Alternative Architecture of the E. coli Chemosensory Array
Abstract
:1. Introduction
2. Methods
2.1. WM4196 Minicell-Producing Strain Culture
2.2. Tilt Series Alignment and Tomographic Reconstruction
2.3. Denoising Tomograms
2.4. Chemosensory Array Baseplate Segmentation and Visualisation
2.5. Molecular Modelling
3. Results and Discussion
3.1. A Pseudo-p6 Symmetric Array Architecture Does Not Adequately Describe All Experimental Observations
3.2. Molecular Models of p2- and p6-Symmetric Array Architectures
3.3. Structure Based-Analysis of Functional Implications of p2 Architecture
3.4. Implications of the Observation of p2-Symmetric Chemosensory Arrays in E. coli
4. Reporting Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falke, J.J.; Piasta, K.N. Architecture and signal transduction mechanism of the bacterial chemosensory array: Progress, controversies, and challenges. Curr. Opin. Struct. Biol. 2014, 29, 85–94. [Google Scholar] [CrossRef]
- Parkinson, J.S.; Hazelbauer, G.L.; Falke, J.J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 2015, 23, 257–266. [Google Scholar] [CrossRef]
- Hazelbauer, G.L.; Falke, J.J.; Parkinson, J.S. Bacterial chemoreceptors: High-performance signaling in networked arrays. Trends Biochem. Sci. 2008, 33, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Laganenka, L.; Colin, R.; Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 2016, 7, 12984. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, G. Chemotaxis control of transient cell aggregation. J. Bacteriol. 2015, 197, 3230–3237. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Bauer, C.E. Chemosensory signaling systems that control bacterial survival. Trends Microbiol. 2014, 22, 389–398. [Google Scholar] [CrossRef]
- Scharf, B.E.; Hynes, M.F.; Alexandre, G.M. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol. Biol. 2016, 90, 549–559. [Google Scholar] [CrossRef]
- Gotoh, Y.; Eguchi, Y.; Watanabe, T.; Okamoto, S.; Doi, A.; Utsumi, R. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol. 2010, 13, 232–239. [Google Scholar] [CrossRef]
- Johnson, K.S.; Ottemann, K.M. Colonization, localization, and inflammation: The roles of H. pylori chemotaxis in vivo. Curr. Opin. Microbiol. 2018, 41, 51–57. [Google Scholar] [CrossRef]
- Matilla, M.A.; Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 2018, 42. [Google Scholar] [CrossRef]
- Weis, R.M.; Hirai, T.; Chalah, A.; Kessel, M.; Peters, P.J.; Subramaniam, S. Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr. J. Bacteriol. 2003, 185, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Bos, E.; Heymann, J.; Gnaegi, H.; Kessel, M.; Peters, P.J.; Subramaniam, S. Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. J. Microsc. 2004, 216, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Briegel, A. Strukturuntersuchungen an Prokaryonten mit Kryoelektronentomographie. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2005. [Google Scholar]
- Zhang, P.; Khursigara, C.M.; Hartnell, L.M.; Subramaniam, S. Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 2007, 104, 3777–3781. [Google Scholar] [CrossRef] [PubMed]
- Briegel, A.; Ortega, D.R.; Tocheva, E.I.; Wuichet, K.; Li, Z.; Chen, S.; Müller, A.; Iancu, C.V.; Murphy, G.E.; Dobro, M.J.; et al. Universal architecture of bacterial chemoreceptor arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 17181–17186. [Google Scholar] [CrossRef]
- Briegel, A.; Ortega, D.R.; Huang, A.N.; Oikonomou, C.M.; Gunsalus, R.P.; Jensen, G.J. Structural conservation of chemotaxis machinery across Archaea and Bacteria. Environ. Microbiol. Rep. 2015, 7, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Briegel, A. Diversity of bacterial chemosensory arrays. Trends Microbiol. 2020, 28, 68–80. [Google Scholar] [CrossRef]
- Briegel, A.; Li, X.; Bilwes, A.M.; Hughes, K.T.; Jensen, G.J.; Crane, B.R. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 3766–3771. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, B.; Morado, D.R.; Jani, S.; Manson, M.D.; Margolin, W. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc. Natl. Acad. Sci. USA 2012, 109, E1481–E1488. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hazelbauer, G.L. Core unit of chemotaxis signaling complexes. Proc. Natl. Acad. Sci. USA 2011, 108, 9390–9395. [Google Scholar] [CrossRef]
- Li, M.; Khursigara, C.M.; Subramaniam, S.; Hazelbauer, G.L. Chemotaxis kinase CheA is activated by three neighbouring chemoreceptor dimers as effectively as by receptor clusters. Mol. Microbiol. 2010, 79, 677–685. [Google Scholar] [CrossRef]
- Cassidy, C.K.; Himes, B.A.; Alvarez, F.J.; Ma, J.; Zhao, G.; Perilla, J.R.; Schulten, K.; Zhang, P. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. eLife 2015, 4, 1–20. [Google Scholar] [CrossRef]
- Burt, A.; Cassidy, C.K.; Ames, P.; Bacia-Verloop, M.; Baulard, M.; Huard, K.; Luthey-Schulten, Z.; Desfosses, A.; Stansfeld, P.J.; Margolin, W.; et al. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Cassidy, C.K.; Himes, B.A.; Sun, D.; Ma, J.; Zhao, G.; Parkinson, J.S.; Stansfeld, P.J.; Luthey-Schulten, Z.; Zhang, P. Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun. Biol. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Yang, W.; Cassidy, C.K.; Ames, P.; Diebolder, C.A.; Schulten, K.; Luthey-Schulten, Z.; Parkinson, J.S.; Briegel, A. In Situ conformational changes of the Escherichia coli serine chemoreceptor in different signaling states. mBio 2019, 10, e00973-19. [Google Scholar] [CrossRef]
- Muok, A.R.; Briegel, A.; Crane, B.R. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183030. [Google Scholar] [CrossRef] [PubMed]
- Briegel, A.; Ladinsky, M.S.; Oikonomou, C.; Jones, C.W.; Harris, M.J.; Fowler, D.J.; Chang, Y.W.; Thompson, L.K.; Armitage, J.P.; Jensen, G.J. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. Elife 2014, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Khursigara, C.M.; Wu, X.; Subramaniam, S. Chemoreceptors in Caulobacter crescentus: Trimers of receptor dimers in a partially ordered hexagonally packed array. J. Bacteriol. 2008, 190, 6805–6810. [Google Scholar] [CrossRef] [PubMed]
- Tegunov, D.; Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 2019, 16, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning image restoration without clean data. In Proceedings of the 35th International Conference on Machine Learning, Stockholm Sweden, 10–15 July 2018. [Google Scholar]
- Buchholz, T.-O.; Jordan, M.; Pigino, G.; Jug, F. Cryo-CARE: Content-aware image restoration for cryo-transmission electron microscopy data. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Castaño-Díez, D.; Kudryashev, M.; Arheit, M.; Stahlberg, H. Dynamo: A flexible, user-friendly development tool for sub-tomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 2012, 178, 139–151. [Google Scholar] [CrossRef]
- Mo, G.; Zhou, H.; Kawamura, T.; Dahlquist, F.W. Solution structure of a complex of the histidine autokinase chea with its substrate CheY. Biochemistry 2012, 51, 3786–3798. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Briegel, A.; Wong, M.L.; Hodges, H.L.; Oikonomou, C.M.; Piasta, K.N.; Harris, M.J.; Fowler, D.J.; Thompson, L.K.; Falke, J.J.; Kiessling, L.L.; et al. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 2014, 53, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Briegel, A.; Ames, P.; Gumbart, J.C.; Oikonomou, C.M.; Parkinson, J.S.; Jensen, G.J. The mobility of two kinase domains in the escherichia coli chemoreceptor array varies with signalling state. Mol. Microbiol. 2013, 89, 831–841. [Google Scholar] [CrossRef]
- Fu, X.; Himes, B.A.; Ke, D.; Rice, W.J.; Ning, J.; Zhang, P. Controlled bacterial lysis for electron tomography of native cell membranes. Structure 2014, 22, 1875–1882. [Google Scholar] [CrossRef]
- Wietrzynski, W.; Schaffer, M.; Tegunov, D.; Albert, S.; Kanazawa, A.; Plitzko, J.M.; Baumeister, W.; Engel, B.D. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. Elife 2020, 9, e53740. [Google Scholar] [CrossRef]
- Natale, A.M.; Duplantis, J.L.; Piasta, K.N.; Falke, J.J. Structure, function, and on–off switching of a core unit contact between CheA kinase and CheW adaptor protein in the bacterial chemosensory array: A disulfide mapping and mutagenesis study. Biochemistry 2013, 52, 7753–7765. [Google Scholar] [CrossRef]
- Piñas, G.E.; Frank, V.; Vaknin, A.; Parkinson, J.S. The source of high signal cooperativity in bacterial chemosensory arrays. Proc. Natl. Acad. Sci. USA 2016, 113, 3335–3340. [Google Scholar] [CrossRef]
- Frank, V.; Piñas, G.E.; Cohen, H.; Parkinson, J.S.; Vaknin, A. Networked chemoreceptors benefit bacterial chemotaxis performance. mBio 2016, 7, e01824-16. [Google Scholar] [CrossRef]
- Li, M.; Hazelbauer, G.L. Selective allosteric coupling in core chemotaxis signaling complexes. Proc. Natl. Acad. Sci. USA 2014, 111, 15940–15945. [Google Scholar] [CrossRef]
- Keegstra, J.M.; Kamino, K.; Anquez, F.; Lazova, M.D.; Emonet, T.; Shimizu, T.S. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. Elife 2017, 6, e27455. [Google Scholar] [CrossRef] [PubMed]
- Muok, A.R.; Ortega, D.R.; Kurniyati, K.; Yang, W.; Maschmann, Z.A.; Mabrouk, A.S.; Li, C.; Crane, B.R.; Briegel, A. Atypical chemoreceptor arrays accommodate high membrane curvature. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Erbse, A.H.; Falke, J.J. The core signaling proteins of bacterial chemotaxis assemble to form an ultrastable complex. Biochemistry 2009, 48, 6975–6987. [Google Scholar] [CrossRef] [PubMed]
- Piasta, K.N.; Falke, J.J. Increasing and decreasing the ultrastability of bacterial chemotaxis core signaling complexes by modifying protein−protein contacts. Biochemistry 2014, 53, 5592–5600. [Google Scholar] [CrossRef]
- Schulmeister, S.; Ruttorf, M.; Thiem, S.; Kentner, D.; Lebiedz, D.; Sourjik, V. Protein exchange dynamics at chemoreceptor clusters in Escherichia coli. Proc. Natl. Acad. Sci. USA 2008, 105, 6403–6408. [Google Scholar] [CrossRef] [PubMed]
- Slivka, P.F.; Falke, J.J. Isolated bacterial chemosensory array possesses quasi- and ultrastable components: Functional links between array stability, cooperativity, and order. Biochemistry 2012, 51, 10218–10228. [Google Scholar] [CrossRef]
- Sleytr, U.B.; Beveridge, T.J. Bacterial S-layers. Trends Microbiol. 1999, 7, 253–260. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burt, A.; Cassidy, C.K.; Stansfeld, P.J.; Gutsche, I. Alternative Architecture of the E. coli Chemosensory Array. Biomolecules 2021, 11, 495. https://doi.org/10.3390/biom11040495
Burt A, Cassidy CK, Stansfeld PJ, Gutsche I. Alternative Architecture of the E. coli Chemosensory Array. Biomolecules. 2021; 11(4):495. https://doi.org/10.3390/biom11040495
Chicago/Turabian StyleBurt, Alister, C. Keith Cassidy, Phillip J. Stansfeld, and Irina Gutsche. 2021. "Alternative Architecture of the E. coli Chemosensory Array" Biomolecules 11, no. 4: 495. https://doi.org/10.3390/biom11040495
APA StyleBurt, A., Cassidy, C. K., Stansfeld, P. J., & Gutsche, I. (2021). Alternative Architecture of the E. coli Chemosensory Array. Biomolecules, 11(4), 495. https://doi.org/10.3390/biom11040495