Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
- Supplementary File 1:
PDF-Document (PDF, 507 KiB)
Dozen, A.; Komatsu, M.; Sakai, A.; Komatsu, R.; Shozu, K.; Machino, H.; Yasutomi, S.; Arakaki, T.; Asada, K.; Kaneko, S.; Matsuoka, R.; Aoki, D.; Sekizawa, A.; Hamamoto, R. Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. Biomolecules 2020, 10, 1526. https://doi.org/10.3390/biom10111526
Dozen A, Komatsu M, Sakai A, Komatsu R, Shozu K, Machino H, Yasutomi S, Arakaki T, Asada K, Kaneko S, Matsuoka R, Aoki D, Sekizawa A, Hamamoto R. Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. Biomolecules. 2020; 10(11):1526. https://doi.org/10.3390/biom10111526
Chicago/Turabian StyleDozen, Ai, Masaaki Komatsu, Akira Sakai, Reina Komatsu, Kanto Shozu, Hidenori Machino, Suguru Yasutomi, Tatsuya Arakaki, Ken Asada, Syuzo Kaneko, Ryu Matsuoka, Daisuke Aoki, Akihiko Sekizawa, and Ryuji Hamamoto. 2020. "Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information" Biomolecules 10, no. 11: 1526. https://doi.org/10.3390/biom10111526