TGF-β1 Activates Nasal Fibroblasts through the Induction of Endoplasmic Reticulum Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Antibodies
2.2. Samples from Inferior Turbinate
2.3. Nasal Fibroblast Culture
2.4. Organ Culture of Nasal Inferior Turbinate
2.5. Real-Time Polymerase Chain Reaction
2.6. Western Blot
2.7. Collagen Measurement
2.8. Short Interfering RNA Transfection
2.9. Measurement of Intracellular Reactive Oxygen Species
2.10. Gel Contraction Assay
2.11. Transwell Migration Assay
2.12. Statistical Analysis
3. Results
3.1. TGF-β1 Induced the Expression of ER Stress Markers in Nasal Fibroblasts
3.2. 4-PBA Inhibited TGF-Β1-Induced ER Stress in Nasal Fibroblasts
3.3. 4-PBA Inhibited TGF-Β1- or TG-Induced Phenotypic Changes in Nasal Fibroblasts
3.4. Regulation Of GRP78 Inhibited the Expression of ECM Components in Nasal Fibroblasts
3.5. Effect Of NAC, Ebselen and DPI on TGF-Β1-Induced Nasal Fibroblasts
3.6. 4-PBA Inhibited the Migration of TGF-Β1-Stimulated Nasal Fibroblasts
3.7. 4-PBA Inhibited TGF-Β1-Induced Activation of Fibroblasts in Nasal Inferior Turbinate Organ Cultures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fokkens, W.J.; Lund, V.J.; Mullol, J.; Bachert, C.; Alobid, I.; Baroody, F.; Cohen, N.A.; Cervin, A.; Douglas, R.; Gevaert, P.; et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 2012, 50, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikau, J.U.; Sherris, D.A.; Kephart, G.M.; Kern, E.B.; Gaffey, T.A.; Tarara, J.E.; Kita, H. Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2003, 112, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Barham, H.P.; Osborn, J.L.; Snidvongs, K.; Mrad, N.; Sacks, R.; Harvey, R.J. Remodeling changes of the upper airway with chronic rhinosinusitis. Int. Forum Allergy Rh. 2015, 5, 565–572. [Google Scholar] [CrossRef]
- Do, T.Q.-P.; Barham, H.P.; Earls, P.; Sacks, R.; Christensen, J.M.; Rimmer, J.; Harvey, R.J. Clinical implications of mucosal remodeling from chronic rhinosinusitis. Int. Forum Allergy Rh. 2016, 6, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Van Bruaene, N.P.N.C.; Van Crombruggen, K.; De Ruyck, N.; Holtappels, G.; Van Cauwenberge, P.; Gevaert, P.; Bachert, C. Inflammation and remodelling patterns in early stage chronic rhinosinusitis. Clin. Exp. Allergy 2011, 42, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kaufman, R.J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ. 2006, 13, 374–384. [Google Scholar] [CrossRef]
- Rutkowski, D.T.; Kaufman, R.J. A trip to the ER: Coping with stress. Trends Cell Biol. 2004, 14, 20–28. [Google Scholar] [CrossRef]
- Liu, R.-M.; Desai, L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015, 6, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Park, I.-H.; Park, S.-J.; Cho, J.-S.; Moon, Y.-M.; Kim, T.H.; Lee, S.H.; Lee, H.-M. Role of Reactive Oxygen Species in Transforming Growth Factor Beta1-Induced Alpha Smooth-Muscle Actin and Collagen Production in Nasal Polyp-Derived Fibroblasts. Int. Arch. Allergy Immunol. 2012, 159, 278–286. [Google Scholar] [CrossRef]
- Evans, R.A.; Tian, Y.C.; Steadman, R.; Phillips, A.O. TGF-β1-mediated fibroblast–myofibroblast terminal differentiation—the role of smad proteins. Exp. Cell Res. 2003, 282, 90–100. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015, 160, 816–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Sci. 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.-W.; Park, J.-H.; Shin, J.-M.; Lee, H.-M. Glucocorticoids ameliorate periostin-induced tissue remodeling in chronic rhinosinusitis with nasal polyps. Clin. Exp. Allergy 2018. [Google Scholar] [CrossRef]
- Shinde, A.V.; Frangogiannis, N.G. Fibroblasts in myocardial infarction: A role in inflammation and repair. J. Mol. Cell. Cardiol. 2013, 70, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.S.; Kim, S.R.; Cho, S.H.; Lee, Y.C. A Novel Insight on Endotyping Heterogeneous Severe Asthma Based on Endoplasmic Reticulum Stress: Beyond the “Type 2/Non-Type 2 Dichotomy”. Int. J. Mol. Sci. 2019, 20, 713. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.M.P.; O’Neal, W.K. Endoplasmic reticulum stress in chronic obstructive lung diseases. Curr. Mol. 2012, 12, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Kang, J.H.; Shin, J.M.; Lee, S.A.; Park, I.H. Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-beta1 in Airway Epithelium via the c-Src Pathway. Mediators Inflamm. 2017, 2017, 8123281–8123290. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.S.; Kim, S.R.; Cho, S.H.; Lee, Y.C. Endoplasmic Reticulum Stress and Allergic Diseases. Curr. Allergy Asthma Rep. 2017, 17, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Bae, C.H.; Choi, Y.S.; Na, H.G.; Song, S.-Y.; Kim, Y.-D. Endoplasmic Reticulum Stress Induces MUC5AC and MUC5B Expression in Human Nasal Airway Epithelial Cells. Clin. Exp. Otorhinolaryngol. 2019, 12, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R.; Lee, Y.C. Endoplasmic Reticulum Stress and the Related Signaling Networks in Severe Asthma. Allergy, Asthma Immunol. Res. 2015, 7, 106–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Gonzalez, F.J.; Chandel, N.S.; Jain, M.; Budinger, G.S. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl. Res. 2017, 190, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Fordham, M.T.; Mulligan, J.K.; Casey, S.E.; Mulligan, R.M.; Wang, E.W.; Sansoni, E.R.; Schlosser, R.J. Reactive Oxygen Species in Chronic Rhinosinusitis and Secondhand Smoke Exposure. Otolaryngol. Head Neck 2013, 149, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.D.; Kaufman, R.J. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxid. Redox Sign. 2007, 9, 2277–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, J.; Li, Y.; Zhong, W.; Gao, P.; Hu, C. Recent developments in the role of reactive oxygen species in allergic asthma. J. Thorac. Dis. 2017, 9, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.M.; Park, J.H.; Kim, H.J.; Park, I.H.; Lee, H.M. Cigarette smoke extract increases vascular endothelial growth factor production via TLR4/ROS/MAPKs/NF-kappaB pathway in nasal fibroblast. Am. J. Rhinol. Allergy 2017, 31, 78–84. [Google Scholar] [CrossRef]
- Baek, H.A.; Kim, D.S.; Park, H.S.; Jang, K.Y.; Kang, M.J.; Lee, D.G.; Moon, W.S.; Chae, H.-J.; Chung, M.J. Involvement of Endoplasmic Reticulum Stress in Myofibroblastic Differentiation of Lung Fibroblasts. Am. J. Respir. Cell Mol. Boil. 2012, 46, 731–739. [Google Scholar] [CrossRef]
- Burman, A.; Tanjore, H.; Blackwell, T.S. Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Boil. 2018, 355–365. [Google Scholar] [CrossRef]
Primer | Direction | Sequence |
---|---|---|
GRP78 | Forward | 5′-GTT CTT GCC GTT CAA GGT GG-3′ |
Reverse | 5′-TGG TAC AGT AAC TGC ATG GG-3′ | |
XBP-1s | Forward | 5′-CCT GGT TGC TGA AGA GGA GG-3′ |
Reverse | 5′-CCA TGG GGA GAT GTT CTG GAG-3′ | |
α-smooth muscle actin | Forward | 5′-GGT GCT GTC TCT CTA GCC TCT GGA-3′ |
Reverse | 5′-CCC ATC AGG CAA CTC GAT ACT CTT C-3′ | |
Collagen typeI | Forward | 5′-CAT CAC CTA CCA CTG CAA GAA C-3′ |
Reverse | 5′-ACG TCG AAG CCG AAT TCC-3′ | |
Fibronectin | Forward | 5′-GGA TGC TCC TGC TGT CAC-3′ |
Reverse | 5′-CTG TTT GAT CTG GAC CTG CAG-3′ | |
GAPDH | Forward | 5′-GTG GAT ATT GTT GCC ATC AAT GAC C-3′ |
Reverse | 5′-GCC CCA GCC TTC ATG GTG GT-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-M.; Kang, J.-H.; Park, J.-H.; Yang, H.-W.; Lee, H.-M.; Park, I.-H. TGF-β1 Activates Nasal Fibroblasts through the Induction of Endoplasmic Reticulum Stress. Biomolecules 2020, 10, 942. https://doi.org/10.3390/biom10060942
Shin J-M, Kang J-H, Park J-H, Yang H-W, Lee H-M, Park I-H. TGF-β1 Activates Nasal Fibroblasts through the Induction of Endoplasmic Reticulum Stress. Biomolecules. 2020; 10(6):942. https://doi.org/10.3390/biom10060942
Chicago/Turabian StyleShin, Jae-Min, Ju-Hyung Kang, Joo-Hoo Park, Hyun-Woo Yang, Heung-Man Lee, and Il-Ho Park. 2020. "TGF-β1 Activates Nasal Fibroblasts through the Induction of Endoplasmic Reticulum Stress" Biomolecules 10, no. 6: 942. https://doi.org/10.3390/biom10060942
APA StyleShin, J. -M., Kang, J. -H., Park, J. -H., Yang, H. -W., Lee, H. -M., & Park, I. -H. (2020). TGF-β1 Activates Nasal Fibroblasts through the Induction of Endoplasmic Reticulum Stress. Biomolecules, 10(6), 942. https://doi.org/10.3390/biom10060942