# Self-Organization in Cold Atoms Mediated by Diffractive Coupling

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Mechanism of Diffractive Coupling

#### 2.1. Single-Mirror Feedback Schemes and the Talbot Effect

#### 2.2. 2-Level Systems: Kerr and Saturable Nonlinearities

## 3. External Degrees of Freedom: Optomechanics

## 4. Internal Degrees of Freedom: Magnetic Ordering

#### 4.1. Optical Pumping Nonlinearity and Irreducible Tensor Components

#### 4.2. Dipolar Structures

#### 4.3. Hexagon Formation and Inversion Symmetry

#### 4.4. Quadrupole Structures

## 5. Light-Mediated Atomic Interaction

## 6. Self-Organization via Diffractive Coupling in Cavities

## 7. Conclusions and Outlook

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B
**1952**, 237, 37–72. [Google Scholar] - Prigogine, I. Thermodynamics of Irreversible Processes; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia, 1967. [Google Scholar]
- Busse, F.H. Non-linear properties of thermal convection. Rep. Prog. Phys.
**1978**, 41, 1929–1967. [Google Scholar] [CrossRef] - Meinhardt, H. Models of Biological Pattern Formation; Academic Press: London, UK, 1982. [Google Scholar]
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys.
**1993**, 65, 851–1112. [Google Scholar] [CrossRef][Green Version] - Grynberg, G.; Bihan, E.L.; Verkerk, P.; Simoneau, P.; Leite, J.R.R.; Bloch, D.; Boiteux, S.L.; Ducloy, M. Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium. Opt. Commun.
**1988**, 67, 363–366. [Google Scholar] [CrossRef] - Lugiato, L.A. Transverse nonlinear optics: Introduction and review (Editorial to special issue: Nonlinear optical structures, patterns, chaos). Chaos Solitons Fractals
**1994**, 4, 1251–1258. [Google Scholar] [CrossRef] - Vorontsov, M.A.; Miller, W.B. Self-Organization in Optical Systems and Application in Information Technology; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 66. [Google Scholar]
- Rosanov, N.N. Transverse patterns in wide-aperture nonlinear optical systems. Prog. Opt.
**1996**, XXXV, 1–60. [Google Scholar] - Lange, W.; Aumann, A.; Ackemann, T.; Büthe, E. Polarization patterns in alkaline vapors. Quantum Semiclass. Opt.
**1998**, 10, R23–R36. [Google Scholar] [CrossRef] - Arecchi, F.T.; Boccaletti, S.; Ramazza, P.L. Pattern formation and competition in nonlinear optics. Phys. Rep.
**1999**, 318, 1–83. [Google Scholar] [CrossRef] - Ackemann, T.; Lange, W. Optical pattern formation in alkali metal vapors: Mechanisms, phenomena and use. Appl. Phys. B
**2001**, 72, 21–34. [Google Scholar] [CrossRef] - Staliunas, K.; Sánchez-Morcillo, V. Transverse Patterns; Springer Tracts in Modern Physics; Springer: Berlin, Germany, 2003; Volume 183. [Google Scholar]
- Mandel, P.; Tlidi, M. Transverse dynamics in cavity nonlinear optics (2000–2003). J. Opt. B Quantum Semiclass. Opt.
**2004**, 6, R60–R75. [Google Scholar] [CrossRef][Green Version] - Bonifacio, R.; Desalvo, L. Collective atomic recoil laser (CARL): Optical gain without inversion by collective atomic recoil and self-bunching of 2-level atoms. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Detect. Assoc. Equip.
**1994**, 341, 360–362. [Google Scholar] [CrossRef] - Bonifacio, R.; Salvo, L.D.; Narducci, L.M.; D’Angelo, E.J. Exponential gain and self-bunching in a collective atomic recoil laser. Phys. Rev. A
**1994**, 50, 1716–1724. [Google Scholar] [CrossRef] [PubMed] - Hemmer, P.R.; Bigelow, N.P.; Katz, D.P.; Shahriar, M.S.; DeSalvo, L.; Bonifacio, R. Self-organization, broken symmetry, and lasing in an atomic vapor: The interdependence of gratings and gain. Phys. Rev. Lett.
**1996**, 77, 1468–1481. [Google Scholar] [CrossRef] [PubMed] - Lippi, G.L.; Barozzi, G.P.; Barbay, S.; Tredicce, J.R. Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor. Phys. Rev. Lett.
**1996**, 76, 2452. [Google Scholar] [CrossRef] [PubMed] - Verkerk, P.; Bigelow, N.P.; De Salvo, L.; Bonifacio, R. Comment on “Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor”. Phys. Rev. Lett.
**1997**, 79, 3094. [Google Scholar] [CrossRef] - Lippi, G.L.; Barbay, S.; Tredicce, J.R. Reply to comment on “Spontaneous Generation of a Longitudinal Atomic Density Grating in Sodium Vapor”. Phys. Rev. Lett.
**1997**, 79, 3095. [Google Scholar] [CrossRef] - Brown, W.J.; Gardner, J.R.; Gauthier, D.J.; Vilaseca, R. Amplification of laser beams propagating through a collection of strongly driven, Doppler-broadened two-level atoms. Phys. Rev. A
**1997**, 55, R1601. [Google Scholar] [CrossRef][Green Version] - Kruse, D.; von Cube, C.; Zimmermann, C.; Courteille, P. Observation of Lasing Mediated by Collective Atomic Recoil. Phys. Rev. Lett.
**2003**, 91, 183601. [Google Scholar] [CrossRef] [PubMed][Green Version] - von Cube, C.; Slama, S.; Kruse, D.; Zimmermann, C.; Courteille, P.W.; Robb, G.R.M.; Piovella, N.; Bonifacio, R. Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing. Phys. Rev. Lett.
**2004**, 93, 083601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Robb, G.R.M.; Piovella, N.; Ferraro, A.; Bonifacio, R.; Courteille, P.W.; Zimmermann, C. Collective atomic recoil lasing including friction and diffusion effects. Phys. Rev. A
**2004**, 69, 041403(R). [Google Scholar] [CrossRef][Green Version] - Domokos, P.; Ritsch, H. Collective Cooling and Self-Organization of Atoms in a Cavity. Phys. Rev. Lett.
**2002**, 89, 253003. [Google Scholar] [CrossRef][Green Version] - Black, A.T.; Chan, H.W.; Vuletic, V. Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering. Phys. Rev. Lett.
**2003**, 91, 203001. [Google Scholar] [CrossRef][Green Version] - Baumann, K.; Guerlin, C.; Brennecke, F.; Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature
**2010**, 464, 1301–1307. [Google Scholar] [CrossRef][Green Version] - Nagy, D.; Kónya, G.; Szirmai, G.; Domokos, P. Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett.
**2010**, 104, 130401. [Google Scholar] [CrossRef][Green Version] - Mottl, R.; Brennecke, F.; Baumann, K.; Landig, R.; Donner, T.; Esslinger, T. Roton-Type Mode Softening in a Quantum Gas with Cavity-Mediated Long-Range Interactions. Science
**2012**, 336, 1570–1574. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ritsch, H.; Domokos, P.; Brennecke, F.; Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys.
**2013**, 85, 553–601. [Google Scholar] [CrossRef][Green Version] - Kirton, P.; Roses, M.M.; Keeling, J.; Dalla Torre, E.G. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa. Adv. Quantum Technol.
**2019**, 2, 1800043. [Google Scholar] [CrossRef][Green Version] - Mivehvar, F.; Piazza, F.; Donner, T.; Ritsch, H. Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics. arXiv
**2021**, arXiv:2102.04473v1. [Google Scholar] - Gopalakrishnan, S.; Lev, B.L.; Goldbart, P.M. Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities. Nat. Phys.
**2009**, 5, 845–850. [Google Scholar] [CrossRef][Green Version] - Gopalakrishnan, S.; Lev, B.L.; Goldbart, P.M. Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A
**2010**, 82, 043612. [Google Scholar] [CrossRef][Green Version] - Kollar, A.J.; Papageorge, A.T.; Vaidya, V.D.; Guo, Y.; Keeling, J.; Lev, B.L. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity. Nat. Commun.
**2017**, 8, 14386. [Google Scholar] [CrossRef][Green Version] - Léonard, J.; Morales, A.; Zupancic, P.; Esslinger, T.; Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature
**2017**, 543, 87–90. [Google Scholar] [CrossRef][Green Version] - Muradyan, G.A.; Wang, Y.; Williams, W.; Saffman, M. Absolute instability and pattern formation in cold atomic vapors. In Proceedings of the OSA Topical Meeting Technical Digest, Nonlinear Guided Waves and Their Applications, Dresden, Germany, 6–9 September 2005; Optical Society of America: Washington, DC, USA, 2005. Paper ThB29. [Google Scholar]
- Greenberg, J.A.; Schmittberger, B.L.; Gauthier, D. Bunching-induced optical nonlinearity and instability in cold atoms. Opt. Exp.
**2011**, 19, 22535. [Google Scholar] [CrossRef] - Greenberg, J.A.; Gauthier, D.J. High-order optical nonlinearity at low light levels. Eur. J. Phys.
**2012**, 98, 24001. [Google Scholar] [CrossRef][Green Version] - Schmittberger, B.L.; Gauthier, D.J. Enhancing light-atom interactions via atomic bunching. Phys. Rev. A
**2014**, 90, 013813. [Google Scholar] [CrossRef][Green Version] - Schmittberger, B.L.; Gauthier, D.J. Transverse optical and atomic pattern formation. J. Opt. Soc. Am. B
**2016**, 33, 1543–1551. [Google Scholar] [CrossRef] - Firth, W.J. Spatial instabilities in a Kerr medium with single feedback mirror. J. Mod. Opt.
**1990**, 37, 151–153. [Google Scholar] [CrossRef] - D’Alessandro, G.; Firth, W.J. Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror. Phys. Rev. Lett.
**1991**, 66, 2597–2600. [Google Scholar] [CrossRef] - Labeyrie, G.; Tesio, E.; Gomes, P.M.; Oppo, G.L.; Firth, W.J.; Robb, G.R.; Arnold, A.S.; Kaiser, R.; Ackemann, T. Optomechanical self-structuring in a cold atomic gas. Nat. Phot.
**2014**, 8, 321–325. [Google Scholar] [CrossRef][Green Version] - Tesio, E.; Robb, G.R.M.; Ackemann, T.; Firth, W.J.; Oppo, G.L. Kinetic theory for transverse opto-mechanical instabilities. Phys. Rev. Lett.
**2014**, 112, 043901. [Google Scholar] [CrossRef][Green Version] - Robb, G.R.M.; Tesio, E.; Oppo, G.L.; Firth, W.J.; Ackemann, T.; Bonifacio, R. Quantum Threshold for Optomechanical Self-Structuring in a Bose-Einstein Condensate. Phys. Rev. Lett.
**2015**, 114, 173903. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.C.; Walther, V.; Pohl, T. Long-Range Interactions and Symmetry Breaking in Quantum Gases through Optical Feedback. Phys. Rev. Lett.
**2018**, 121, 073604. [Google Scholar] [CrossRef][Green Version] - Camara, A.; Kaiser, R.; Labeyrie, G.; Firth, W.J.; Oppo, G.L.; Robb, G.R.M.; Arnold, A.S.; Ackemann, T. Optical pattern formation with a two-level nonlinearity. Phys. Rev. A
**2015**, 92, 013820. [Google Scholar] [CrossRef][Green Version] - Krešić, I.; Labeyrie, G.; Robb, G.R.M.; Oppo, G.L.; Gomes, P.M.; Griffin, P.; Kaiser, R.; Ackemann, T. Spontaneous light-mediated magnetism in cold atoms. Commun. Phys.
**2018**, 1, 33. [Google Scholar] [CrossRef] - Krešić, I.; Robb, G.R.M.; Labeyrie, G.; Kaiser, R.; Ackemann, T. Inversion-symmetry breaking in spin patterns by a weak magnetic field. Phys. Rev. A
**2019**, 99, 053851. [Google Scholar] [CrossRef][Green Version] - Labeyrie, G.; Kresic, I.; Robb, G.R.M.; Oppo, G.L.; Kaiser, R.; Ackemann, T. Magnetic Phase Diagram of Light-mediated Spin Structuring in Cold Atoms. Optica
**2018**, 12, 1322–1328. [Google Scholar] [CrossRef][Green Version] - Tesio, E.; Robb, G.R.M.; Ackemann, T.; Firth, W.J.; Oppo, G.L. Spontaneous optomechanical pattern formation in cold atoms. Phys. Rev. A
**2012**, 86, 031801(R). [Google Scholar] [CrossRef][Green Version] - Talbot, W.H.F. Facts relating to optical science. No. IV. Philos. Mag.
**1836**, 9, 401–407. [Google Scholar] [CrossRef][Green Version] - Ciaramella, E.; Tamburrini, M.; Santamato, E. Talbot assisted hexagonal beam patterning in a thin liquid crystal film with a single feedback mirror at negative distance. Appl. Phys. Lett.
**1993**, 63, 1604–1606. [Google Scholar] [CrossRef] - Firth, W.J.; Krešić, I.; Labeyrie, G.; Camara, A.; Ackemann, T. Thick-medium model of transverse pattern formation in optically excited cold two-level atoms with a feedback mirror. Phys. Rev. A
**2017**, 96, 053806. [Google Scholar] [CrossRef][Green Version] - Firth, W.J.; Fitzgerald, A.; Pare, C. Transverse instabilities due to counterpropagation in Kerr media. J. Opt. Soc. Am. B
**1990**, 7, 1087–1097. [Google Scholar] [CrossRef] - Kibble, T.W.B. Topology of cosmic domains and strings. J. Phys. A Math. Gen.
**1976**, 9, 1387. [Google Scholar] [CrossRef] - Zurek, W.H. Cosmological experiments in superfluid helium? Nature
**1985**, 317, 505–508. [Google Scholar] [CrossRef][Green Version] - Ducci, S.; Ramazza, P.L.; González-Viñas, W.; Arecchi, F.T. Order Parameter Fragmentation after a Symmetry-Breaking Transition. Phys. Rev. Lett.
**1999**, 83, 5210. [Google Scholar] [CrossRef][Green Version] - Labeyrie, G.; Kaiser, R. Kibble-Zurek Mechanism in the Self-Organization of a Cold Atomic Cloud. Phys. Rev. Lett.
**2016**, 117, 275701. [Google Scholar] [CrossRef][Green Version] - Macdonald, R.; Eichler, H.J. Spontaneous optical pattern formation in a nematic liquid crystal with feedback mirror. Opt. Commun.
**1992**, 89, 289–295. [Google Scholar] [CrossRef] - Grynberg, G.; Maître, A.; Petrossian, A. Flowerlike patterns generated by a laser beam transmitted through a rubidium cell with a single feedback mirror. Phys. Rev. Lett.
**1994**, 72, 2379–2382. [Google Scholar] [CrossRef] - Grynberg, G. Drift instability and light-induced spin waves in an alkali vapor with a feedback mirror. Opt. Commun.
**1994**, 109, 483–486. [Google Scholar] [CrossRef] - Ackemann, T.; Lange, W. Non- and nearly hexagonal patterns in sodium vapor generated by single-mirror feedback. Phys. Rev. A
**1994**, 50, R4468–R4471. [Google Scholar] [CrossRef] - Ackemann, T.; Logvin, Y.A.; Heuer, A.; Lange, W. Transition between positive and negative hexagons in optical pattern formation. Phys. Rev. Lett.
**1995**, 75, 3450–3453. [Google Scholar] [CrossRef] - Ackemann, T. Electronic pattern formation in cold Rb vapour in a single-mirror feedback system. Internal report, 2006. [Google Scholar]
- Glückstad, J.; Saffman, M. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity. Opt. Lett.
**1995**, 20, 551–553. [Google Scholar] [CrossRef] - Aumann, A.; Große Westhoff, E.; Herrero, R.; Ackemann, T.; Lange, W. Interplay of dispersion and absorption in a new optical pattern-forming system. J. Opt. B
**1999**, 1, 166–170. [Google Scholar] [CrossRef] - Neubecker, R.; Oppo, G.L.; Thuering, B.; Tschudi, T. Pattern formation in a liquid crystal light valve with feedback, including polarization, saturation, and internal threshold effects. Phys. Rev. A
**1995**, 52, 791–808. [Google Scholar] [CrossRef] - Ackemann, T.; Aumann, A.; Große Westhoff, E.; Logvin, Y.A.; Lange, W. Polarization degrees of freedom in optical pattern forming systems: Alkali metal vapor in a single-mirror arrangement. J. Opt. B
**2001**, 3, S124–S132. [Google Scholar] [CrossRef] - Le Berre, M.; Leduc, D.; Ressayre, E.; Tallet, A.; Maître, A. Simulation and analysis of the flower-like instability in the single-feedback mirror experiment with rubidium vapor. Opt. Commun.
**1995**, 118, 447–456. [Google Scholar] [CrossRef] - Skupin, S.; Saffman, M.; Królikowski, W. Nonlocal Stabilization of Nonlinear Beams in a Self-Focusing Atomic Vapor. Phys. Rev. Lett.
**2007**, 98, 263902. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ackemann, T. Spontane Musterbildung in Einem Atomaren Dampf mit Optischer Rückkopplung. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 1996. [Google Scholar]
- Ashkin, A.; Dziedzic, J.M.; Smith, P.W. Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. Opt. Lett.
**1982**, 7, 276–279. [Google Scholar] [CrossRef] - Saffman, M. Self-induced dipole force and filamentation instability of a matter wave. Phys. Rev. Lett.
**1998**, 81, 65–68. [Google Scholar] [CrossRef][Green Version] - Donner, T.; (ETH Zürich, Zürich, Switzerland). Personal communication, 2019.
- O’Dell, D.H.J.; Giovanazzi, S.; Kurizki, G. Rotons in Gaseous Bose-Einstein Condensates Irradiated by a Laser. Phys. Rev. Lett.
**2003**, 90, 110402. [Google Scholar] [CrossRef] [PubMed][Green Version] - Schmittberger, B.L.; Gauthier, D.J. Spontaneous emergence of free-space optical and atomic patterns. New J. Phys.
**2016**, 18, 10302. [Google Scholar] [CrossRef] - Smith, P.W.; Ashkin, A.; Tomlinson, W. Four-wave mixing in an artificial Kerr medium. Opt. Lett.
**1981**, 6, 284–286. [Google Scholar] [CrossRef] - Man, W.; Fardad, S.; Zhang, Z.; Prakash, J.; Lau, M.; Zhang, P.; Heinrich, M.; Christodoulides, D.N.; Chen, Z. Optical Nonlinearities and Enhanced Light Transmission in Soft-Matter Systems with Tunable Polarizabilities. Phys. Rev. Lett.
**2013**, 111, 218302. [Google Scholar] [CrossRef][Green Version] - Reece, P.J.; Wright, E.M.; Dholakia, K. Experimental Observation of Modulation Instability and Optical Spatial Soliton Arrays in Soft Condensed Matter. Phys. Rev. Lett.
**2007**, 98, 203902. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bobkova, V.; Goenner, A.; Denz, C. Pattern formation in colloids driven by optical single feedback. In Proceedings of the European Quantum Electronics Conference-EQEC 2021, Virtual Conference, 21–25 June 2021. Paper EF 3.6. [Google Scholar]
- Tesio, E.; Robb, G.R.M.; Oppo, G.L.; Gomes, P.M.; Ackemann, T.; Labeyrie, G.; Kaiser, R.; Firth, W.J. Self-organization in cold atomic gases: A synchronization perspective. Phil. Trans. R. Soc. A
**2014**, 37, 20140002. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tesio, E. Theory of Self-Organisation in Cold Atoms. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 2014. [Google Scholar]
- Gomes, P.M.; Krešić, I.; Ackemann, T. University of Strathclyde: Glasgow, UK, 2015; Unpublished.
- Bonifacio, R.; Cola, M.M.; Piovella, N.; Robb, G.R.M. A quantum model for collective recoil lasing. Europhys. Lett.
**2005**, 69, 55–60. [Google Scholar] [CrossRef] - Andreev, A.F.; Lifshitz, I.M. Quantum theory of defects in crystals. Sov. Phys. JETP
**1969**, 29, 1107–1113. [Google Scholar] - Kim, E.; Chan, M.H.W. Probable observation of a supersolid helium phase. Nature
**2004**, 427, 225–227. [Google Scholar] [CrossRef] - Kim, D.Y.; Chan, M.H.W. Absence of Supersolidity in Solid Helium in Porous Vycor Glass. Phys. Rev. Lett.
**2012**, 109, 155301. [Google Scholar] [CrossRef][Green Version] - Kadau, H.; Schmitt, M.; Wenzel, M.; Wink, C.; Maier, T.; Ferrier-Barbut, I.; Pfau, T. Observing the Rosensweig instability of a quantum ferrofluid. Nature
**2016**, 530, 194. [Google Scholar] [CrossRef] - Böttcher, F.; Schmidt, J.N.; Wenzel, M.; Hertkorn, J.; Guo, M.; Langen, T.; Pfau, T. Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys. Rev. X
**2019**, 9, 011051. [Google Scholar] [CrossRef][Green Version] - Chomaz, L.; Petter, D.; Ilzhöfer, P.; Natale, G.; Trautmann, A.; Politi, C.; Durastante, G.; van Bijnen, R.M.; Patscheider, A.; Sohmen, M.; et al. Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X
**2019**, 9, 021012. [Google Scholar] [CrossRef][Green Version] - Li, J.R.; Lee, J.; Huang, W.; Burchesky, S.; Shteynas, B.; Top, F.C.; Jamison, A.O.; Ketterle, W. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature
**2017**, 543, 91–94. [Google Scholar] [CrossRef] [PubMed] - Robb, G.R.M.; Walker, J. University of Strathclyde: Glasgow, UK, 2019; Unpublished.
- Bespalov, V.I.; Talanov, V.I. Filamentary structure of light beams in nonlinear liquids. JETP Lett.
**1966**, 3, 307–310. [Google Scholar] - Nguyen, J.H.V.; Luo, D.; Hulet, R.G. Formation of matter-wave soliton trains by modulational instability. Science
**2017**, 356, 422–426. [Google Scholar] [CrossRef] [PubMed][Green Version] - Abbi, S.C.; Mahr, H. Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett.
**1971**, 26, 604. [Google Scholar] [CrossRef] - Zhang, Y.; Maucher, F.; Pohl, T. Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates. Phys. Rev. Lett.
**2019**, 123, 015301. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.C.; Walther, V.; Pohl, T. Self-bound droplet clusters in laser-driven Bose-Einstein condensates. Phys. Rev. A
**2020**, 103, 023308. [Google Scholar] [CrossRef] - Kastler, A. Optical methods of atomic orientation and of magnetic resonance. J. Opt. Soc. Am.
**1957**, 47, 460–465. [Google Scholar] [CrossRef] - Omont, A. Irreducible components of the density matrix. Application to optical pumping. Prog. Quantum Electron.
**1977**, 69, 5. [Google Scholar] [CrossRef] - Mitschke, F.; Deserno, R.; Lange, W.; Mlynek, J. Magnetically induced optical self-pulsing in a nonlinear resonator. Phys. Rev. A
**1986**, 33, 3219–3231. [Google Scholar] [CrossRef] - Krešić, I. Self-Organized Magnetization Patterns in Cold Atoms. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 2017. [Google Scholar]
- Costa Boquete, A.; Baio, G.; Robb, G.R.M.; Oppo, G.L.; Griffin, P.; Ackemann, T. Spontaneous atomic crystallization via diffractive dephasing in optical cavities. J. Phys. Conf. Ser.
**2021**, 1919, 012014. [Google Scholar] [CrossRef] - Sachdev, S. Quantum Phase Transitions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Dutta, A.; Aeppli, G.; Chakrabarti, B.K.; Divakaran, U.; Rosenbaum, T.F.; Sen, D. Quantum Phase Transitions in Transverse Field Spin Models; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Jozef Strečka, J.; Jaščur, M. A brief account of the Ising and Ising-like models: Mean-field, effective-field and exact results. Acta Phys. Slovaca
**2015**, 65, 235–367. [Google Scholar] - Wojciechowski, A.; Corsini, E.; Zachorowski, J.; Gawlik, W. Nonlinear Faraday rotation and detection of superposition states in cold atoms. Phys. Rev. A
**2010**, 81, 053420. [Google Scholar] [CrossRef][Green Version] - Labeyrie, G.; Miniatura, C.; Kaiser, R. Large Faraday rotation of resonant light in a cold atomic cloud. Phys. Rev. A
**2001**, 64, 033402. [Google Scholar] [CrossRef][Green Version] - Gollwitzer, C.; Rehberg, I.; Richter, R. From phase space representation to amplitude equations in a pattern-forming experiment. New J. Phys.
**2010**, 12, 093037. [Google Scholar] [CrossRef][Green Version] - Aumann, A.; Büthe, E.; Logvin, Y.A.; Ackemann, T.; Lange, W. Polarized patterns in sodium vapor with single mirror feedback. Phys. Rev. A
**1997**, 56, R1709–R1712. [Google Scholar] [CrossRef] - Aumann, A. Optical Patterns and Quasipatterns in an Alkali Metal Vapor with Feedback. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 1999. [Google Scholar]
- Aumann, A.; Große Westhoff, E.; Ackemann, T.; Lange, W. Magnetic field control over microscopic symmetry properties of an optical pattern-forming system: Experiment. J. Opt. B Quantum Semiclass. Opt.
**2000**, 2, 421–425. [Google Scholar] [CrossRef] - Scroggie, A.J. Spontaneous Optical Patterns in Two-And Four Level Atomic Systems. Ph.D. Thesis, Department of Physics, University of Strathclyde, Glasgow, UK, 1995. [Google Scholar]
- Scroggie, A.J.; Firth, W.J. Pattern formation in an alkali-metal vapor with a feedback mirror. Phys. Rev. A
**1996**, 53, 2752–2764. [Google Scholar] [CrossRef] [PubMed] - Aumann, A.; Ackemann, T.; Lange, W. Selection between hexagonal, square and stripe patterns in a polarization instability: An experimental investigation. Ann. Phys.
**2004**, 13, 379–390. [Google Scholar] [CrossRef] - Logvin, Y.A.; Schäpers, B.; Ackemann, T. Stationary and drifting localized structures near a multiple bifurcation point. Phys. Rev. E
**2000**, 61, 4622–4625. [Google Scholar] [CrossRef][Green Version] - Leduc, D.; Le Berre, M.; Ressayre, E.; Tallet, A. Quasipatterns in a polarization instability. Phys. Rev. A
**1996**, 53, 1072–1080. [Google Scholar] [CrossRef] - Sanchez-Palencia, L.; Santos, L. Bose-Einstein condensates in optical quasicrystal lattices. Phys. Rev. A
**2005**, 72, 053607. [Google Scholar] [CrossRef][Green Version] - Viebahn, K.; Sbroscia, M.; Carter, E.; Yu, J.C.; Schneider, U. Matter-Wave Diffraction from a Quasicrystalline Optical Lattice. Phys. Rev. Lett.
**2019**, 122, 110404. [Google Scholar] [CrossRef][Green Version] - Mivehvar, F.; Ritsch, H.; Piazza, F. Emergent Quasicrystalline Symmetry in Light-Induced Quantum Phase Transitions. Phys. Rev. Lett.
**2019**, 123, 210604. [Google Scholar] [CrossRef][Green Version] - Leduc, D.; Le Berre, M.; Ressayre, E.; Tallet, A. Bifurcation from 8-fold orientational order quasipattern in a polarization instability device. Opt. Commun.
**1996**, 130, 181–191. [Google Scholar] [CrossRef] - Aumann, A.; Ackemann, T.; Große Westhoff, E.; Lange, W. Eight-fold quasipatterns in an optical pattern-forming system. Phys. Rev. E
**2002**, 66, 046220. [Google Scholar] [CrossRef] - Le Berre, M.; Leduc, D.; Ressayre, E.; Tallet, A. Optical quasipatterns and multicriticality. Asian J. Phys.
**1998**, 7, 483–494. [Google Scholar] - Herrero, R.; Große Westhoff, E.; Aumann, A.; Ackemann, T.; Logvin, Y.A.; Lange, W. Twelvefold quasiperiodic patterns in a nonlinear optical system with continuous rotational symmetry. Phys. Rev. Lett.
**1999**, 82, 4627–4630. [Google Scholar] [CrossRef] - Vorontsov, M.A. Akhseals: New class of spatio-temporal instabilities of optical fields. Quantum Electron.
**1993**, 23, 269–271. [Google Scholar] [CrossRef] - Pampaloni, E.; Ramazza, P.L.; Residori, S.; Arecchi, F.T. Two-dimensional crystals and quasicrystals in nonlinear optics. Phys. Rev. Lett.
**1995**, 74, 258–261. [Google Scholar] [CrossRef] [PubMed] - Große Westhoff, E.; Herrero, R.; Ackemann, T.; Lange, W. Self-organized superlattice patterns with two slightly differing wave numbers. Phys. Rev. E
**2003**, 67, 025293. [Google Scholar] [CrossRef] [PubMed][Green Version] - D’Alessandro, G.; Firth, W.J. Hexagonal spatial pattern for a Kerr slice with a feedback mirror. Phys. Rev. A
**1992**, 46, 537–548. [Google Scholar] [CrossRef] [PubMed] - Baio, G.; Robb, G.R.M.; Yao, A.M.; Oppo, G.L.; Ackemann, T. Multiple self-organized phases and spatial solitons in cold atoms mediated by optical feedback. Phys. Rev. Lett.
**2021**, 126, 203201. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Pohl, T.; Maucher, F. Phases of supersolids in confined dipolar Bose-Einstein condensates. arXiv
**2021**, arXiv:2103.12688. [Google Scholar] - Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys.
**2005**, 77, 633. [Google Scholar] [CrossRef][Green Version] - Oppo, G.L. Complex spatial structures due to atomic coherence. J. Mod. Opt.
**2010**, 57, 1408–1416. [Google Scholar] [CrossRef] - Eslami, M.; Kheradmand, R.; McArthur, D.; Oppo, G.L. Complex structures in media displaying electromagnetically induced transparency: Pattern multistability and competition. Phys. Rev. A
**2014**, 90, 023840. [Google Scholar] [CrossRef][Green Version] - Vudyasetu, P.K.; Camacho, R.M.; Howell, J.C. Storage and Retrieval of Multimode Transverse Images in Hot Atomic Rubidium Vapor. Phys. Rev. Lett.
**2008**, 100, 123903. [Google Scholar] [CrossRef][Green Version] - Shuker, M.; Firstenberg, O.; Pugatch, R.; Ron, A.; Davidson, N. Storing Images in Warm Atomic Vapor. Phys. Rev. Lett.
**2008**, 100, 223601. [Google Scholar] [CrossRef][Green Version] - Heinze, G.; Hubrich, C.; Halfmann, T. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Phys. Rev. Lett.
**2013**, 111, 033601. [Google Scholar] [CrossRef][Green Version] - Ding, D.S.; Zhou, Z.Y.; Shi, B.S.; Guo, G.C. Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun.
**2013**, 4, 2527. [Google Scholar] [CrossRef] [PubMed][Green Version] - Radwell, N.; Clark, T.W.; Piccirillo, B.; Barnett, S.M.; Franke-Arnold, S. Spatially Dependent Electromagnetically Induced Transparency. Phys. Rev. Lett.
**2015**, 114, 123603. [Google Scholar] [CrossRef] [PubMed][Green Version] - Budker, D.; Gawlik, W.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.; Weis, A. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys.
**2002**, 74, 1153–1201. [Google Scholar] [CrossRef][Green Version] - Weis, A.; Bison, G.; Pazgalev, A.S. Theory of double resonance magnetometers based on atomic alignment. Phys. Rev. A
**2006**, 74, 033401. [Google Scholar] [CrossRef][Green Version] - Ingleby, S.J.; O’Dwyer, C.; Griffin, P.F.; Arnold, A.S.; Riis, E. Orientational effects on the amplitude and phase of polarimeter signals in double-resonance atomic magnetometry. Phys. Rev. A
**2017**, 96, 013429. [Google Scholar] [CrossRef][Green Version] - Ingleby, S.J.; O’Dwyer, C.; Griffin, P.F.; Arnold, A.S.; Riis, E. Vector Magnetometry Exploiting Phase-Geometry Effects in a Double-Resonance Alignment Magnetometer. Phys. Rev. Appl.
**2018**, 10, 034035. [Google Scholar] [CrossRef][Green Version] - Stenger, J.; Inouyre, S.; Stamper-Kurn, D.M.; Miesner, H.J.; Chikkatur, A.P.; Ketterle, W. Spin domains in ground-state Bose-Einstein condensates. Nature
**1998**, 396, 345–348. [Google Scholar] [CrossRef][Green Version] - Sadler, L.E.; Higbie, J.M.; Leslie, S.R.; Vengalattore, M.; Stamper-Kurn, D.M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate. Nature
**2006**, 443, 312. [Google Scholar] [CrossRef][Green Version] - Jacob, D.; Shao, L.; Corre, V.; Zibold, T.; De Sarlo, L.; Mimoun, E.; Dalibard, J.; Gerbier, F. Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates. Phys. Rev. A
**2012**, 86, 061601(R). [Google Scholar] [CrossRef][Green Version] - Pechkis, H.K.; Wrubel, J.P.; Schwettmann, A.; Griffin, P.F.; Barnett, R.; Tiesinga, E.; Lett, P. Spinor Dynamics in an Antiferromagnetic Spin-1 Thermal Bose Gas. Phys. Rev. Lett.
**2013**, 111, 025301. [Google Scholar] [CrossRef][Green Version] - Anquez, M.; Robbins, B.A.; Bharath, H.; Boguslawski, M.; Hoang, T.M.; Chapman, M.S. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate. Phys. Rev. Lett.
**2016**, 116, 155301. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bonifacio, R.; Lugiato, L.A. Optical bistability and cooperative effects in resonance fluorescence. Phys. Rev. A
**1978**, 18, 1129–1144. [Google Scholar] [CrossRef] - Guerin, W.; Araújo, M.O.; Kaiser, R. Subradiance in a Large Cloud of Cold Atoms. Phys. Rev. Lett.
**2016**, 116, 083601. [Google Scholar] [CrossRef] [PubMed] - Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Lugiato, L.A.; Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett.
**1987**, 58, 2209–2211. [Google Scholar] [CrossRef] - Tlidi, M.; Georgiou, M.; Mandel, P. Transverse patterns in nascent optical bistability. Phys. Rev. A
**1993**, 48, 4605–4609. [Google Scholar] [CrossRef] [PubMed] - Firth, W.J.; Scroggie, A.J. Spontaneous Pattern Formation in an Absorptive System. Europhys. Lett.
**1994**, 26, 521–526. [Google Scholar] [CrossRef] - Martin, R.; Scroggie, A.J.; Oppo, G.L.; Firth, W.J. Stabilization, selection and tracking of unstable patterns by Fourier space techniques. Phys. Rev. Lett.
**1996**, 77, 4007–4010. [Google Scholar] [CrossRef] [PubMed] - Baio, G.; Robb, G.R.M.; Yao, A.M.; Oppo, G.L. Optomechanical transport of cold atoms induced by structured light. Phys. Rev. Res.
**2020**, 2, 023126. [Google Scholar] [CrossRef] - Kreuzer, M.; Balzer, W.; Tschudi, T. Formation of spatial structures in bistable optical elements containing nematic liquid crystals. Appl. Opt.
**1990**, 29, 579–582. [Google Scholar] [CrossRef] - Ackemann, T.; Barland, S.; Tredicce, J.R.; Cara, M.; Balle, S.; Jäger, R.; Grabherr, P.M.; Miller, M.; Ebeling, K.J. Spatial structure of broad-area vertical-cavity regenerative amplifiers. Opt. Lett.
**2000**, 25, 814–816. [Google Scholar] [CrossRef][Green Version] - Hoogland, S.; Baumberg, J.J.; Coyle, S.; Baggett, J.; Coles, M.J.; Coles, H.J. Self-organized patterns and spatial solitons in liquid-crystal microcavities. Phys. Rev. A
**2002**, 66, 055801. [Google Scholar] [CrossRef] - Arnaud, J.A. Degenerate optical cavities. Appl. Opt.
**1969**, 8, 189–195. [Google Scholar] [CrossRef] [PubMed] - Huyet, G.; Martinoni, M.C.; Tredicce, J.R.; Rica, S. Spatiotemporal dynamics of lasers with a large Fresnel number. Phys. Rev. Lett.
**1995**, 75, 4027–4030. [Google Scholar] [CrossRef] [PubMed][Green Version] - Staliunas, K.; Slekys, G.; Weiss, C.O. Nonlinear pattern formation in active optical systems: Shocks, domains of tilted waves, and cross-roll patterns. Phys. Rev. Lett.
**1997**, 79, 2658–2661. [Google Scholar] [CrossRef] - Lippi, G.L.; Ackemann, T.; Hoffer, L.M.; Lange, W. Transverse structures in a sodium-filled Fabry-Perot resonator. I. Experimental results: Symmetries and the role of the incoupling conditions. Chaos Solitons Fractals
**1994**, 4, 1409–1431. [Google Scholar] [CrossRef] - Lippi, G.L.; Ackemann, T.; Hoffer, L.M.; Lange, W. Transverse structures in a sodium-filled Fabry-Perot resonator. II. Interpretation of experimental results. Chaos Solitons Fractals
**1994**, 4, 1433–1449. [Google Scholar] [CrossRef] - Landini, M.; Dogra, N.; Kroeger, K.; Hruby, L.; Donner, T.; Esslinger, T. Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity. Phys. Rev. Lett.
**2018**, 120, 223602. [Google Scholar] [CrossRef][Green Version] - Braverman, B.; Kawasaki, A.; Pedrozo-Peñafiel, E.; Colombo, S.; Shu, C.; Li, Z.; Mendez, E.; Yamoah, M.; Salvi, L.; Akamatsu, D.; et al. Near-Unitary Spin Squeezing in
^{171}Yb. Phys. Rev. Lett.**2018**, 122, 223203. [Google Scholar] [CrossRef][Green Version] - Whiting, D.J.; Sibalić, N.; Keaveney, J.; Adams, C.S.; Hughes, I.G. Single-Photon Interference due to Motion in an Atomic Collective Excitation. Phys. Rev. Lett.
**2017**, 118, 253601. [Google Scholar] [CrossRef][Green Version] - Santić, N.; Fusaro, A.; Salem, S.; Garnier, J.; Picozzi, A.; Kaiser, R. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors. Phys. Rev. Lett.
**2018**, 120, 055301. [Google Scholar] [CrossRef][Green Version] - Fontaine, Q.; Bienaimé, T.; Pigeon, S.; Giacobino, E.; Bramati, A.; Glorieux, Q. Observation of the Bogoliubov Dispersion in a Fluid of Light. Phys. Rev. Lett.
**2018**, 121, 183604. [Google Scholar] [CrossRef][Green Version] - Jäger, S.B.; Xu, M.; Schütz, S.; Holland, M.J.; Morigi, G. Semiclassical theory of synchronization-assisted cooling. Phys. Rev. A
**2017**, 95, 063852. [Google Scholar] [CrossRef][Green Version] - Jungkind, A.; Niedenzu, W.; Ritsch, H. Optomechanical cooling and self-trapping of low field seeking point-like particles. J. Opt. B
**2019**, 52, 165003. [Google Scholar] [CrossRef][Green Version] - Dawes, A.M.C.; Illing, L.; Clark, S.M.; Gauthier, D.J. All-Optical Switching in Rubidium Vapor. Science
**2005**, 308, 672–674. [Google Scholar] [CrossRef][Green Version] - Gupta, S.; Moore, K.L.; Murch, K.W.; Stamper-Kurn, D.M. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion. Phys. Rev. Lett.
**2007**, 99, 213601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hertkorn, J.; Schmidt, J.N.; Guo, M.; Böottcher, F.; Ng, K.; Graham, S.; Uerlings, P.; Langen, T.; Zwierlein, M.; Pfau, T. Pattern Formation in Quantum Ferrofluids: From Supersolids to Superglasses. arXiv
**2021**, arXiv:2103.13930. [Google Scholar] - Norcia, M.A.; Politi, C.; Klaus, L.; Poli, E.; Sohmen, M.; Mark, M.J.; Bisset, R.; Santos, L.; Ferlaino, F. Two-dimensional supersolidity in a dipolar quantum gas. arXiv
**2021**, arXiv:2102.05555. [Google Scholar] - Masalaeva, N.; Niedenzu, W.; Mivehvar, F.; Ritsch, H. Spin and density self-ordering in dynamic polarization gradients. Phys. Rev. Res.
**2002**, 3, 013173. [Google Scholar] [CrossRef] - Gisbert, A.T.; Piovella, N. Multimode Collective Atomic Recoil Lasing. Atoms
**2020**, 8, 93. [Google Scholar] [CrossRef]

**Figure 1.**Scheme of feedback experiment: A coherent pump beam drives an atomic cloud of size L with a plane feedback mirror at a distance d. Pump photons are scattered by a spatial structure with period $\mathsf{\Lambda}$ in the cloud into sidebands at an angle $\theta $. Interference of these sidebands forms an optical lattice sustaining the spatial structure in the cloud. The sidebands can be visualized by looking at the far field of the transmitted light as obtained in the focal plane of a lens. The inset shows an example for an experimentally observed far field (FF) intensity distribution showing transverse Fourier space (displayed span −8.5 to 8.5 mrad around optical axis). The upper panel illustrate how the phase modulation arising after the cloud is diminishing during propagation whereas an amplitude modulation (lower panel) builds up by diffractive dephasing. At a distance $2d$ the amplitude modulation is fully developed and the phase is flat. Here, the transmitted light has the same spatial structure as the retro-reflected feedback beam re-entering the atomic cloud. This near field (NF) intensity distribution can be imaged onto a camera (example shown in lower right inset, displayed range 2 mm). Parameters for images: input intensity 129 mW/cm${}^{2}$, detuning $\Delta =7\mathsf{\Gamma}$, saturation parameter $s\approx 0.18$, dominantly optomechanical nonlinearity.

**Figure 2.**Illustration of feedback loop for single-mirror feedback. The x-axis shows transverse space in periods of the pattern. The y-axis denotes amplitude, but via the vertical displacements also propagation distance. The two light grey regions represent the atomic cloud as encountered by the forward beam (bottom) and the backwards beam reentering the cloud (top) after propagating to the mirror and back (distance $2d$, indicated by black arrow). The thick black line indicates a modulation of an atomic state variable, here for concreteness the population ${\rho}_{ee}$ of the excited state. The red line shows the resulting modulation of the refractive index. The green line indicates the phase of the transmitted beam just after traversing the cloud. The blue line indicates the amplitude modulation created in the backward beam by diffractive dephasing. (

**a**) Blue detuning: After a quarter of the Talbot distance intensity maxima in the backward beam are aligned with refractive index maxima (blue arrow) providing positive feedback for a self-focusing nonlinearity. (

**b**) Red detuning: After a three quarters of the Talbot distance intensity maxima in the backward beam are aligned with refractive index minima (red arrow) providing positive feedback for a self-defocusing nonlinearity. Hence, the period of the spatial modulation in the cloud experiencing maximum positive feedback for a given mirror distance d is reduced by a factor $\sqrt{3}$.

**Figure 3.**Examples of hexagonal patterns observed in a parameter range in which optomechanical and electronic nonlinearities are both present. The different structures appeared in different realizations of the experiment under nominally the same experimental conditions illustrating spontaneous symmetry breaking. (

**a**–

**c**) differ in the orientation of hexagonal axes. This difference is very small between (

**a**,

**b**) (the red line indicating an axis in (

**a**) is not aligned with a row of spots in (

**b**)), but very obvious between (

**a**)/(

**b**) and (

**c**). (

**d**) contains two different domains consisting of the hexagons in (

**a**,

**c**) with a defect line in between them. Parameters: ${I}_{\mathrm{in}}=250\phantom{\rule{3.33333pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}$ mW/cm${}^{2}$, $\delta =+7\phantom{\rule{0.166667em}{0ex}}\mathsf{\Gamma}$, and $d=5$ mm.

**Figure 5.**Diffracted energy in sidebands vs. optical density in line centre for optomechanical (red circles), electronic 2-level (blue triangles) and optical pumping nonlinearities (black squares). Each subset of data is normalized to its maximal value. For the optomechanical and electronic case the raw data are from Figure S1 of [44] and pulse duration is used to distinguished between them (see Section 3): short pulses ($1\phantom{\rule{0.166667em}{0ex}}$ μs, blue triangles), long pulses ($200\phantom{\rule{0.166667em}{0ex}}$ μs, red circles). Parameters: $\Delta =+6\mathsf{\Gamma}$, $I=487\phantom{\rule{0.166667em}{0ex}}$ mW/cm${}^{2}$. Optical density is varied by varying duration of thermal expansion of the cloud by introducing a controlled delay between MOT turn-off and pump pulse. For the optical pumping nonlinearity, parameters are $\Delta =-12\phantom{\rule{0.166667em}{0ex}}\mathsf{\Gamma}$, $I=3.6$ mW/cm${}^{2}$, pump duration 0.5 ms. The optical density is varied by adjusting the repumper power before the MOT is turned off.

**Figure 6.**Illustration of feedback loop for single-mirror feedback for optomechanical interactions (see caption of Figure 2 for general explanation). Black line in atomic cloud denotes atomic density. (

**a**) Blue detuning ($\Delta >0$): Atoms are low field seekers and hence atomic and intensity structures are complementary (atomic troughs align with intensity peaks, situation of experiment described in [44]). (

**b**) Red detuning ($\Delta <0$): Atoms are high field seekers and hence atomic and intensity structures are aligned. Note that the nonlinearity is self-focusing also for red and blue detuning and the instability exists for both signs of the detuning (similar to [75] for the case of single-pass propagation).

**Figure 7.**(

**a**) Level structure of $F=2\to {F}^{\prime}=3$ hyperfine transition line of ${D}_{2}$-line of ${}^{87}$Rb. Red (blue) arrows indicate transitions via ${\sigma}_{+}$ (${\sigma}_{-}$) light with Rabi frequencies ${\mathsf{\Omega}}_{+}$ (${\mathsf{\Omega}}_{-}$) with strength relative to the strongest transitions between the stretched states. A longitudinal magnetic field with Larmor frequency ${\mathsf{\Omega}}_{z}$ splits the Zeeman sublevels. For simplicity, the $g-$factor for the ground state is assumed to apply also for the excited state. Transverse magnetic fields ${\mathsf{\Omega}}_{x}$, ${\mathsf{\Omega}}_{y}$ will induce coherences between Zeeman sublevels (for simplicity only one is shown). (

**b**) Reduced scheme of a $F=1\to {F}^{\prime}=2$ transition used in the theoretical description. It includes the possibility of orientation (irreducible tensor rank 1) and alignment (rank 2) states in the ground state. (

**c**) Further reduced scheme of a $F=1/2\to {F}^{\prime}=3/2$ transition keeping only the possibility of an orientation. In this situation, it is illustrated that an orientation with an increased population in the state with $m<0$ leads to a back-action on the light increasing absorption and phase shift for the ${\sigma}_{-}$-component. This orientation can be created by a dominance of ${\sigma}_{-}$- over ${\sigma}_{+}$-light, or for linearly polarized light by the incoherent Faraday effect.

**Figure 8.**Polarization states on Poincaré sphere (

**upper row**) and illustrations of magnetic states (

**lower row**) coupling to them. Red denotes south pole, blue north pole (for positive irreducible components). Leftmost column: A light beam with helicity, i.e., non-zero ${S}_{3}$ (out of the equatorial plane), will generate a magnetic dipole corresponding to an orientation w. The second left column illustrate a magnetic quadrupole with principle axis aligned to the z-axis corresponding to a longitudinal alignment X. It is driven by the total intensity ${S}_{0}$ independent of the polarization state. The remaining three columns illustrate quadrupoles in the x-y-plane driven by linearly polarized light in the equatorial plane of the Poincaré sphere. These correspond to the $\Delta m=2$-coherence $\mathsf{\Phi}$ in the atom representing a transverse alignment. Light polarized along the x-direction (centre column, pump polarization used in experiments) just drives the real part u of the coherence represented by a quadrupole with one (north) of the principal axes along the x-direction and the other along y. Light polarized at 45${}^{\circ}$ drives the imaginary part v with the north principal axis oriented at 45${}^{\circ}$. In general, light with a phase ${\varphi}_{L}$ between $\sigma $ components (second to right column) drives a quadrupole with north principle axis at the polarization angle ${\varphi}_{Q}={\varphi}_{p}={\varphi}_{L}/2$ (conventional optics notation, $({\varphi}_{L}-\pi )/2$ in convention used in our theoretical description).

**Figure 9.**Illustration of feedback loop for single-mirror feedback for magnetic dipole interactions (see caption of Figure 2 for general explanation). Black line: orientation w. For red detuning: red (magenta) line: refractive index for ${\sigma}_{-}$ (${\sigma}_{+}$) light, light (dark) green line: phase modulation of transmitted ${\sigma}_{-}$ (${\sigma}_{+}$) beam, dark (light) blue: intensity of ${\sigma}_{-}$ (${\sigma}_{+}$) beam after a quarter of the Talbot distance, orange: difference pump rate D.

**Figure 10.**Spontaneous antiferromagnetic ordering for ${B}_{x}={B}_{y}={B}_{z}=0$. (

**a**,

**b**): NF intensity pattern of the ${\sigma}^{+}$ and ${\sigma}^{-}$ components. (

**c**), NF intensity difference of the ${\sigma}^{+}$ and ${\sigma}^{-}$ components. (

**d**) Spatial structure of the orientation w obtained from numerical simulation. (

**e**) example for FF intensity distribution experimentally observed (not the same realization as in (

**a**–

**c**)). (

**f**) Numerically obtained Fourier spectrum of w. Parameter of experiment: ${b}_{0}=80$, $\delta =-8\mathsf{\Gamma}$, $I=10$ mW/cm${}^{2}$, $d=-20$ mm. (subpanels (

**a**–

**d**) adapted from [49]).

**Figure 11.**Illustration of feedback loop for single-mirror feedback for quadrupole interactions (see caption of Figure 2 for general explanation). Black line: modulation of imaginary part of coherences v. For red detuning: light (dark) green line: amplitude modulation of transmitted beam for ${\sigma}_{-}$ (${\sigma}_{+}$), light (dark) blue: phase of ${\sigma}_{-}$ (${\sigma}_{+}$) after a quarter of the Talbot distance, orange line: relative phase between circular polarization components ${\varphi}_{L}$ and modulated polarization direction.

**Figure 12.**Example for coherence-based structure detected in channel perpendicular to input polarization. (

**a**,

**b**): Near field intensity structures. (

**c**,

**d**): Far field intensity displaying Fourier spectrum (not obtained in same realizations as in (

**a**,

**b**)). Parameters: pump intensity 7 mW/cm${}^{2}$, detuning $\Delta =-12\mathsf{\Gamma}$, ${b}_{0}=110$. The field of view is 4.4 mm for the NF and 16 mrad for the FF images.

**Figure 13.**Examples for numerically obtained structures. (

**a**,

**c**): Near field intensity structures. (

**b**,

**d**): Corresponding far field intensity displaying Fourier spectra. Parameters ${B}_{x}=0.76$ G, ${B}_{y}={B}_{z}=0$, ${b}_{0}=130$, $\Delta =-12\mathsf{\Gamma}$, pump intensity 6.8 mW/cm${}^{2}$. The difference between the two realization is the size of the integration domain relative to the lattice period.

**Figure 14.**Upper row: Spatial distribution of atomic variables corresponding to the structures in Figure 13c: (

**a**) real part of coherence u, (

**b**) imaginary part of coherence v, (

**c**) orientation w, Lower row: Stokes parameters of backward beam, (

**d**) ${S}_{1}$, (

**e**) ${S}_{2}$, (

**f**) ${S}_{3}$.

**Figure 15.**(

**a**) 1D cut through 2D profiles of localized perturbation of atomic state (black, scaled to match the feedback pump rate in peak for presentation purposes) and resulting perturbation (i.e., without the homogeneous background) in the pump rate of backward beam (blue) after one round trip in feedback loop. The central lobe leads to the self-enhancement of the instability, the first side lobes to an enhancement at neighbouring lattice sites. Transverse space is measured in periods of the periodic lattice. The calculations are done in 2D and only profiles are presented. (

**b**) Feedback pump rate for different optical densities in line centre ${b}_{0}$ in logarithmic scale. (

**c**) Peak values of central (black squares) and first lopes (red circles) for different optical densities in line centre ${b}_{0}$ in logarithmic scale. For all panels the atomic perturbation has been small (0.1), homogeneous input pump rate $P=1$, detuning $7\mathsf{\Gamma}$, $R=1$. ${b}_{0}=1$ in (

**a**). (

**d**) 1D calculations of perturbation of backward pump rate being a factor of m narrower than in (

**a**). Results are then normalized by dividing by pump rate in centre $x=0$.

**Figure 16.**(

**a**) Scheme of a cavity of length L driven by a coherent input field and containing a cloud of cold atoms in the centre. A modulation of an atomic state variable of period $\mathsf{\Lambda}$ leads to scattering of the pump into sidebands at an angle $\theta $. The interference of these sidebands sustains the structure in the cloud. (

**b**) Light with a wavevector k larger than the resonant cavity wavevector ${k}_{c}$ can reestablish resonance by tilting to a suitable angle $\theta $. (

**c**) Plano-planar cavity with two afocal telescopes with diffractive properties equivalent to plano-planar cavity of reduced diffractive length.

**Figure 17.**Perturbation of atomic state variable (black line) proportional to refractive index and resulting perturbation (scaled to meet perturbation amplitude for purpose of visualization) in intra-cavity intensity after a time corresponding to five times the inverse of the cavity decay rate (see text and Figure 15 for details of the procedure). Parameters: pump intensity 1.05 above threshold; cavity detuning zero, $\Delta =-10\phantom{\rule{0.166667em}{0ex}}\mathsf{\Gamma}$, cooperativity parameter $C=0.0125$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ackemann, T.; Labeyrie, G.; Baio, G.; Krešić, I.; Walker, J.G.M.; Costa Boquete, A.; Griffin, P.; Firth, W.J.; Kaiser, R.; Oppo, G.-L.;
et al. Self-Organization in Cold Atoms Mediated by Diffractive Coupling. *Atoms* **2021**, *9*, 35.
https://doi.org/10.3390/atoms9030035

**AMA Style**

Ackemann T, Labeyrie G, Baio G, Krešić I, Walker JGM, Costa Boquete A, Griffin P, Firth WJ, Kaiser R, Oppo G-L,
et al. Self-Organization in Cold Atoms Mediated by Diffractive Coupling. *Atoms*. 2021; 9(3):35.
https://doi.org/10.3390/atoms9030035

**Chicago/Turabian Style**

Ackemann, Thorsten, Guillaume Labeyrie, Giuseppe Baio, Ivor Krešić, Josh G. M. Walker, Adrian Costa Boquete, Paul Griffin, William J. Firth, Robin Kaiser, Gian-Luca Oppo,
and et al. 2021. "Self-Organization in Cold Atoms Mediated by Diffractive Coupling" *Atoms* 9, no. 3: 35.
https://doi.org/10.3390/atoms9030035