Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Essential Oil
2.3. Gas Chromatography
2.4. Gas Chromatography-Mass Spectrometry
2.5. Reversal of Multidrug Resistance of Tumor Cells on L5178 Mouse T-Cell Lymphoma (Transfected with Human MDR1 Gene) by Essential Oils
2.6. Antibacterial Activity of Essential Oils Isolated from Leaves, Stems, and Flowers of Montanoa quadrangularis
Antimicrobial Method
2.7. Statistical Analysis
3. Results and Discussions
3.1. Reversal of Multidrug Resistance of Tumor Cells on L5178 Mouse T-Cell Lymphoma (Transfected with Human MDR1 Gene) by Essential Oils
3.2. Antibacterial Activity of Essential Oils Isolated from Leaves, Stems, and Flowers of Montanoa quadrangularis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herb. Med. 2021, 25, 100405. [Google Scholar] [CrossRef]
- Funk, V.A. The systematics of Montanoa (Asteraceae, Heliantheae). Mem. N. Y. Bot. Garden. 1982, 36, 1–133. [Google Scholar]
- Plovanicha, A.E.; Panerob, J.L. A phylogeny of the ITS and ETS for Montanoa (Asteraceae: Heliantheae). Mol. Phylogenet. Evol. 2004, 31, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Robles-Zepeda, R.E.; Molina-Torres, J.; Lozoya-Gloria, E.; López, M.G. Volatile organic compounds of leaves and flowers of Montanoa tomentosa. Flavour Fragr. J. 2005, 21, 225–227. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crop. Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Badillo, V. Suplemento a la lista de las Asteraceae de Venezuela. Ernstia 2001, 11, 188–190. [Google Scholar]
- Fersain, A. Maravillas vegetales: El Arboloco o pauche. Centro Int. Orgánica 1999, 5, 1–7. [Google Scholar]
- Álvarez, L. Biología, uso y Manejo del Arboloco (Montanoa quadrangularis); Centro Editorial Universidad de Caldas: Manizales, Colombia, 2003. [Google Scholar]
- El-Toumy, S.; Omara, E.; Nada, S.; Bermejo, J. Flavone C-glycosides from Montanoa bipinnatifida stems and evaluation of hepatoprotective activity of extract. J. Med. Plants 2011, 5, 1291–1296. [Google Scholar]
- Carro-Juárez, M.; Lobatón, I.; Benítez, O.; Espíritu, A. Pro-ejaculatory effect of the aqueous crude extract of cihuapatli (Montanoa tomentosa) in spinal male rats. J. Ethnopharmacol. 2006, 106, 111–116. [Google Scholar] [CrossRef]
- Sumalatha, K.; Saravana, K.; Mohana, L. Review on natural aphrodisiac potentials to treat sexual dysfunction. Int. J. Pharm. Ther. 2010, 1, 6–14. [Google Scholar]
- Villa-Ruano, N.; Betancourt-Jiménez, M.G.; Lozoya-Gloria, E. cDNA isolation and gene expression of kaurene oxidase from Montanoa tomentosa (zoapatle). Rev. Latinoam. Química 2010, 38, 81–88. [Google Scholar]
- Villa-Ruano, N.; Betancourt-Jiménez, M.G.; Lozoya-Gloria, E. Biosynthesis of uterotonic diterpenes from Montanoa tomentosa (Zoapatle). J. Plant Physiol. 2009, 166, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Camarena, E.; Sollozo-Dupont, I.; Islas-Preciado, D.; González-Trujano, M.E.; Carro-Juárez, M.; López-Rubalcava, C. Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): Dependence on the endocrine condition. J. Ethnopharmacol. 2019, 241, 112006. [Google Scholar] [CrossRef]
- Braca, A.; Cioffi, G.; Morell, I.; Venturella, F.; Pizza, C.; De Tommasi, N. Two new sesquiterpene lactones from Montanoa tomentosa ssp. microcephala. Planta Med. 2001, 67, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Murillo, R.; Castro, V.; Brecht, V.; Merfort, I. Sesquiterpene lactones from Montanoa hibiscifolia that inhibit the transcription factor NF-κB. J. Nat. Prod. 2004, 67, 622–630. [Google Scholar] [CrossRef]
- González, F.; Hernández-Molina, F.; Rojas-Fermin, L.; Araque, M. Composición química y evaluación in vitro de la actividad antibacteriana del aceite esencial de Montanoa quadrangularis Sch. Bip. ex C. Koch. contra cepas bacterianas de referencia internacional. Ciencia 2015, 23, 14–22. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by GC/MS; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Davies, N. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20 M. phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Gyémánt, N.; Tanaka, M.; Molnár, P.; Deli, J.; Mándoky, L.; Molnár, J. Reversal of multidrug resistance of cancer cells in vitro: Modification of drug resistance by selected carotenoids. Anticancer Res. 2006, 26, 367–374. [Google Scholar]
- Rauf, A.; Uddin, G.; Raza, M.; Ahmad, B.; Jehan, N.; Siddiqui, B.S.; Molnar, J.; Csonka, A.; Szabo, D. Reversal of Multidrug Resistance in Mouse Lymphoma Cells by Extracts and Flavonoids from Pistacia integerrima. Asian Pac. J. Cancer Prev. 2016, 17, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Putri, H.I.; Lauda, F.Y.M. Phytochemical screening and in vitro antibacterial activity of sweet basil leaves (Ocimum basilicum L.) essential oil against Cutibacterium acnes ATCC 11827. AIP Conf. Proc. 2019, 2099, 020007-7. [Google Scholar]
- Khalil, N.; Ashour, M.; Fikry, S.; Singab, N.A.; Salama, O. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J. Pharm. Sci. 2017, xxx, 1–5. [Google Scholar] [CrossRef]
- Pérez-Amador, M.C.; Muñoz, V.; Noyola, A.; García-Jiménez, F. Essential oil and phototoxic compounds in Clibadium surinamense L. and Montanoa grandiflora D.C. (Asteraceae). Int. J. Exp. Bot. 2006, 75, 145–150. [Google Scholar]
- Juliani, H.R.; Karoch, A.R.; Juliani, H.R.; Trippi, V.S.; Zygadlo, J.A. Intraspecific variation in the leaf oils of Lippia junelliana (Mold.). Biochem. Syst. Ecol. 2002, 30, 163–170. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Celiktas, O.Y.; Kocabas, H.E.E.; Bedir, E.; Sukan, V.F.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Viljoen, A.M.; Ozek, T.; Demirici, B.; Baser, H.C. Seasonal and geographical variation of Heteropyxis natalensis essential oil and the effect thereof on the antimicrobial activity. S. Afr. J. Bot. 2007, 73, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Rojas, J.; Morales, A.; Pasquale, S.; Márquez, A.; Rondón, M.; Veres, K.; Máthé, I. Comparative study of the chemical composition of the essential oil of Lippia oreganoides L. collected in two different seasons in Venezuela. Nat. Prod. Commun. 2006, 1, 205–207. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abad, M.J.; Bedoya, L.M.; Bermejo, P. Essential Oils from the Asteraceae Family Active against Multidrug-Resistant Bacteria. Fighting Multidrug Resistance with Herbal Extracts. In Fighting Multidrug Resistance with Herbal Extracts; Rai, M.K., Kon, K.V., Eds.; Elsevier: San Diego, CA, USA, 2013; pp. 205–222. [Google Scholar]
- Dias, H.J.; Vieira, T.M.; Carvalho, C.E.; Aguiar, G.P.; Wakabayashi, K.A.L.; Turatti, I.C.C.; Willrich, G.B.; Groppo, M.; Cunha, W.R.; Martins, C.H.G.; et al. Screening of Selected Plant-Derived Extracts for Their Antimicrobial Activity against Oral Pathogens. Int. J. Complement. Altern. Med. 2017, 6, 00188. [Google Scholar]
- Chiavari-Frederico, M.O.; Barbosa, L.N.; Carvalho dos Santos, I.; Ratti da Silva, G.; Fernandes de Castro, A.; de Campos Bortolucci, W.; Wietzikoski Lovato, E.C. Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLoS ONE 2020, 15, e0227023. [Google Scholar] [CrossRef]
Compounds * | RI | MQF (%) | MQL (%) | MQS (%) |
---|---|---|---|---|
E-3-hexanol | 852 | - | 0.7 | - |
santolina triene | 908 | 1.2 | 0.3 | - |
α-thujene | 927 | 3.1 | 5.2 | 9.2 |
α-pinene | 934 | 1.9 | 1.9 | 4.5 |
Sabinene | 974 | 2.6 | 8.9 | 22.3 |
β-pinene | 978 | 0.8 | 3.5 | 9.9 |
Myrcene | 991 | 13.5 | 26.2 | 13.6 |
p-cymene | 1025 | 0.4 | 0.2 | 0.8 |
limonene + β-phellandrene | 1029 | 27.8 | 16.1 | 12.2 |
1,8-cineol | 1032 | 2.7 | 5.7 | - |
γ-terpinene | 1058 | - | 0.3 | 1.3 |
trans-sabinol | 1140 | 23.5 | 4.8 | 0.8 |
terpin-4-ol | 1178 | 1.3 | 1.1 | 5.8 |
2-methoxy-p-cresol | 1187 | - | - | 0.7 |
α-terpineol | 1192 | 0.4 | 0.6 | - |
β-elemene | 1393 | 1.2 | 0.3 | - |
β-caryophyllene | 1420 | 5.9 | 14.7 | 1.3 |
α-humulene | 1455 | 0.4 | 0.7 | - |
germacrene D | 1482 | 1.8 | 3.2 | 5.7 |
β-selinene | 1487 | 0.7 | - | - |
viridiflorene | 1496 | 0.3 | - | - |
Z-α-bisabolene | 1506 | 0.6 | - | - |
δ-cadinene | 1525 | 0.5 | 0.2 | - |
germacrene B | 1555 | 0.5 | 1.3 | - |
spathulenol | 1578 | - | - | 0.7 |
caryophyllene oxide | 1584 | 1.6 | 1.2 | 3.3 |
khusimone | 1591 | 0.4 | 1.2 | 0.5 |
Guaiol | 1597 | 1.8 | - | - |
Samples | Experiment I. | Experiment II. | ||
---|---|---|---|---|
Verapamil (10 μg/mL) | 3.18 ± 0.02 | 12.81 ± 0.04 | ||
μL/mL | 0.004 | 0.04 | 0.01 | 0.02 |
MQF | 1.06 ± 0.02 b | 1.94 ± 0.0 d | - | 1.24 ± 0.01 c |
MQL | 0.91 ± 0.02 b | 1.67 ± 0.0 c | - | 8.26 ± 0.01 d |
MQS | - | 3.27 ± 0.0 d | 1.93 ± 0.02 b | 2.02 ± 0.01 c |
DMSO K (40 μL/mL) | - | 0.92 ± 0.01 | - | 0.89 ± 0.01 |
Sample V(µL) | S. epidermidis | B. subtilis | P. aeruginosa | E. coli AG 100 | E. coli AG100A | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 5 | 10 | 5 | 10 | 5 | 10 | 5 | 10 | |
MQF | 8 ± 0.1 c | 9 ± 0.06 d | 10 ± 0.1 e | 10 ± 0.2 e | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 7 ± 0.0 b | 10 ± 0.06 e |
MQL | 0 ± 0.0 a | 8 ± 0.1 c | 9 ± 0.1 d | 10 ± 0.06 e | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 7 ± 0.0 b |
MQS | 0 ± 0.0 a | 0 ± 0.0 a | 0 ± 0.0 a | 0 ± 0.0 a | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 a | 10 ± 0.02 e |
Ampicillin® | 10 ± 0.06 | 9 ± 0.1 | 20 ± 0.1 | 11 ± 0.2 | 18 ± 0.1 | |||||
Gentamicin® | 28 ± 0.1 | 22 ± 0.0 | 21 ± 0.1 | 24 ± 0.0 | 21 ± 0.1 |
Sample V (μL) | S. epidermidis | B. subtilis | P. aeruginosa | E. coli AG 100 | E. coli AG100A | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 5 | 10 | 5 | 10 | 5 | 10 | 5 | 10 | |
MQF | 8 ± 0.06 b | 12 ± 0.1 c | 0 ± 0.0 a | 8 ± 0.06 b | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 a | 0 ± 0.0 | 9 ± 0.2 b | 12 ± 0.06 c |
MQL | 0 ± 0.0 | 0 ± 0.0 | 8 ± 0.06 b | 8 ± 0.2 b | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 a | 7 ± 0.1 b | 0 ± 0.0 a | 8 ± 0.05 b |
MQS | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 a | 12 ± 0.06 c |
Ampicillin® | 16 ± 0.06 | 13 ± 0.1 | 20 ± 0.06 | 13 ± 0.0 | 18 ± 0.1 | |||||
Gentamicin® | 35 ± 0.1 | 28 ± 0.1 | 23 ± 0.1 | 20 ± 0.06 | 21 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, J.; Ndong Ntoutoume, G.M.-A.; Martin, P.; Morillo, M. Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela. Biomolecules 2021, 11, 605. https://doi.org/10.3390/biom11040605
Rojas J, Ndong Ntoutoume GM-A, Martin P, Morillo M. Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela. Biomolecules. 2021; 11(4):605. https://doi.org/10.3390/biom11040605
Chicago/Turabian StyleRojas, Janne, Gautier Mark-Arthur Ndong Ntoutoume, Patrick Martin, and Marielba Morillo. 2021. "Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela" Biomolecules 11, no. 4: 605. https://doi.org/10.3390/biom11040605
APA StyleRojas, J., Ndong Ntoutoume, G. M.-A., Martin, P., & Morillo, M. (2021). Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida—Venezuela. Biomolecules, 11(4), 605. https://doi.org/10.3390/biom11040605