska, J.; Kemona, H.; Dymicka-Piekarska, V. Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions. Mediat. Inflamm. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
Stimulated Group (n = 34) | Control Group (n = 35) | p | |
---|---|---|---|
Demographics | |||
Age (years) | 65 (45–81) | 68 (41–80) | 0.421 |
Sex ratio (M:F) | 23:11 | 25:10 | 0.170 |
BMI (kg/m2) | 23.5 (21.6–32.6) | 27.6 (18.8–40.2) | 0.091 |
ASA | 0.483 | ||
ASA I-II | 31 | 30 | |
ASA III | 3 | 5 | |
Smoker/non-smoker | 20/14 | 23/12 | 0.826 |
Time between surgery (months) * | 12 (8–37) | 9 (6–32) | 0.813 |
Clinic | |||
Asymptomatic | 10 (29.4%) | 14 (40%) | 0.309 |
Abdominal pain | 15 (44.1%) | 18 (51.4%) | 0.402 |
Tenesmus | 5 (14.7%) | 2 (5.7%) | 0.702 |
Mucous Discharge | 21 (61.7) | 14 (40%) | 0.117 |
Rectorrhagia | 2 (5.9%) | 4 (11.4%) | 0.668 |
Endoscopic severity | |||
Mild | 2 (5.9%) | 3 (8.6%) | 0.511 |
Moderate | 23 (67.6%) | 23 (65.7%) | 0.648 |
Severe | 9 (26.5%) | 9 (25.7%) | 0.498 |
Histological severity | |||
Mild | 4 (11.8%) | 3 (8.6%) | 0.479 |
Moderate | 21 (61.7) | 23 (65.7%) | 0.321 |
Severe | 9 (26.5%) | 9 (25.7%) | 0.518 |
Severity Index | Serum CRP | ||||||
---|---|---|---|---|---|---|---|
Stimulated Group (n = 34) | Control Group (n = 35) | ||||||
n * | Me | RI | n | Me | RI | ||
Pre-stimulation | Severe | 9 | 11.03 | ±4.9 | 9 | 12.16 | ±3.14 |
Moderate | 21 | 10.51 | ±3.37 | 23 | 10.1 | ±1.96 | |
Mild | 4 | 5.27 | ±0.37 | 3 | 7.83 | ±1.53 | |
Post-stimulation | Severe | - | - | 9 | 11.96 | ±2.91 | |
Moderate | 3 | 7.35 | ±3.06 | 23 | 9.95 | ±2.09 | |
Mild | 19 | 3.8 | ±1.72 | 3 | 7.67 | ±1.33 | |
Absent | 12 | 4.2 | ±1.03 | - | - | ||
NLR ratio | |||||||
Pre-stimulation | Severe | 9 | 3.17 | ±1.53 | 9 | 2.92 | ±0.65 |
Moderate | 21 | 3.01 | ±1.1 | 23 | 2.87 | ±0.32 | |
Mild | 4 | 2.58 | ±0.94 | 3 | 2.62 | ±0.47 | |
Post-stimulation | Severe | - | - | 3 | 2.98 | ±0.73 | |
Moderate | 3 | 1.97 | ±0.85 | 23 | 2.83 | ±0.30 | |
Mild | 19 | 1.7 | ±0.46 | 3 | 2.54 | ±0.45 | |
Absent | 12 | 2.39 | ±1.28 | - | - | ||
LMR ratio | |||||||
Pre-stimulation | Severe | 9 | 4.82 | ±0.63 | 9 | 4.99 | ±0.31 |
Moderate | 21 | 4.24 | ±0.31 | 23 | 4.62 | ±1.47 | |
Mild | 4 | 3.96 | ±1.17 | 3 | 4.44 | ±0.30 | |
Post-stimulation | Severe | - | - | 9 | 4.99 | ±0.57 | |
Moderate | 3 | 3.75 | ±0.36 | 23 | 4.31 | ±0.27 | |
Mild | 19 | 3.11 | ±0.71 | 3 | 4.36 | ±0.27 | |
Absent | 12 | 3.72 | ±1.06 | - | - | ||
PLR ratio | |||||||
Pre-stimulation | Severe | 9 | 114.74 | ±19.79 | 9 | 130.37 | ±19.27 |
Moderate | 21 | 121.87 | ±20.83 | 23 | 134.82 | ±9.31 | |
Mild | 4 | 131.76 | ±3.56 | 3 | 142.08 | ±1.95 | |
Post-stimulation | Severe | - | - | 9 | 132.66 | ±18.08 | |
Moderate | 3 | 154.50 | ±26.07 | 23 | 134.57 | ±8.16 | |
Mild | 19 | 158.37 | ±3.56 | 3 | 140.99 | ±1.84 | |
Absent | 12 | 153.61 | ±31.31 | - | - | ||
Serum Transferrin | |||||||
Pre-stimulation | Severe | 9 | 174.66 | ±43.14 | 9 | 174.55 | ±10.51 |
Moderate | 21 | 184.96 | ±32.01 | 23 | 184.34 | ±10.09 | |
Mild | 4 | 196.60 | ±17.53 | 3 | 211.66 | ±21.50 | |
Post-stimulation | Severe | - | - | 9 | 174.11 | ±9.08 | |
Moderate | 3 | 248.66 | ±68.82 | 23 | 182.39 | ±11.05 | |
Mild | 19 | 252.01 | ±42.32 | 3 | 217.33 | ±38.07 | |
Absent | 12 | 232.25 | ±35.53 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Padilla, Á.; Morales-Martín, G.; Pérez-Quintero, R.; Gómez-Salgado, J.; Ruiz-Frutos, C. Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics. Biomolecules 2021, 11, 684. https://doi.org/10.3390/biom11050684
Rodríguez-Padilla Á, Morales-Martín G, Pérez-Quintero R, Gómez-Salgado J, Ruiz-Frutos C. Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics. Biomolecules. 2021; 11(5):684. https://doi.org/10.3390/biom11050684
Chicago/Turabian StyleRodríguez-Padilla, Ángela, Germán Morales-Martín, Rocío Pérez-Quintero, Juan Gómez-Salgado, and Carlos Ruiz-Frutos. 2021. "Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics" Biomolecules 11, no. 5: 684. https://doi.org/10.3390/biom11050684
APA StyleRodríguez-Padilla, Á., Morales-Martín, G., Pérez-Quintero, R., Gómez-Salgado, J., & Ruiz-Frutos, C. (2021). Serological Biomarkers and Diversion Colitis: Changes after Stimulation with Probiotics. Biomolecules, 11(5), 684. https://doi.org/10.3390/biom11050684