In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes
Abstract
:Highlights
1. The Impact of T2DM
2. T2DM Medicines
3. Polyphenols & Plant Families
3.1. Euphorbia thymifolia Linn. (E. thymifolia)
3.2. Bignoniaceae
3.3. Ericaceae
3.4. Dryopteridaceae
3.5. Campanulaceae
3.6. Geraniaceae
3.7. Rubiaceae
3.8. Acanthaceae
3.9. Rutaceae
3.10. Moracea
4. Potential Polyphenols of 10 Plant Families with Regulation of α-Glucosidase and α-Amylase Activity
5. In Silico Approaches
5.1. Docking
5.2. Pharmacophore Models
5.3. QSAR Model
6. Comparing In Vitro (Enzymatic, Cellular) and In Vivo Advantages and Disadvantages of In Silico Modeling Applications in T2DM)
7. Perspectives of In Silico Modelling for Discovery and Development of Anti-Diabetes Drugs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sindhu, S.N.; Vaibhavi, K.; Anshu, M. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Wang, B.; Liu, H.C.; Hong, J.R.; Li, H.G.; Huang, C.Y. Effect of Psidium guajava leaf extract on alpha-glucosidase activity in small intestine of diabetic mouse. Sichuan Da Xue Xue Bao Yi Xue Ban 2007, 38, 298–301. [Google Scholar]
- American Diabetes Association. Standards of Medical Care in Diabetes—2010. Diabetes Care 2010, 33 (Suppl. 1), S11–S61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016; pp. 1–88. [Google Scholar]
- Suganthi, A. Anti Diabetic Plants-Overview. Curr. Res. Diabetes Obes. J. 2018, 7, 555720. [Google Scholar] [CrossRef] [Green Version]
- IDF. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem. 2018, 152, 436–488. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, M.S.; Shah, S.B.; Rasheed, T.; Iqbal, H.M.N. Diabetic Complications and Insight into Antidiabetic Potentialities of Ethno- Medicinal Plants: A Review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Hegde, P.K.; Rao, H.A.; Rao, P.N. A review on Insulin plant (Costus igneus Nak). Pharm. Rev. 2014, 8, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Ellappan, T.; Balasubramaian, P.; Chidambaram, K.; Subhash, C.M. α-Glucosidase and α-Amylase Inhibitory Activity of Senna surattensis. J. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar]
- Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr. Rev. 1998, 19, 477–490. [Google Scholar] [CrossRef]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Wilke, T.; Boettger, B.; Berg, B.; Groth, A.; Mueller, S.; Botteman, M.; Yu, S.; Fuchs, A.; Maywald, U. Epidemiology of urinary tract infections in type 2 diabetes mellitus patients: An analysis based on a large sample of 456,586 German T2DM patients. J. Diabetes Complicat. 2015, 29, 1015–1023. [Google Scholar] [CrossRef]
- Saini, V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 2010, 1, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Choo, C.Y.; Sulonga, N.Y.; Mana, F.; Wong, T.W. Vitexin and isovitexin from the Leaves ofFicus deltoideawithin-vivoa-glucosidase inhibition. J. Ethnopharmacol. 2012, 142, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care 2014, 37 (Suppl. 1), S14–S80. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Standards of Medical Care in Diabetes-2016: Summary of Revisions. Diabetes Care 2016, 39 (Suppl. 1), S4–S5. [Google Scholar] [CrossRef] [Green Version]
- Marin-Penalver, J.J.; Martin-Timon, I.; Sevillano-Collantes, C.; Del Canizo-Gomez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Hotta, N. A new perspective on the biguanide, metformin therapy in type 2 diabetes and lactic acidosis. J. Diabetes Investig. 2019, 10, 906–908. [Google Scholar] [CrossRef]
- Adak, T.; Samadi, A.; Unal, A.Z.; Sabuncuoglu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol. 2018, 92, 324–332. [Google Scholar] [CrossRef]
- Pallavi, K.; Antara, B.; Anushka, B.; Ramachandran, M.; Francesca, M.; Surajit, P. An Overview of Dietary Polyphenols and Their Therapeutic Effects. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Ronald, R.W., Victor, R.P., Sherma, Z., Eds.; Elsevier Inc.: London, UK, 2018; Volume 1. [Google Scholar]
- Wahab, A. Difficulties in Treatment and Management of Epilepsy and Challenges in New Drug Development. Pharmaceuticals 2010, 3, 2090–2110. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.L.; Lin, Y.; Bartolome, A.P.; Chen, Y.C.; Chiu, S.C.; Yang, W.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid.-Based Complement. Altern. Med. 2013, 2013, 378657. [Google Scholar] [CrossRef] [PubMed]
- Tricia, S.C.; Jeremy, H.P. Management of Type 2 Diabetes: Selecting amongst Available Pharmacological Agents; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2017. [Google Scholar]
- Bischoff, H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Investig. Med. 1995, 18, 303–311. [Google Scholar]
- Lynn, M. What Is Acarbose (Precose)? Everyday Health, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Kalra, S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014, 5, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Lavalle-Gonzalez, F.J.; Januszewicz, A.; Davidson, J.; Tong, C.; Qiu, R.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: A randomised trial. Diabetologia 2013, 56, 2582–2592. [Google Scholar] [CrossRef] [Green Version]
- Healthline. Sitagliptin, Oral Tablet. 2005. Available online: https://www.healthline.com/health/drugs/sitagliptin-oral-tablet (accessed on 17 October 2021).
- Bilal, O.; Bo, A. Pleiotropic Mechanisms for the Glucose-Lowering Action of DPP-4 Inhibitors. Diabetes 2014, 63, 2196–2202. [Google Scholar] [CrossRef] [Green Version]
- Pathak, R.; Bridgeman, M.B. Dipeptidyl Peptidase-4 (DPP-4) inhibitors In the Management of Diabetes. Pharm. Ther. 2010, 35, 509–513. [Google Scholar]
- Lynn, M. What Are Sulfonylureas? Everyday Health, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236–240. [Google Scholar] [CrossRef]
- Ciudin, A.; Hernandez, C.; Simo, R. Update on cardiovascular safety of PPARgamma agonists and relevance to medicinal chemistry and clinical pharmacology. Curr. Top. Med. Chem. 2012, 12, 585–604. [Google Scholar] [CrossRef]
- Emmanuel, V.O.; Robert, B.; Hélène, G.; Max, F.; Bernard, R.; Steen, G.; Anne, D.; Yannick, L.M.-B.; Aline, K. The insulin receptor kinase. Biochimie 1985, 67, 1119–1124. [Google Scholar] [CrossRef]
- Nolan, M.K.; Jankowska, L.; Prisco, M.; Xu, S.; Guvakova, M.A.; Surmacz, E. Differential roles of IRS-1 and SHC signaling pathways in breast cancer cells. Int. J. Cancer 1997, 72, 828–834. [Google Scholar] [CrossRef]
- Dool, C.J.; Mashhedi, H.; Zakikhani, M.; David, S.; Zhao, Y.; Birman, E.; Carboni, J.M.; Gottardis, M.; Blouin, M.J.; Pollak, M. IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer. Endocr. Relat. Cancer 2011, 18, 699–709. [Google Scholar] [CrossRef]
- Katerina, M.; Shannon, L.P.; Leslie, M.S. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun. Signal. 2009, 7, 14. [Google Scholar]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, D.H.; Carter, W.J.; Warr, W.R.; Williams, L.H. Side effects resulting from the use of growth hormone and insulin-like growth factor-I as combined therapy to frail elderly patients . J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, M183–M187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorzano, A.; Palacin, M.; Guma, A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol. Scand. 2005, 183, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Pulipparacharuvil, S.; Renthal, W.; Hale, C.F.; Taniguchi, M.; Xiao, G.; Kumar, A.; Russo, S.J.; Sikder, D.; Dewey, C.M.; Davis, M.M.; et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 2008, 59, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Madiraju, S.R.; Poitout, V. G protein-coupled receptors and insulin secretion: 119 and counting. Endocrinology 2007, 148, 2598–2600. [Google Scholar] [CrossRef]
- Deborah, H. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017, 30, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, alpha-glucosidase, alpha-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol. 2013, 149, 263–269. [Google Scholar] [CrossRef]
- Grosso, G. Effects of Polyphenol-Rich Foods on Human Health. Nutrients 2018, 10, 1089. [Google Scholar] [CrossRef] [Green Version]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islamic Repub. Iran 2017, 31, 134. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Ahmad, G.; Hossein, F.; Fariba, S.-f.; Mansour, M. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase. Iran. J. Basic Med. Sci. 2008, 11, 1–9. [Google Scholar]
- Mali, P.Y.; Panchal, S.S. A review on phyto-pharmacological potentials of Euphorbia thymifolia L. Anc. Sci. Life 2013, 32, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Deepti, S.; Pragya, S. A Review on Pharmacognostical and pharmacological prospective Euphorbia thymifolia L. Asian J. Pharmaceut. Edu. Res. 2017, 6, 31–39. [Google Scholar]
- Muthumani, D.; Hedina, A.; Kausar, J.; Anand, V. Phytopharmacological activities of Euphorbia thymifolia Linn. Syst. Rev. Pharm. 2016, 7, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Phani, G.K.; Alka, C. Ethnobotanical Observations of Euphorbiaceae Species from Vidarbha region, Maharashtra, India. Ethnobot. Leafl. 2010, 14, 674–680. [Google Scholar]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Cheng, H.Y.; Yang, C.M.; Lin, T.C. Antioxidant and antiviral activities of Euphorbia thymifolia L. J. Biomed. Sci. 2002, 9, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 2010, 67, 113–118. [Google Scholar]
- Franco, R.R.; Ribeiro Zabisky, L.F.; Pires de Lima Júnior, J.; Mota Alves, V.H.; Justino, A.B.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. Antidiabetic effects of Syzygium cumini leaves: A non-hemolytic plant with potential against process of oxidation, glycation, inflammation and digestive enzymes catalysis. J. Ethnopharmacol. 2020, 261, 113132. [Google Scholar] [CrossRef]
- Sabu, M.C.; Kuttan, R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J. Ethanopharmacol. 2002, 81, 155–160. [Google Scholar] [CrossRef]
- Widharna, R.M.; Soemardji, A.A.; Wirasutisna, K.R.; Kardono, L.B.S. Anti Diabetes Mellitus Activity in vivo of Ethanolic Extract and Ethyl Acetate Fraction of Euphorbia hirta L. Herb. Int. J. Pharm. 2010, 6, 231–240. [Google Scholar] [CrossRef]
- Manjur, A.S.; Rayhana, B.; Kolappa, K.P.; Vidhu, A.; Showkat, R.M.; Abuzer, A.; Manju, S. In vitro α-glucosidase and α-amylase inhibition by aqueous, hydroalcoholic, and alcoholic extract of Euphorbia hirta L. Drug Dev. Ther. 2016, 7, 26–30. [Google Scholar]
- Mahomoodally, M.F.; Dall’Acqua, S.; Sinan, K.I.; Sut, S.; Ferrarese, I.; Etienne, O.K.; Sadeer, N.B.; Ak, G.; Zengin, G. Phenolic compounds analysis of three Euphorbia species by LC-DAD-MSn and their biological properties. J. Pharm. Biomed. Anal. 2020, 189, 113477. [Google Scholar] [CrossRef] [PubMed]
- Richard, G.O.; Michelle, L.Z.; Lúcia, G.L.; Susan, O.G.; Andrew, J.E. A molecular phylogeny and classification of bignoniaceae. Am. J. Bot. 2009, 96, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Gentry, A.H. Relationships of the Malagasy Bignoniaceae: A striking case of convergent evolution. Plant Syst. Evol. 1976, 126, 255–256. [Google Scholar] [CrossRef]
- The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 2003, 141, 399–436. [Google Scholar]
- Alonso-Castro, A.J.; Zapata-Bustos, R.; Romo-Yanez, J.; Camarillo-Ledesma, P.; Gomez-Sanchez, M.; Salazar-Olivo, L.A. The antidiabetic plants Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae) and Teucrium cubense Jacq (Lamiaceae) induce the incorporation of glucose in insulin-sensitive and insulin-resistant murine and human adipocytes. J. Ethnopharmacol. 2010, 127, 1–6. [Google Scholar] [CrossRef]
- JOSE, A.P.; JES, U. Health Care Affordability and Complementary and Alternative Medicine Utilization by Adults with Diabetes. Diabetes Care 2007, 30, 2030–2031. [Google Scholar]
- Thomas, J. Elpel’s Web World Pages, Wildflowers-and-Weeds.com, Nov. 2021. Available online: http://www.wildflowers-and-weeds.com/ (accessed on 17 October 2021).
- Chunpeng, W.; Shouran, Z. Acylated Flavonoid from Vaccinium corymbosum (Ericaceae) Flowers with Yeast α-Glucosidase Inhibitory Activity. Trop. J. Pharm. Res. 2013, 12, 549–552. [Google Scholar] [CrossRef]
- Rabia, R.; Zaitoon, I.; Sajid, A.; Muhammad, N.; Muhammad, Y.K.; Jamshed, I. Identification of Highly Potent and Selective α-Glucosidase Inhibitors with Antiglycation Potential, Isolated from Rhododendron arboreum. Rec. Nat. Prod. 2015, 9, 262–266. [Google Scholar]
- Javanmardi, J.; Stushnoff, C.; Locke, E.; Vivanco, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003, 83, 547–550. [Google Scholar] [CrossRef]
- Zhang, L.B.; Zhang, L.; Dong, S.Y.; Sessa, E.B.; Gao, X.F.; Ebihara, A. Molecular circumscription and major evolutionary lineages of the fern genus Dryopteris (Dryopteridaceae). BMC Evol. Biol. 2012, 12, 180. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Ali, Z.; Zhao, J.; Qiao, L.; Lei, H.; Lu, Y.; Khan, L.A. Phytochemical investigation of the rhizomes of Dryopteris crassirhizoma. Phytochem. Lett. 2008, 1, 188–190. [Google Scholar] [CrossRef]
- Proenca, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tome, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. alpha-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. J. Enzyme Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Ma, N.; Zhu, S.; Komatsu, K.; Li, Z.Y.; Fu, W.M. The genus Codonopsis (Campanulaceae): A review of phytochemistry, bioactivity and quality control. J. Nat. Med. 2015, 69, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Govindappa, M. A Review on Role of Plant(s) Extracts and its Phytochemicals for the Management of Diabetes. J. Diabetes Metab. 2015, 6, 565. [Google Scholar] [CrossRef]
- Xu, L.; Wang, W. Chinese Materia Medica: Combination and Application; Fielding, C., Ed.; Donica Publishing: St. Albans, UK, 2002. [Google Scholar]
- Bensky, D.; Clavey, S.; Stoger, E. Chinese Herbal Medicine; Materia Medica; Eastland Press: Seattle, WA, USA, 2004. [Google Scholar]
- Suk, W.J.; Ae, J.H.; Hae, J.H.; Myoung, G.C.; Kwan, S.K.; Si, H.P. α-Glucosidase Inhibitors from the Roots of Codonopsis lanceolata Trautv. Agric. Chem. Biotechnol. 2006, 49, 162–164. [Google Scholar]
- Ikeda, K.; Takahashi, M.; Nishida, M.; Miyauchi, M.; Kizu, H.; Kameda, Y.; Arisawa, M.; Watson, A.A.; Nash, R.J.; Fleet, G.W.; et al. Homonojirimycin analogues and their glucosides from Lobelia sessilifolia and Adenophora spp. (Campanulaceae). Carbohydr. Res. 2000, 323, 73–80. [Google Scholar] [CrossRef]
- Zafar, M.; Khan, H.; Rauf, A.; Khan, A.; Lodhi, M.A. In Silico study of alkaloids as α-glucosidase inhibitors: Hopefor the discovery of effective lead compounds. Front. Endocrinol. 2016, 7, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oner, H.H.; Yildirim, H.; Pirhan, A.F.; Gemici, Y. A new record for the flora of Turkey: Geranium macrorrhizum L., (Geraniaceae). Biol. Div. Conserv. 2010, 3, 151–154. [Google Scholar]
- Didem, Ş.; Mahmut, K.S.; Suna, A.S.; Hilal, Ö.; Hayri, D.; Olov, S. Antioxidant secondary metabolites from Geranium lasiopus Boiss. & Heldr. Nat. Prod. Res. 2012, 26, 1261–1264. [Google Scholar] [CrossRef]
- Hitender, S.; Sunil, K. Management of metabolic syndrome by some herbs ethnic to western Himalayan region of Himachal Pradesh. J. Pharmacogn. Phytochem. 2016, 5, 192–195. [Google Scholar]
- Renda, G.; Sari, S.; Barut, B.; Soral, M.; Liptaj, T.; Korkmaz, B.; Ozel, A.; Erik, I.; Sohretoglu, D. α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Bioorg. Chem. 2018, 81, 545–552. [Google Scholar] [CrossRef]
- Berna, E.; Katrin, B.; Abdul, M.i.; Wulan, Y.; Anastasia, B.; Eva, K.S. Screening of α-Glucosidase Inhibitory Activity from Some Plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. J. Biomed. Biotechnol. 2011, 2012, 281078. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, J.U.; Gandhimathi, R. Hypoglycemic and hyporlipidemic activity of leaves of Gardenia taitensis on streptozotocin induced diabetic rats. Indian J. Pharmaceut. Sci. Res. 2011, 1, 10–14. [Google Scholar]
- Khan, M.F.; Khan, Z.I.; Uddin, M.R.; Rahman, M.S.; Rashid, M.A. In vivo hypoglycemic and alloxan induced antidiabetic activity of Xeromphis uliginosa Retz. Afr. J. Pharm. Pharmacol. 2015, 9, 363–366. [Google Scholar]
- Edet, A.E.; Patrick, E.E.; Olorunfemi, E.A. Hematological parameters of alloxan-induced diabetic rats treated with ethanol extracts and fractions of Nauclea latifolia leaf. Eur. Sci. J. 2015, 9, 203–210. [Google Scholar]
- Sanadhya, I.; Lobo, V.; Bhot, M.; Varghese, J.; Chandra, N. Antidiabetic activity of Anthocephalus indicus A. Rich. fruits in alloxan induced diabetic rats. Int. J. Pharm. Sci. 2013, 5, 519–523. [Google Scholar]
- Rani, S.; Mandave, P.; Khadke, S.; Jagtap, S.; Patil, S.; Kuvalekar, A. Antiglycation, antioxidant and antidiabetic activity of traditional medicinal plant: Rubia cordifolia Linn. for management of hyperglycemic effect. Int. J. Plant Anim. Environ. Sci. 2013, 3, 42–49. [Google Scholar]
- Verónica, J.-S.; Antonio, N.-C.; Manuel, J.-E.; Brenda, A.S. Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of Hamelia patens and its chemical constituents. Pharm. Biol. 2016, 54, 1822–1830. [Google Scholar]
- Nimal, I.V.S.C.; Praveen, P.K.; Christudas, S.; Vajravijayana, S.; Lakshmi, R.S.; Jenifer, S.S.; Agastiana, P. In vitro studies on α-glucosidase inhibition, antioxidant and free radical scavenging activities of Hedyotis biflora L. Food Chem. 2013, 138, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Yessoufou, A.; Gbenou, J.; Grissa, O.; Hichami, A.; Simonin, A.M.; Tabka, Z.; Moudachirou, M.; Moutairou, K.; Khan, N.A. Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: Modulation of T cell proliferation. BMC Complement. Altern. Med. 2013, 13, 77. [Google Scholar] [CrossRef] [Green Version]
- Gidado, A.; Ameh, D.A.; Atawodi, S.E.; Ibrahim, S. Hypoglycaemic activity of Nauclea latifolia Sm. (Rubiaceae) in experimental animals. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theiler, B.A.; Istvanits, S.; Zehl, M.; Marcourt, L.; Urban, E.; Caisa, L.O.; Glasl, S. HPTLC Bioautography Guided Isolation of alpha-Glucosidase Inhibiting Compounds from Justicia secunda Vahl (Acanthaceae). Phytochem. Anal. 2017, 28, 87–92. [Google Scholar] [CrossRef]
- Otaiza, G.R.; Arzola, C.J.; Rodríguez, A.M.C. Plantas Medicinales de la Mesa de Los Indios, Municipio Campo Elías (Estado Mérida, Venezuela). Plantula 2006, 4, 55–67. [Google Scholar]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W. In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19). J. Ethnopharmacol. 2011, 133, 881–887. [Google Scholar] [CrossRef]
- Venkataiah, G.; Ahmed, M.I.; Reddy, D.S.; Rejeena, M. Anti-diabetic activity of Acanthus ilicifolius root extract in alloxan induced diabetic rats. Indo Am. J. Pharm. Sci. 2013, 3, 9007–9012. [Google Scholar]
- Yu, B.C.; Hung, C.R.; Chen, W.C.; Cheng, J.T. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta. Med. 2003, 69, 1075–1079. [Google Scholar]
- Gulati, V.; Gulati, P.; Harding, I.H.; Palombo, E.A. Exploring the anti-diabetic potential of Australian Aboriginal and Indian Ayurvedic plant extracts using cellbased assays. BMC Complement. Altern. Med. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rammohan, S.; Asmawi, M.Z. Inhibition of α-Glucosidase by Andrographis paniculata. Ethanol Extract in Rats. Pharm. Biol. 2006, 44, 600–606. [Google Scholar] [CrossRef]
- Suganya, M.; Zalikha, I.; Qamar, U.A.; Bisha, F.U.; Nik, I.N.Y.; Vikneswari, P.; Faridah, A.; Khozirah, S.; Alfi, K. Identification ofα-glucosidase inhibitors fromClinacanthus nutansleafextract using liquid chromatography-mass spectrometry-basedmetabolomics and protein-ligand interaction with molecular docking. J. Pharm. Anal. 2019, 9, 91–99. [Google Scholar]
- Murugesu, S.; Ibrahim, Z.; Ahmed, Q.U.; Nik Yusoff, N.I.; Uzir, B.F.; Perumal, V.; Abas, F.; Saari, K.; El-Seedi, H.; Khatib, A. Characterization of alpha-Glucosidase Inhibitors from Clinacanthus nutans Lindau Leaves by Gas Chromatography-Mass Spectrometry-Based Metabolomics and Molecular Docking Simulation. Molecules 2018, 23, 2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamokou, J.D.D.; Kuete, V. Rutaceae. Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa: Therapeutic Potential against Metabolic Inflammatory Infectious and Systemic Diseases, Medicinal Spices and Vegetables from Africa; Academic Press: Cambridge, UK, 2017. [Google Scholar]
- Peng, C.H.; Ker, Y.B.; Weng, C.F.; Peng, C.C.; Huang, C.N.; Lin, L.Y.; Peng, R.Y. Insulin secretagogue bioactivity of finger citron fruit (Citrus medica L. var. Sarcodactylis Hort, Rutaceae). J. Agric. Food Chem. 2009, 57, 8812–8819. [Google Scholar] [CrossRef] [PubMed]
- Dilipkumar, E.K.; Janardhana, G.R. Antidiabetic and Regenerative effects of alcoholic corm extract of Nervilia aragoana Gaud. in NIDDM rats. Int. J. Phytomed. 2013, 5, 207–210. [Google Scholar]
- Ojewole, J.A.O. The hypoglycaemic effect of Clausena anisata (Willd) Hook methanolic root extracts in rats. J. Ethnopharmacol. 2002, 81, 231–237. [Google Scholar] [CrossRef]
- Urios, P.; Kassab, I.; Grigorova-Borsos, A.M.; Guillot, R.; Jacolot, P.; Tessier, F.; Peyroux, J.; Sternberg, M. A flavonoid fraction purified from Rutaceae aurantiae (Daflon(R)) inhibiting AGE formation, reduces urinary albumin clearance and corrects hypoalbuminemia in normotensive and hypertensive diabetic rats. Diabetes Res. Clin. Pract. 2014, 105, 373–381. [Google Scholar] [CrossRef]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. alpha-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharm. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Somashekhar, M.; Naira, N.; Basavraj, S. A review on family Moraceae (Mulberry) with a focus on Artocarpus species. World J. Pharm. Pharm. Sci. 2019, 2, 2614–2626. [Google Scholar]
- Mikhail, O.N.; Mutiu, I.K. Antioxidant activity of African Medicinal plants. In Medicinal Plant Research in Africa; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 787–803. [Google Scholar] [CrossRef]
- Paramita, B.; Charitha, T.; Camelia, M. In vitro antidiabetic activities of dioecious White mulberry (Morus alba, Moraceae). FASEB J. 2017, 31, 974. [Google Scholar]
- Gayathri, M.; Kannabiran, K. Antimicrobial activity of Hemidesmus indicus, Ficus bengalensis and Pterocarpus marsupium roxb. Indian J. Pharm. Sci. 2009, 71, 578–581. [Google Scholar]
- Wadood, N.; Wadood, A.; Nisar, M. Effect of Ficus relegiosa on blood glucose and total lipid levels of normal and alloxan diabetic rabbits. J. Ayub. Med. Coll. Abbottabad 2003, 15, 40–42. [Google Scholar]
- Mohammadi, J.; Naik, P.R. The histopathologic effects of Morus alba leaf extract on the pancreas of diabetic rats. Turk. J. Biol. 2012, 36, 211–216. [Google Scholar]
- Tripathi, A.K.; Bhoyar, P.K.; Baheti, J.R. Herbal antidiabetics: A review. Int. J. Res. Pharm. Sci. 2011, 2, 30–37. [Google Scholar]
- Andallu, B.; Suryakantham, V.L.; Srikanthi, B.; Reddy, G.K. Effect of mulberry (Morus indica L.) therapy on plasma and erythrocyte membrane lipids in patients with type 2 diabetes. Clin. Chim. Acta 2001, 314, 47–53. [Google Scholar] [CrossRef]
- Khare, C.P. Indian Herbal Remedies; Springer: Berlin/Heideberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Ayodhya, S.; Kusum, S.; Anjali, S. Hypoglycaemic activity of different extracts of various herbal plants. Int. J. Res. Ayurveda Pharm. 2010, 1, 212–224. [Google Scholar]
- Zhang, B.-w.; Xia Li, W.-l.S.; Yan Xing, Z.-l.X.; Chun-lin, Z.; Yue-sheng, D. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Merino, J.; Sun, Q.; Fito, M.; Salas-Salvado, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxid. Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.N.V.; Ngan, T.; Dat, N.; Ly, L. An in silico study on antidiabetic activity of bioactive compounds in Euphorbia thymifolia Linn. SpringerPlus 2016, 5, 1359. [Google Scholar] [CrossRef] [Green Version]
- El-Beshbishy, H.A.; Bahashwan, S.A. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extractis mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study. Toxicol. Ind. Health 2012, 28, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Zahoor, M.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.E. Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model. Molecules 2020, 26, 137. [Google Scholar] [CrossRef] [PubMed]
- Maria, D.G.-P.; Eisuke, K.; Jun, K. α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria. J. Sci. Food Agric. 2012, 92, 606–609. [Google Scholar]
- Vinholes, J.; Vizzotto, M. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts. Pharmacogn. Res. 2017, 9, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.T.; Chuyen, N.V. Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci. Biotechnol. Biochem. 2007, 71, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.T.; Thu, N.N.; Tien, P.G.; Van Chuyen, N. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci. Vitaminol. 2007, 53, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Mediani, A.; Nur, A.A.H.; Azliana, A.B.S.; Abas, F. Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. Int. Food Res. J. 2014, 21, 379–386. [Google Scholar]
- Thamilvaani, M.; Ling, L.T.; David, A.; Cheng, H.M.; Theanmalar, M.; Uma, D.P. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chem. 2011, 129, 1355–1361. [Google Scholar]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.W.; Vennos, C. Bioactive Phenolics of the Genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS Profile of the Siberian Species and Their Inhibitory Potential against alpha-Amylase and alpha-Glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Hafiz, A.K. Pharmacognostic, physicochemical, phytochemical and pharmacological studies on Careya arborea Roxb.; A review. J. Phytopharm. 2016, 5, 27–34. [Google Scholar]
- Supkamonseni, N.; Thinkratok, A.; Meksuriyen, D.; Srisawat, R. Hypolipidemic and hypoglycemic effects of Centella asiatica (L.) extract in vitro and in vivo. Indian J. Exp. Biol. 2014, 52, 965–971. [Google Scholar] [PubMed]
- Tabarak, M.; Devendra, K.P.; Priyanka, R.; Annie, O. Evaluation of Phytochemicals, Antioxidant, Antibacterial and Antidiabetic Potential of Alpinia galanga and Eryngium foetidum Plants of Manipur (India). Pharmacogn. J. 2016, 8, 459–464. [Google Scholar]
- Mohamed, S.; Hanen, L.; Jannet, K.; Ali, K.; Mohamed, D. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants. Int. J. Food Sci. Nutr. 2017, 68, 313–320. [Google Scholar]
- Brindis, F.; Rodriguez, R.; Bye, R.; Gonzalez-Andrade, M.; Mata, R. (Z)-3-butylidenephthalide from Ligusticum porteri, an alpha-glucosidase inhibitor. J. Nat. Prod. 2011, 74, 314–320. [Google Scholar] [CrossRef]
- Manaharan, T.; Palanisamy, U.D.; Ming, C.H. Tropical plant extracts as potential antihyperglycemic agents. Molecules 2012, 17, 5915–5923. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Chen, M.; Liu, F.; Han, C.; Kong, L.; Luo, J. A strategy for screening of alpha-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Talanta 2018, 180, 337–345. [Google Scholar] [CrossRef]
- Shizuo, T. Antioxidative Effects of Polyphenols in Leaves of Houttuynia cordata on Protein Fragmentation by Copper–Hydrogen Peroxide In Vitro. J. Med. Food 2005, 8, 266–268. [Google Scholar] [CrossRef]
- Muhammad, T.; Nor, H.I.; Syahrul, I.; Abdul, W.; Fazal, R.; Muhammad, A.; Ashfaq, U.R. Novel quinoline derivatives as potentin vitro α-glucosidase inhibitors: In silico studies and SAR predictions. Med. Chem. Commun. 2015, 6, 1826–1836. [Google Scholar] [CrossRef]
- Mata, R.; Cristians, S.; Escandon-Rivera, S.; Juarez-Reyes, K.; Rivero-Cruz, I. Mexican antidiabetic herbs: Valuable sources of inhibitors of alpha-glucosidases. J. Nat. Prod. 2013, 76, 468–483. [Google Scholar] [CrossRef]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet. Sci. 2017, 4, 237. [Google Scholar] [CrossRef]
- Tae, J.H.; Jin, H.L.; Myoung-Hee, L.; Byeong, W.L.; Hyun, S.K.; Chang-Hwan, P.; Kang-Bo, S.; Hyun-Tae, K.; In-Youl, B.; Dae, S.J. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities againsta-glucosidaseand aldose reductase. Food Chem. 2012, 135, 1397–1403. [Google Scholar]
- Koga, K.; Shibata, H.; Yoshino, K.; Nomoto, K. Effects of 50% Ethanol Extract from Rosemary (Rosmarinus officinalis) on α-Glucosidase Inhibitory Activity and the Elevation of Plasma Glucose Level in Rats, and Its Active Compound. J. Food Sci. 2006, 71, S507–S512. [Google Scholar] [CrossRef]
- Gholamhoseinian, N.A.; Fallah, H.; Sharififar, F. Anti-hyperglycemic Activity of Four Plants Extracts Effective against Alpha Glucosidase in Normal and Diabetic Rats. J. Kerman Univ. Med Sci. 2015, 15, 35–44. [Google Scholar]
- Kamrani, Y.Y.; Amanlou, M.; Yazdanyar, A.; Adli, A.; Moghaddam, A.; Ebrahimi, S.N. Potential anti-diabetic and anti-oxidant activity of essential oil of Zataria multiflora leaves. Planta Med. 2008, 74, PA172. [Google Scholar] [CrossRef]
- Xiaoling, Z.; Junsheng, L.; Yi, Z.; Huading, Z.; Ying, G.; Shuyun, S. Separation and purification of α-glucosidase inhibitors from Polygonatum odoratum by stepwise high-speed counter-current chromatography combined with Sephadex LH-20 chromatography target-guided by ultrafiltration–HPLC screening. J. Chromatogr. B 2015, 985, 149–154. [Google Scholar]
- Sarah, Z.N.; Meiliza, E.; Lia, A.; Rani, S.; Berna, E. Pharmacognostical and Phytochemical Evaluation Leaves Extract of Garcinia daedalanthera Pierre. J. Young Pharm. 2017, 9, S60–S64. [Google Scholar] [CrossRef] [Green Version]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological effects of rosa damascena. Iran J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar] [PubMed]
- Kasabri, V.; Afifi, F.U.; Hamdan, I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J. Ethnopharmacol. 2011, 133, 888–896. [Google Scholar] [CrossRef]
- Aboozar, M.F.; Shideh, M.K.; Saeed, M. Vaccinium arctostaphylos, a common herbal medicine in Iran: Molecular andbiochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J. Ethnopharmacol. 2011, 133, 67–74. [Google Scholar]
- Khan, M.; Ali, M.; Ali, A.; Mir, S.R. Hypoglycemic and hypolipidemic activities of Arabic and Indian origin Salvadora persica root extract on diabetic rats with histopathology of their pancreas. Int. J. Health Sci. 2014, 8, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Srividya, A.R.; Dhanabal, S.P.; Kumar, M.N.S.; Bavadia, P.k.H. Antioxidant and Antidiabetic Activity of Alpinia Galanga. Int. J. Pharmacogn. Phytochem. Res. 2010, 3, 6–12. [Google Scholar]
- Liu, X.C.; Lai, D.; Liu, Q.Z.; Zhou, L.; Liu, Q.; Liu, Z.L. Bioactivities of a New Pyrrolidine Alkaloid from the Root Barks of Orixa japonica. Molecules 2016, 21, 1665. [Google Scholar] [CrossRef] [Green Version]
- Mauldina, M.G.; Sauriasari, R.; Elya, B. α-Glucosidase Inhibitory Activity from Ethyl Acetate Extract of Antidesma bunius (L.) Spreng Stem Bark Containing Triterpenoids. Pharmacogn. Mag. 2017, 13, 590–594. [Google Scholar] [CrossRef]
- Ali, H.; Houghton, P.J.; Soumyanath, A. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 2006, 107, 449–455. [Google Scholar] [CrossRef]
- Lawag, I.L.; Aguinaldo, A.M.; Naheed, S.; Mosihuzzaman, M. Alpha-Glucosidase inhibitory activity of selected Philippine plants. J. Ethnopharmacol. 2012, 144, 217–219. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, J.T.; Zheng, C.J.; Zhou, X.; Yu, Z.X.; Li, W.S.; Chen, G.Y.; Zhu, G.Y. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22. Fitoterapia 2021, 149, 104823. [Google Scholar] [CrossRef] [PubMed]
- Rege, A.A.; Chowdhary, A.S. Evaluation of alpha-Amylase and alpha-Glucosidase Inhibitory Activities of Rhizophora Mucronata. IJPSR 2014, 5, 2261–2265. [Google Scholar]
- Chai, T.-T.C.; Loo-Yew, Y.; Nor, I.; Mohd, I.; Hean-Chooi, O.; Fazilah, A.M.; Fai-Chu, W. Evaluation of Glucosidase Inhibitory and Cytotoxic Potential of Five Selected Edible and Medicinal Ferns. Trop. J. Pharm. Res. 2015, 14, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Escandon-Rivera, S.; Gonzalez-Andrade, M.; Bye, R.; Linares, E.; Navarrete, A.; Mata, R. alpha-glucosidase inhibitors from Brickellia cavanillesii. J. Nat. Prod. 2012, 75, 968–974. [Google Scholar] [CrossRef]
- Yan, X.; Jian, Z.; Xiang, L.; Jian-wei, C. Antihyperglycemic Effect of Various Fractions from Residues of Blumea balsamifera. CHM 2014, 6, 136–139. [Google Scholar]
- Gladis, R.; Malar, C.; Chellaram, C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz. J. Pharm. Sci. 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Zhang, L.; Moro, A.; Chen, M.C.; Harris, D.M.; Eibl, G.; Go, V.L. Detection of baicalin metabolites baicalein and oroxylin-a in mouse pancreas and pancreatic xenografts. Pancreas 2012, 41, 571–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Yuyu, Z.; Tingting, Z.; Hua, Z.; Xiaosong, H.; Quanhong, L. A preliminary study of monosaccharide composition and a-glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbita moschata) fruit. Int. J. Food Sci. Technol. 2011, 47, 357–361. [Google Scholar] [CrossRef]
- Umar, L.; Khozirah, S.; Intan, S.I.; Alfi, K.; Faridah, A. Antioxidant and α-Glucosidase Inhibitory Activities of Isolated Compounds from Ipomoea aquatica Rec. Nat. Prod. 2016, 10, 701–707. [Google Scholar]
- Zhang, L.; Tu, Z.C.; Yuan, T.; Wang, H.; Xie, X.; Fu, Z.F. Antioxidants and alpha-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem. 2016, 208, 61–67. [Google Scholar] [CrossRef]
- Marta, K.-S.; Agnieszka, S.; Halina, E. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress). Fitoterapia 2018, 129, 283–292. [Google Scholar]
- Ping, J.; Jia, X.; Fei, W.; Mary, H.G.; Mary, A.; Rui, X. α-Amylase and α-Glucosidase Inhibitory Activities of Phenolic Extracts from Eucalyptus grandis × E. urophylla Bark. J. Chem. 2017, 2017, 8516964. [Google Scholar] [CrossRef]
- Thamilvaani, M.; Cheng, H.M.; Uma, D.P. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem. 2013, 136, 354–363. [Google Scholar]
- Shinde, J.; Taldone, T.; Barletta, M.; Kunaparaju, N.; Hu, B.; Kumar, S.; Placido, J.; William Zito, S. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kenel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr. Res. 2008, 343, 1278–1281. [Google Scholar] [CrossRef]
- Ryu, H.W.; Cho, J.K.; Curtis-Long, M.J.; Yuk, H.J.; Kim, Y.S.; Jung, S.; Kim, Y.S.; Lee, B.W.; Park, K.H. alpha-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 2011, 72, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Uma, D.P.; Lai, T.L.; Thamilvaani, M.; David, A. Rapid isolation of geraniin fromNephelium lappaceumrind wasteand its anti-hyperglycemic activity. Food Chem. 2011, 127, 21–27. [Google Scholar]
- Hoda, K. Isolation and Characterization of Natural α-Glucosidase Inhibitors from Antioxidant Rich Red Wine Grapes (Vitis vinifera); Wayne State University: Detroit, MI, USA, 2014. [Google Scholar]
- Imad, I.H.; Fatma, U.A. Screening of Jordanian Flora for α-Amylase Inhibitory Acivity. Pharm. Biol. 2008, 46, 746–750. [Google Scholar] [CrossRef]
- Manuela, M.; Monica, S.; Antonio, F.; Cinzia, S.; Luca, C.; Fabiana, A.; Francesca, B.; Ferruccio, P. Phytochemical profile and α-glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum hircinum. Fitoterapia 2017, 120, 184–193. [Google Scholar]
- Mrabti, H.N.; Jaradat, N.; Fichtali, I.; Ouedrhiri, W.; Jodeh, S.; Ayesh, S.; Cherrah, Y.; Faouzi, M.E.A. Separation, Identification, and Antidiabetic Activity of Catechin Isolated from Arbutus unedo L. Plant Roots. Plants 2018, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, In Vitro alpha-Glucosidase Inhibitory Activity and Molecular Docking Studies of Novel Benzothiazole-Triazole Derivatives. Molecules 2017, 22, 1555. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Su, P.J.; Li, B.; Zhan, X.Q.; Qi, F.M.; Lv, C.W.; Hu, F.D.; Gao, K.; Zhang, Z.X.; Fei, D.Q. Two new aromatic derivatives from Codonopsis pilosula and their α-glucosidase inhibitory activities. Nat. Prod. Res. 2021, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Li, X.; Chen, X.; Ye, X.; Huang, J.; Jin, Y.; Li, P.; Deng, Y.; Jin, Q.; Shi, Q.; et al. Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J. Ethnopharmacol. 2011, 137, 1135–1142. [Google Scholar] [CrossRef]
- Numonov, S.; Edirs, S.; Bobakulov, K.; Qureshi, M.N.; Bozorov, K.; Sharopov, F.; Setzer, W.N.; Zhao, H.; Habasi, M.; Sharofova, M.; et al. Evaluation of the antidiabetic activity and chemical composition of Geranium collinum root extracts-computational and experimental investigations. Molecules 2017, 22, 983. [Google Scholar] [CrossRef]
- Amin, S.; Ullah, B.; Ali, M.; Rauf, A.; Khan, H.; Uriarte, E.; Sobarzo-Sanchez, E. Potent in Vitro alpha-Glucosidase Inhibition of Secondary Metabolites Derived from Dryopteris cycadina. Molecules 2019, 24, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmatullah, M.; Azam, N.K.; Khatun, Z.; Seraj, S.; Islam, F.; Rahman, A.; Jahan, S.; Aziz, S. Medicinal plants used for treatment of diabetes by the marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berna, E.; Rosita, H.; Rani, S.; Azizahwati, U.S.H.; Idam, T.P.; Yunita, I.P. Antidiabetic Activity and Phytochemical Screening of Extracts from Indonesian Plants by Inhibition of Alpha Amylase, Alpha Glucosidase and Dipeptidyl Peptidase IV. Pak. J. Biol. Sci. 2015, 18, 279–284. [Google Scholar]
- Maha, M.E.D.; Haytham, A.A. Molecular Investigation of anti-diabetic effect of balanites aegyptiaca fruits in streptozotocin-induced diabetic rats. Slov. Vet. Res. 2018, 55, 137–145. [Google Scholar] [CrossRef]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D. alpha-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingrid, F.; Matthias, F.M.F. Traditionally used plants in diabetes therapy—Phytotherapeutics as inhibitors of α-amylase activity. J. Pharmacogn. 2006, 16, 1–5. [Google Scholar]
- Bhutkar, M.A.; Bhise, S.B. In vitro assay of alpha amylase inhibitory activity of some indigenous plants. Int. J. Chem. Sci. 2012, 10, 457–462. [Google Scholar]
- Muthukumar, A.; Mohan, S.; Sundharaganapathy, R.; Nagaraja, G.P. Anti-diabetic activity of Cassia auriculata flowers in α- amylase inhibition and glucose uptake by isolated rat hemi-diaphragm. Sch. Res. Libr. Pharm. Lett. 2016, 8, 101–105. [Google Scholar]
- Omonike, O.O.; Latifat, O.A.; Oyindamola, O.A.; Edith, O.A. Alpha-amylase Inhibition and Brine Shrimp Lethality Activities of Nine Medicinal Plant Extracts from South-West Nigerian Ethnomedicine. J. Herbs Spices Med. Plants 2016, 22, 319–326. [Google Scholar] [CrossRef]
- Patrick, P.M.; Kalidas, S. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr. 2004, 13, 101–106. [Google Scholar]
- Najafian, M. A review ofα-amylase inhibitors on weight loss and glycemiccontrol in pathological state such as obesity and diabetes. Comp. Clin. Phothol. 2016, 25, 1253–1264. [Google Scholar]
- Usune, E.; Ana, L.d.l.G.; Javier, C.; Alfredo, J.M.; Fermin, I.M. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets 2012, 16, 269–297. [Google Scholar]
- Tran, T.H.H.; Nguyen, H.D.; Nguyen, T.D. α-Amylase and α-Glucosidase Inhibitory Saponins from Polyscias fruticosa Leaves. J. Chem. 2016, 2016, 2082946. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.A.; Imad, H.H. In Vitro Anti-diabetic Properties of Methanolic Extract of Thymus vulgaris Using α-glucosidase and α-amylase Inhibition Assay and Determination of its Bioactive Chemical Compounds. Indian J. Public Health Res. Dev. 2018, 9, 388–392. [Google Scholar] [CrossRef]
- Mohammed, A.I.; Neil, A.K.; Shahidul, I. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (a-glucosidase and a-amylase) by Khaya senegalensis. Acta Pharm. 2014, 64, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Rituparna, C.; Bhavtaran, S.; Prakrith, V.; Lalthanzama, V.; Kavitha, T. Screening of nine herbal plants for in vitroa-amylase inhibition. Asian J. Pharm. Clin. Res. 2014, 7, 84–89. [Google Scholar]
- Arpagaus, S.; Braendle, R. The significance of α-amylase under anoxia stress intolerant rhizomes (Acorus calamus L.) and non-toleranttubers (Solanum tuberosum L., var. Désiree). J. Exp. Bot. 2000, 51, 1475–1477. [Google Scholar] [PubMed]
- Tran, H.H.; Nguyen, M.C.; Le, H.T.; Nguyen, T.L.; Pham, T.B.; Chau, V.M.; Nguyen, H.N.; Nguyen, T.D. Inhibitors of alpha-glucosidase and alpha-amylase from Cyperus rotundus. Pharm. Biol. 2014, 52, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Dhiraj, A.J.; Dishantsingh, R.; Komal, A.J.; Rohini, K.; Anuja, S.K.; Vaishali, S.S.; Jayesh, B.; Kaushik, R.B.; Sougata, G. Gnidia glauca- and Plumbago zeylanica-Mediated Synthesis of Novel Copper Nanoparticles as Promising Antidiabetic Agents. Adv. Pharmacol. Sci. 2019, 2019, 9080279. [Google Scholar] [CrossRef] [Green Version]
- Anam, K.; Widharna, R.M.; Kusrini, D. α-Glucosidase inhibitor activity of Terminalia species. Int. J. Pharm. 2009, 5, 277–280. [Google Scholar] [CrossRef]
- Souza, P.M.; Sales, P.M.; Simeoni, L.A.; Silva, E.C.; Silveira, D.; Magalhaes Pde, O. Inhibitory activity of alpha-amylase and alpha-glucosidase by plant extracts from the Brazilian cerrado. Planta Med. 2012, 78, 393–399. [Google Scholar] [CrossRef]
- El-Manawaty, M.; Gohar, L. In vitro alpha-glucosidase inhibitory activity of egyptian plant extracts as an indication for their antidiabetic activity. Asian J. Pharm. Clin. Res. 2018, 11, 360–367. [Google Scholar] [CrossRef]
- Paloma, M.d.S.; Paula, M.S.; Mariana, D.; Inês, S.R.; Luiz, A.S.; Yris, M.F.-B.; Pérolade, O.M.; Dâmaris, S. Pouteria torta epicarp as a useful source of α-amylase inhibitor in the control of type 2 diabetes. Food Chem. Toxicol. 2017, 109, 962–969. [Google Scholar] [CrossRef]
- De Gouveia, N.M.; De Albuquerque, C.L.; Espindola, L.S.; Espindola, F.S. Pouteria ramiflora extract inhibits salivary amylolytic activity and decreases glycemic level in mice. An. Acad. Bras. Cienc. 2013, 85, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; El-Ouaghlidi, A. The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1. Diabetologia 2005, 48, 608–611. [Google Scholar] [CrossRef] [Green Version]
- Erin, E.M.; Daniel, J.D. Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors. Endocr. Rev. 2014, 35, 992–1019. [Google Scholar]
- Arulmozhiraja, S.; Matsuo, N.; Ishitsubo, E.; Okazaki, S.; Shimano, H.; Tokiwa, H. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs—An Ab Initio Fragment Molecular Orbital Study. PLoS ONE 2016, 11, e0166275. [Google Scholar] [CrossRef] [Green Version]
- Jixin, Z.; Xiaoquan, R.; Sanjay, R. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: Potential implications in cardiovascular disease. Atherosclerosis 2013, 226, 305–314. [Google Scholar]
- Nauck, M.A. Glucagon-like peptide 1 (GLP-1): A potent gut hormone with a possible therapeutic perspective. Acta Diabetol. 1998, 35, 117–129. [Google Scholar] [CrossRef]
- Nauck, M.A.; Niedreichholz, U.; Ettler, U. Glucagon-like peptide 1 inhibition of gastric emptying outweight its insulinotropic effects in health human. Am. J. Physiol. 1997, 273, E981–E988. [Google Scholar] [CrossRef]
- D’Alessio, D. Is GLP-1 a hormone: Whether and When? J. Diabetes Investig. 2016, 7 (Suppl. 1), 50–55. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Pinon, D.I.; Miller, L.J.; Dong, M. Molecular basis of glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes. J. Biol. Chem. 2009, 284, 34135–34144. [Google Scholar] [CrossRef] [Green Version]
- Weis, W.I.; Kobilka, B.K. Structural insights into G-protein-coupled receptor activation. Curr. Opin. Struct. Biol. 2008, 18, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherezov, V.; Rosenbaum, D.M.; Hanson, M.A.; Rasmussen, S.G.; Thian, F.S.; Kobilka, T.S.; Choi, H.J.; Kuhn, P.; Weis, W.I.; Kobilka, B.K.; et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318, 1258–1265. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.C. Understanding insulin and its receptor from their three-dimensional structures. Mol. Metab. 2021, 52, 101255. [Google Scholar] [CrossRef] [PubMed]
- Posner, B.I. Insulin Signalling: The Inside Story. Can. J. Diabetes 2017, 41, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dridi, L.; Seyrantepe, V.; Fougerat, A.; Pan, X.; Bonneil, E.; Thibault, P.; Moreau, A.; Mitchell, G.A.; Heveker, N.; Cairo, C.W.; et al. Positive regulation of insulin signaling by neuraminidase 1. Diabetes 2013, 62, 2338–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leconte, I.; Auzan, C.; Debant, A.; Rossi, B.; Clauser, E. N-linked oligosaccharide chains of the insulin receptor beta subunit are essential for transmembrane signaling. J. Biol. Chem. 1992, 267, 17415–17423. [Google Scholar] [CrossRef]
- Skrgatic, L.; Baldani, D.P.; Gersak, K.; Cerne, J.Z.; Ferk, P.; Coric, M. Genetic polymorphisms of INS, INSR and IRS-1 genes are not associated with polycystic ovary syndrome in Croatian women. Coll. Antropol. 2013, 37, 141–146. [Google Scholar]
- Yousef, A.A.; Behiry, E.G.; Abd, A.W.M.; Hussien, A.M.; Abdelmoneam, A.A.; Imam, M.H.; Hikal, D.M. IRS-1 genetic polymorphism (r.2963G>A) in type 2 diabetes mellitus patients associated with insulin resistance. Appli. Clin. Genet. 2018, 11, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.M. The insulin receptor substrate (IRS) proteins: At the intersection of metabolism and cancer. Cell Cycle 2011, 10, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Kubota, N.; Tobe, K.; Terauchi, Y.; Eto, K.; Yamauchi, T.; Suzuki, R.; Tsubamoto, Y.; Komeda, K.; Nakano, R.; Miki, H.; et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000, 49, 1880–1889. [Google Scholar] [CrossRef] [Green Version]
- Deborah, P.L.; Morris, F.W.; Derek, P.B. IRS proteins and diabetic complications. Diabetologia 2016, 59, 2280–2291. [Google Scholar] [CrossRef] [Green Version]
- Stuart, C.A.; Howell, M.E.; Cartwright, B.M.; McCurry, M.P.; Lee, M.L.; Ramsey, M.W.; Stone, M.H. Insulin resistance and muscle insulin receptor substrate-1 serine hyperphosphorylation. Physiol. Rep. 2014, 2, e12236. [Google Scholar] [CrossRef]
- Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol. 2007, 152, 21–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colquitt, R.B.; Colquhoun, D.A.; Thiele, R.H. In silico modelling of physiologic systems. Best Pract. Res. Clin. Anaesthesiol. 2011, 25, 499–510. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.; Adibi, H.; Khodarahmi, R. Differential alpha-amylase/alpha-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017, 8, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.C.S.; Ngabonziza, J.C.S.; Lempens, P.; de Jong, B.C.; van Leth, F.; Meehan, C.J. Bridging the TB data gap: In silico extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data. PeerJ 2019, 7, e7564. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.T.; Tabassum, N.; Uddin, M.S.; Aziz, F.; Behl, T.; Mathew, B.; Rahman, M.H.; Akter, R.; Rauf, A.; Aleya, L. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid.-Based Complement. Alternat. Med. 2021, 9940169. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Bester, M.J.; Neitz, A.W.; Gaspar, A.R.M. Rational in silico design of novel alpha-glucosidase inhibitory peptides and in vitro evaluation of promising candidates. Biomed. Pharmacother. 2018, 107, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Kim, S.; Kim, J.Y.; Arooj, M.; Kim, S.; Hwang, S.; Kim, B.W.; Park, K.H.; Lee, K.W. Binding mode analyses and pharmacophore model development for stilbene derivatives as a novel and competitive class of α-glucosidase inhibitors. PLoS ONE 2014, 9, e85827. [Google Scholar] [CrossRef] [Green Version]
- Nakaishi, Y.; Bando, M.; Shimizu, H.; Watanabe, K.; Goto, F.; Tsuge, H.; Kondo, K.; Komatsu, M. Structural analysis of human glutamine:fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes. FEBS Lett. 2009, 583, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Qin, X.; Cao, X.; Wang, L.; Bai, F.; Bai, G.; Shen, Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2011, 2, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. 2010, 277, 4205–4214. [Google Scholar] [CrossRef]
- Madej, T.; Lanczycki, C.J.; Zhang, D.; Thiessen, P.A.; Geer, R.C.; Marchler-Bauer, A.; Bryant, S.H. MMDB and VAST+: Tracking structural similarities between macromolecular complexes. Nucleic Acids Res. 2014, 42, D297–D303. [Google Scholar] [CrossRef] [Green Version]
- Jeng, W.Y.; Wang, N.C.; Lin, M.H.; Lin, C.T.; Liaw, Y.C.; Chang, W.J.; Liu, C.I.; Liang, P.H.; Wang, A.H. Structural and functional analysis of three beta-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J. Struct. Biol. 2011, 173, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kappelhoff, J.C.; Liu, S.Y.; Dugdale, M.L.; Dymianiw, D.L.; Linton, L.R.; Huber, R.E. Practical considerations when using temperature to obtain rate constants and activation thermodynamics of enzymes with two catalytic steps: Native and N460T-beta-galactosidase (E. coli) as examples. Protein J. 2009, 28, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Sundar, P.; Madasamy, P. In vitro and in vivo α-amylase and αglucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Wu, X.; Pan, J.; Hu, X.; Gong, D.; Zhang, G. New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase. J. Agric. Food Chem. 2018, 66, 7065–7075. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.; Hu, X.; Zhang, G.; Gong, D. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Eric, M.-V.; Luca, P.; Noé, S.; Annachiara, T.; Ola, E.; Hongming, C.; Giulio, R. On the Integration of In Silico Drug Design Methods for Drug Repurposing. Front. Pharmacol. 2017, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Yuhei, N.; Hideaki, H. Drug Repositioning: Current Advances and Future Perspectives. Front. Pharmacol. 2018, 9, 1068. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.; Chen, T.H.; Zheng, Q.; Weng, W.H.; Huang, L.; Lai, D.; Fu, Y.S.; Weng, C.F. Syringaldehyde promoting intestinal motility with suppressing alpha-amylase hinders starch digestion in diabetic mice. Biomed. Pharm. 2021, 141, 111865. [Google Scholar] [CrossRef] [PubMed]
- Riyaphan, J.; Jhong, C.H.; Lin, S.R.; Chang, C.H.; Tsai, M.J.; Lee, D.N.; Sung, P.J.; Leong, M.K.; Weng, C.F. Hypoglycemic Efficacy of Docking Selected Natural Compounds against alpha-Glucosidase and alpha-Amylase. Molecules 2018, 23, 2260. [Google Scholar] [CrossRef] [Green Version]
- Le, A.V.; Phan, T.C.Q.; Nguyen, T.H. In silico Drug Design: Prospective for Drug Lead Discovery. Intern. J. Eng. Sci. Invent. 2015, 4, 2319–6734. [Google Scholar]
- Hsin, J.; Arkhipov, A.; Yin, Y.; Stone, J.E.; Schulten, K. Using VMD: An introductory tutorial. Curr. Protoc. Bioinform. 2008, 24, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Pham, T.A.; Jain, A.N. Customizing scoring functions for docking. J. Comput.-Aided Mol. Des. 2008, 22, 269–286. [Google Scholar] [CrossRef]
- Sheng-You, H.; Grinter, S.Z.; Xiaogin, Z. Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions. Phys. Chem. Chem. Phys. 2010, 12, 12899–12908. [Google Scholar] [CrossRef]
- Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269–288. [Google Scholar] [CrossRef]
- Ninon, G.E.R.E.; Jelili, A.B.; Tesfaye, T.W.; Jeanine, L.M.; Christopher, N.C.; Ahmed, A.H.; Emmanuel, I.I. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea. Antioxidants 2019, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Arief, M.M.H.; Hussein, A.A.F.; Mohammed, A.; ElMwafy, H.M. Chemical and Bioactivity Studies on Salvia Africana-Lutea: Cytotoxicity and Apoptosis Induction by Abietane Diterpenes Isolated from Salvia Africana-Lutea. J. Basic Environ. Sci. 2018, 5, 72–79. [Google Scholar]
- Abuelizz, H.A.; Anouar, E.H.; Ahmad, R.; Azman, N.; Marzouk, M.; Al-Salahi, R. Triazoloquinazolines as a new class of potent alpha-glucosidase inhibitors: In vitro evaluation and docking study. PLoS ONE 2019, 14, e0220379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, F.; Zhou, P.; Wu, H.Y.; Chu, G.X.; Xie, Z.W.; Bao, G.H. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: Molecular docking and interaction mechanism. Food Funct. 2018, 9, 4173–4183. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Soto, M.F.; Chavez-Ontiveros, J.; Garzon-Tiznado, J.A.; Salazar-Salas, N.Y.; Pineda-Hidalgo, K.V.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. J. Food Sci. 2021, 86, 2962–2977. [Google Scholar] [CrossRef] [PubMed]
- Swaraz, A.M.; Sultana, F.; Bari, M.W.; Ahmed, K.S.; Hasan, M.; Islam, M.M.; Islam, M.A.; Satter, M.A.; Hossain, M.H.; Islam, M.S.; et al. Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer’s. Biomed. Pharm. 2021, 141, 111859. [Google Scholar] [CrossRef]
- Sheng-Yong, Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar]
- Shabana, B.; Katsumi, S. Current Status of Computer-Aided Drug Design for Type 2 Diabetes. Curr. Comput.-Aided Drug Des. 2016, 12, 167–177. [Google Scholar]
- Sangeetha, K.; Sasikala, R.P.; Meena, K.S. Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70. Comput. Biol. Chem. 2017, 70, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Khedkar, S.A.; Malde, A.K.; Coutinho, E.C.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem. 2007, 3, 187–197. [Google Scholar] [CrossRef]
- Teresa, K.; Katharina, R.B.; Muhammad, A.; Alex, O.; Daniela, S. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015, 20, 9880. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, U.H.; Arif, M.K.; Rakib-Uz-Zaman, S.M.; Mohammad, T.A.; Saidul, M.I.; Chaman, A.K.; Salimullah, M. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein. BioMed Res. Intern. 2016, 2016, 3187647. [Google Scholar] [CrossRef] [Green Version]
- Gerhard, W.; Thierry, L. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar]
- Hu, B.; Lill, M.A. PharmDock: A pharmacophore-based docking program. J. Cheminform. 2014, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, P.; Lal Khokra, S.; Rana, A.C.; Kaushik, D. Pharmacophore modeling and molecular docking studies on Pinus roxburghii as a target for diabetes mellitus. Adv. Bioinform. 2014, 2014, 903246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, C. PPAR-α and PPAR-γ agonists for type 2 diabetes. Lancet 2009, 374, 96–98. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling pathways and proteins targeted by antidiabetic chalcones. Life Sci. 2021, 284, 118982. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.K.; Christensen, K.B.; Assimopoulou, A.N.; Frette, X.; Papageorgiou, V.P.; Kristiansen, K.; Kouskoumvekaki, I. Pharmacophore-driven identification of PPARgamma agonists from natural sources. J. Comput.-Aided Mol. Des. 2011, 25, 107–116. [Google Scholar] [CrossRef]
- Bharatham, K.; Bharatham, N.; Park, K.H.; Lee, K.W. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of alpha-glucosidase inhibitors. J. Mol. Graph. Model. 2008, 26, 1202–1212. [Google Scholar] [CrossRef]
- Santhosh, S. Pharmacophore Mapping And Virtual Screening on Human Alpha Amylase Inhibitors. Intern. J. Pharma. Sci. Res. 2015, 6, 2127–2132. [Google Scholar]
- National Research Council. Opportunities in Biology; National Academies Press: Washington, DC, USA, 1989.
- Kumar, S.P.; Rawal, R.M.; Pandya, H.A.; Jasrai, Y.T. Qualitative and quantitative pharmacophore-similarity assessment of anthranilamide-based factor Xa inhibitors: Applications on similar molecules with identical biological endpoints. J. Recept. Signal Transduct. Res. 2016, 36, 189–206. [Google Scholar] [CrossRef]
- Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Freyhult, E.K.; Andersson, K.; Gustafsson, M.G. Structural modeling extends QSAR analysis of antibody-lysozyme interactions to 3D-QSAR. Biophys. J. 2003, 84, 2264–2272. [Google Scholar] [CrossRef] [Green Version]
- Karel, D.-S.; Hai, P.-T.; Oscar, M.R.-B.; Amilkar, P.; Huong, L.-T.; Gerardo, M.C.-M. A Two QSAR Way for Antidiabetic Agents Targeting Using α-Amylase and α-Glucosidase Inhibitors: Model Parameters Settings in Artificial Intelligence Techniques. Lett. Drug Des. Discov. 2017, 14, 862–868. [Google Scholar] [CrossRef]
- Neeraja, D.; Bhartenda, N.M.; Vishwa, M.K. 2D-QSAR model development and analysis on variant groups of anti-tuberlosis drugs. Bioinformation 2011, 7, 82–90. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (Lipinski’s Rule of Five). Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Dieguez-Santana, K.; Rivera-Borroto, O.M.; Puris, A.; Pham-The, H.; Le-Thi-Thu, H.; Rasulev, B.; Casanola-Martin, G.M. Beyond model interpretability using LDA and decision trees for alpha-amylase and alpha-glucosidase inhibitor classification studies. Chem. Biol. Drug Des. 2019, 94, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Gollucke, A.P.; Aguiar, O., Jr.; Barbisan, L.F.; Ribeiro, D.A. Use of grape polyphenols against carcinogenesis: Putative molecular mechanisms of action using in vitro and in vivo test systems. J. Med. Food 2013, 16, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.J.; Scribner, K.A. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes. Metab. 1999, 1, 75–86. [Google Scholar] [CrossRef]
- Ruiyi, Y.; Lu, W.; Jie, X.; Xiang, L.; Shan, L.; Shengxiang, Q.; Yingjie, H.; Xiaoling, S. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. Int. J. Mol. Med. 2018, 42, 2329–2342. [Google Scholar]
- Tripathi, A.; Bankaitis, V.A. Molecular Docking: From Lock and Key to Combination Lock. J. Mol. Med. Clin. Appl. 2017, 2. [Google Scholar] [CrossRef]
- Bharathi, A.; Selvaraj, M.R.; Vasavi, C.S.; Punnagai, M.; Gayathri, G.A.; Gayathri, M. In Silico Molecular Docking and In Vitro Antidiabetic Studies of Dihydropyrimido[4,5-a]acridin-2-amines. BioMed Res. Intern. 2014, 2014, 971569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damian, B.; Agnieszka, A.K.; Katarzyna, M.T.-D.; Dariusz, M. Recent Advances and Applications of MolecularDocking to G Protein-Coupled Receptors. Molecules 2017, 22, 340. [Google Scholar] [CrossRef] [Green Version]
- Sheng-You, H.; Xiaoqin, Z. Advances and Challenges in Protein-Ligand Docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [Google Scholar] [CrossRef]
- Kunal, R. Silico Drug Design; Roy, K., Ed.; Academic Press: London, UK, 2019; p. 886. [Google Scholar]
- Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolutionised the drug discovery process. OA Drug Des. Deliv. 2013, 1, 3. [Google Scholar]
- Chen, T.H.; Fu, Y.S.; Chen, S.P.; Fuh, Y.M.; Chang, C.; Weng, C.F. Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomed. Pharm. 2021, 134, 111151. [Google Scholar] [CrossRef]
- Weng, L.; Chen, T.H.; Huang, L.; Lai, D.; Kang, N.; Fu, Y.S.; Weng, C.F. A nutraceutical combination of cinnamon, purple onion, and tea linked with key enzymes on treatment of type 2 diabetes. J. Food Biochem. 2021, 45, e13971. [Google Scholar] [CrossRef]
- Chen, S.P.; Lin, S.R.; Chen, T.H.; Ng, H.S.; Yim, H.S.; Leong, M.K.; Weng, C.F. Mangosteen xanthone gamma-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARgamma. Biomed. Pharm. 2021, 144, 112333. [Google Scholar] [CrossRef] [PubMed]
Class | Mechanism of Action | Generic Name | Side Effects |
---|---|---|---|
α-Glucosidase and α-amylase inhibitors | Retards carbohydrate digestion, extends overall digestion time and diminishes glucose level absorption [26]. | Acarbose, Miglitol [27] | Mild stomach pain, gas or bloating, constipation, diarrhea [28]. |
Sodium glucose linked transporter-2 (SGLT-2) inhibitors | Inhibits SGLT2 in proximal convoluted tubule (PCT) to block reabsorption of glucose and facilitate its secretion in urine [29]. | Dapagliflozin, Canagliflozin, Sitagliptin [30]. | Upset stomach, diarrhea, headache [31]. |
Dipeptidyl peptidase 4 (DPP-4) inhibitors | Blocks DPP-4 activity in peripheral plasma, that inhibits the incretin hormone glucagon-like peptide (GLP)-1 in the peripheral circulation [32]. | Sulfonylureas, Thiazolidinediones, Biguanides [33] | Hunger, weight gain, skin reaction [34] |
Peroxisome proliferator activated receptor-γ (PPARγ) | Diminishes triglyceride level related to regulation of energy homeostasis [35]. | PPAR γ agonist, RXR (Retinoid X receptors) agonists (rexinids) [35]. | Weight gain, fluid retention, increased risk of heart failure [36]. |
Insulin receptor kinase (IRK) | Insulin receptor as a tetrameric glycoprotein and binds to specific cell surface receptors in its target cells resulting in insulin effects on phosphorylation [37]. | IRS (1, 2, 3, 4), SHC (Src homology 2 domain containing) [38]. | Unclear whether safe or effective treatment [39]. |
Insulin receptor substrate (IRS) | Protein cytoplasmic adaptor that functions as a crucial signalling intermediates downstream of the activated cell surface [40]. | IGF-1 (insulin-like growth factor 1), IGF-2, Insulin [41]. | Hypotension, fluid retention, orthostatic [42]. |
Glucose transporter 4 (GLUT4) | Expressed in muscle and regulates insulin-stimulated glucose uptake within muscle tissue [43]. | MET2 (Myocyte enhancer factor-2), MyoD myogenic protein [43]. | Remained largely unknown [44]. |
G protein-coupled receptors (GPCR) | Works with β-cells to inhibit insulin secretion and the number of β-cell GPCRs related to insulin controlling secretion [45]. | Insulin secretagogues, GLP-1 (glucagon-like peptide-1), GIP (glucose-dependent insulinotropic peptide) [45]. | Vomit, diarrhea, gastrointestinal problems [46]. |
Family | Enzymatic Type | Scientific Name |
---|---|---|
α-Glucosidase inhibitor | ||
Theaceae | Camellia sinensis Ktze [128] | |
Myrtaceae | Cleistocalyx operculatus Roxb [129] | |
Fabaceae | Sophora japonica L. [130] | |
Senna surattensis [11] | ||
Alhagi camelorum [51] | ||
Neptunia oleracea [131] | ||
Peltophorum pterocarpum [132] | ||
Asteraceae | Artemisia vulgaris L. [133] | |
Lecythidaceae | Careya arborea Roxb [134] | |
Apiaceae | Centella asiatica (L.) Urb [135] | |
Eryngium foetidum L. [136] | ||
Levisticum officnale [137] | ||
Ligusticum porter [138] | ||
Moraceae | Ficus racemosa L. [16] | |
Artocarpus champeden [139] | ||
Morus alba [140] | ||
Myristicaceae | Horsfieldia amygdalina Warb [130] | |
Saururaceae | Houttuynia cordata Thunb [141] | |
Rubiaceae | Paederia lanuginosa Warb [130] | |
Cinchona succirubra [142] | ||
Hintonia latiflora; H. standleyana [143] | ||
Verbenaceae | Premma corymbosa (Burm) [144] | |
Euphorbiaceae | Euphorbia thymifolia [124] | |
Lamiaceae | Perilla frutescens (L.) Britton [145] | |
Rosmarinus officinalis [146] | ||
Zataria multiflora [147,148] | ||
Zhumeria majdae [51] | ||
Polygonaceae | Polygonum odoratum Lour [149] | |
Clusiaceae | Garcinia daedalanthera [87,150] | |
Scrophulariaceae | Verbascum kermanensis [51] | |
Rosaceae | Rosa damascene [151] | |
Sanguisorba minor [51] | ||
Sarcopotarium spinosum L. [152] | ||
Anacardiaceae | Pistacia vera [51] | |
Ericaceae | Vaccinum arctostaphylus [153] | |
Salvadoracae | Salvadora persica [154] | |
Zingiberaceae | Alpinia officinarum [155,156] | |
Phyllantaceae | Antidesma bunius Spreng [157] | |
Oxalidaceae | Averrhoa bilimbi L. [158] | |
Biophytum sensitivum L. DC [159] | ||
Rhizophoraceae | Ceriops tagal Perr. Rob [160] | |
Rhizophora mucronata Lam [161] | ||
Cyperaceae | Kyllinga monocephala Rottb [162] | |
Asteraceae | Brickellia cavanillesii [163] | |
Blumea lanceolaria Roxb [164] | ||
Celastraceae | Salacia oblonga [165] | |
Lamiaceae | Scutellaria baicalensis [166] | |
Cucurbitaceae | Cucurbita pepo L. [167] | |
Convolvulaceae | Ipomoea aquatica Forssk [168] | |
Ipomoea batatas (L.) Lam [169] | ||
Piperaceae | Piper lolot DC [130] | |
Brassicaceae | Nasturtium officinale R. Br [170] | |
Myrtaceae | Eucalyptus grandis [171] | |
E. urophylla [171] | ||
Syzygium aqueum [172] | ||
S. cumini [173] | ||
Meliaceae | Azadirachta indica [139] | |
Clusiaceae | Garcinia mangostana [174] | |
Sapindaceae | Nephelium lappaceum [175] | |
Vitaceae | Vitis vinifera [176] | |
Santalaceae | Osyris alba L. [177] | |
Hypericaceae | Hypericum triquetrifolium Turra [178] | |
Ericaceae | Arbutus andrachne L. [179] | |
Vaccinium oxycoccos [180] | ||
Bignoniaceae | Oroxylum indicum [123] | |
Campanulaceae | Codonopsis pilosula [181,182] | |
Geraniaceae | Geranium collinum [183] | |
Dryopteridaceae | Dryopteris cycadina [75,184] | |
Acanthaceae | Clinacanthus nutans [142] | |
Rutaceae | Orixa japonica Thunb [156] | |
α-Amylase inhibitor | ||
Anacardiaceae | Spondias pinnata (Koenig) [185] | |
Myrtaceae | Syzygium cumini L. [186] | |
Zygophyllaceae | Balanites aegyptiaca L. [187] | |
Amaranthaceae | Amaranthus caudatus L. [188] | |
Theaceae | Camellia sinensis L. Del [128] | |
Fabaceae | Galega officinalis L. [189] | |
Tamarindus indica L. [190] | ||
Cassia auriculata [191] | ||
Apocynaceae | Holarrhena floribunda [192] | |
Melissa officinalis L. [193] | ||
Rubiaceae | Mitragyna innermis (Wild.) [189] | |
Lamiaceae | Rosmarinus officinalis L. [193] | |
Polygalaceae | Securidaca longepedunculata [194] | |
Asparagaceae | Polygonatum adoratum [195] | |
α-Glucosidase and α-amylase inhibitor | ||
Nelumbonaceae | Nelumbo nuciffera Gaertn [47] | |
Asteraceae | Artemisia vulgaris L. [133] | |
Enydra fluctuans Lour [185] | ||
Araliaceae | Polyscias fruticosa (L.) Harms [196] | |
Myrtaceae | Syzygium zeylanicum (L.) DC [186] | |
Phyllanthaceae | Phyllanthus amarus [126] | |
Phyllanthus urinaria [127] | ||
Lamiaceae | Ocimum basilicum L. [125] | |
Thymus serpyllum [197] | ||
Meliaceae | Khaya senegalensis [198] | |
Moraceae | Artocarpus altilis [1,199] | |
Ranunculaceae | Aconitum heterophyllum [199] | |
Acoraceae | Acorus calamus [200] | |
Berberidaceae | Berberis aristata [199] | |
Cyperaceae | Cyprus rotundus [201] | |
Calophyllaceae | Mesua ferrea [186] | |
Plumbaginaceae | Plumbago zeylanicum [202] | |
Combretaceae | Terminalia arjuna [203] | |
Myrtaceae | Brazilian cerrado [204] | |
Eugenia dysenterica [205] | ||
Stryphnodendron adstringens [206] | ||
Pouteria caimito [206] | ||
Pouteria torta [206] | ||
Pouter ramiflora [207] | ||
Psidium guajava L. [2] |
In Silico Modeling | ||||
---|---|---|---|---|
Natural Compound | Plant Family | Binding Energy (Kcal/mol) | PDB ID | Hydrophobic & Hydrogen-Bond Interaction |
Quercetin | Euphorbiaceae | −7.6 | 2ZJ3; Homo sapiens, AutoDock Vina [211], VMD Quantum Chemistry Visualization [228,244] | Ser420, Lys675, Gln421, Thr375, Ser422 |
Quercitrin | −9.0 | |||
Quercetin-3-O-galactoside | −9.1 | |||
Cosmosiin | −9.9 | |||
Kaempferol | −7.6 | |||
2-(4 methyl-3-cyclohexene-1-yl)-2-propanol | −5.4 | Val677, Ala674, Thr375 | ||
Β-amyrine | −9.0 | |||
Β-Sitosterol | −7.8 | |||
Campesterol | −8.2 | |||
Caryophyllene | −7.1 | |||
Limonene | −4.8 | |||
Phytol | −5.2 | |||
Piperitenone | −5.4 | |||
Safranal | −5.5 | |||
Stigmasterol | −8.5 | |||
Taraxerol | −8.9 | |||
Euphorbol | −8.3 | |||
24 methylene cycloartenol | −7.9 | |||
1-O-Galloyl-beta-D-glucose | −8.0 | |||
Corilagin | −8.9 | Ser420, Lys675, Gln421, Thr375, Ser422 | ||
Baicalein | Bignoniaceae | −6.98 | 3TOP; Homo sapiens, Schrodinger Maestro [116] | Pro1327, Glu1284, Pro1405, Leu1401 |
Catechin | −7.70 | His1584, Asp1279, Asp1526, Arg1510, Asp1157 | ||
Luteolin | −7.52 | |||
Quercetin | −7.19 | |||
Quinoline | Rubiaceae | −8.6 | 3AJ7; Saccharomyces cerevisiae, MOE-docking 2010.11software [140] | Phe177, Asp214, His279, Phe157 |
Benzothiazole | Ericaceae | −8.08 | No mentioned for PDB code, 3D structure: α-glucosidase of Saccharomyces cerevisiae, AutodockTools 1.5.6 package [161], PyMol 1.7.6 software (http://www.pymol.org/, accessed on 19 February 2020) | Phe157, Phe310, Phe311 |
β-Sitosterol | Dryopteridaceae | −16.097 | The three-dimensional structure for α-glucosidase of Saccharomyces cerevisiae has not yet been solved, MOE-Dock (MOE 2010.11) software [165] | Asp215, Asp352, Arg442, Gln182 |
β-Sitosterol3-O-β-D-glucopyranoside | −7.756 | Asn415 | ||
2, 3, 5, 7-trihydroxy-2-(p-tolyl) chorman-4-one | −22.480 | Arg315, Asp307, His280, Lys156, Ser240, Thr310, Tyr158 | ||
Quercetin-3-0-β-D-glucopyranoside (3/→0-3///)-β-D-Quercetin-3-0-β-D-galactopyranoside | −12.931 | Arg442, Tyr158 | ||
5, 7, 4/-Trihydroxyflavon-3-glucopyranoid | −15.752 | Asp242, Lys156, Pro312, Tyr158 | ||
2,6-diethylpiiperidine-3,4,5-triol | Campanulaceae | −6.1790 | 3A47; Saccharomyces cerevisiae, MOE-Dock module (v.2011.10), Model Scoring of GB/VI test, The force field AMBER99 [143] | Lys155, Glu304, Arg312, Asn153 |
2-ethyl-6-methylpiperidine-3,4,5-triol | −8.8493 | |||
6-ethyl-2-(hydroxymethyl)piperidine-3,4-diol | −6.9539 | |||
1,2,4-tri-O-gal-loyl-β-D-glucopyranose | Geraniaceae | −8.7 | 3AHX; Clostridium cellulovorans, The SCM model, SiteMap (Schrodinger Release 2018-1: SiteMap, Schrodinger, LLC, New York, NY, 2018) [163] | Asp232, Ser235, Asn314, Glu426 |
Kaempferol-3-O-α-rhamnopyranoside | −9.4 | Asp214, Asn241, Val277 | ||
Kaempferol-3-O-α-arabinofuranoside | −9.2 | Asp68, Asp214, Thr215, Glu276, Asp408 | ||
Quercetin-3-O-β-glucuronopyranoside | −9.8 | Asp68, Asp214, Arg312, Asp349, Gln350 | ||
Quercetin-3-O-α-arabinofuranoside | −5.4 | Asp232, Asp429 | ||
Kuwanon L | Moraceae | −8.4412 | 3A4A; Saccharomyces cerevisiae, Agilent Masshunter software Ver. B.04.00, The Molecular Operating Environment (MOE.2009.10) software [131] | Asp 69, Asp215, Asp352, Asp307 |
Mulberrofuran G | −8.4634 | |||
Sanggenon C | −8.4291 | Asp69, Asp352, Asp215, Glu277 | ||
Moracenin D | −8.3188 | Asp 69, Asp215, Asp352, Asp307 | ||
Mortatarin C | −5.4358 | No interaction | ||
Sanggenon G | −9.2855 | Asp69, Asp352, Asp215, Glu277, Phe178 | ||
Sanggenon O | −8.9427 | Asp69, Asp352, Asp215, Glu277 | ||
Sanggenol A | −7.7639 | No interaction | ||
Sanggenon W | −8.4194 | Asp 69, Asp215, Asp352, Asp307 | ||
5′-Geranyl-5,7,2′,4′-tetraphydroxy flavone | −8.2431 | No interaction | ||
Nigrasin F | −8.0232 | Asp 69, Asp215, Asp352, Asp307 | ||
Sanggenol G | −8.7875 | Asp69, Asp352, Asp215, Glu277 | ||
Mortatarin B | −5.9508 | Asp 69, Asp215, Asp352, Asp307 | ||
4,6,8-Megastigmatrien-3-one | Acanthaceae | −7.47 | 3A4A; Saccharomyces cerevisiae, 2PQR; Saccharomyces cerevisiae, AutoDock Tools, Biovia Discovery Studio (San Diego, CA, USA, USA), PyMOLTM 1.7.4.5 (Schrodinger, LLC, New York, NY, USA) [245] | Asn259, Hid295 |
N-Isobutyl-2-nonen-6,8-diynamide | −5.54 | Lys156 | ||
1′,2′-bis(acetyloxy)-3′,4′-didehydro-2′-hydro-β,ψ-carotene | −10.19 | Arg335 | ||
22-acetate-3-hydroxy21(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. | −8.31 | Gly209 | ||
Polyhydroxy pyrrolidines | Rutaceeae | −2.4 | 3CZJ; Escherichia coli, Pardock (http://scfbio-iitd.res.in/dock/paradock.jsp, accessed on 19 February 2020), Accelrys and AutoDock software (AutoDock v.4.2.6, San Diego, CA, USA) [246,247] | No interaction |
Tosyl | −3.1 | Asp229, Asp231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riyaphan, J.; Pham, D.-C.; Leong, M.K.; Weng, C.-F. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021, 11, 1877. https://doi.org/10.3390/biom11121877
Riyaphan J, Pham D-C, Leong MK, Weng C-F. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules. 2021; 11(12):1877. https://doi.org/10.3390/biom11121877
Chicago/Turabian StyleRiyaphan, Jirawat, Dinh-Chuong Pham, Max K. Leong, and Ching-Feng Weng. 2021. "In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes" Biomolecules 11, no. 12: 1877. https://doi.org/10.3390/biom11121877
APA StyleRiyaphan, J., Pham, D.-C., Leong, M. K., & Weng, C.-F. (2021). In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules, 11(12), 1877. https://doi.org/10.3390/biom11121877