The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules
Abstract
:1. Introduction
2. eEDM Searches in Molecules
2.1. The Effective Electric Field
2.2. eEDM: A Combination of Experiment and Theory
2.3. Choosing a Molecular Candidate
3. Relativistic Many-Body Theory
3.1. The Dirac–Fock Method
3.2. Electron Correlation
3.3. Many-Body Perturbation Theory: Non-Relativistic and Relativistic
4. Relativistic Coupled Cluster Method
4.1. RCCM and MBPT
4.2. The Energy and Amplitude Equations
4.3. The CCSD Approximation
4.4. The Expectation Value Approach
4.5. The Energy Derivative Approach
4.6. Methodology
5. Results
5.1. First Application of RCCM to YbF
5.2. Mercury Halides
5.3. BaF
5.4. Mercury Alkalis
5.5. YbOH
6. Future Prospects
6.1. The Normal Coupled Cluster Method
6.1.1. Amplitude Equations by Variational Principle
6.1.2. The Expectation Value
6.1.3. The Hellmann-Feynman Theorem
6.2. The Analytical Derivative Approach
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Landau, L. On the conservation laws for weak interactions. Nucl. Phys. 1957, 3, 127–131. [Google Scholar] [CrossRef]
- Ballentine, L.E. Quantum Mechanics—A Modern Development; World Scientific Publishing: Singapore, 1998. [Google Scholar]
- Fortson, N.; Sandars, P.; Barr, S. The search for a permanent electric dipole moment. Phys. Today 2003, 56, 33–39. [Google Scholar] [CrossRef]
- Ibrahim, T.; Itani, A.; Nath, P. Electron electric dipole moment as a sensitive probe of PeV scale physics. Phys. Rev. D 2014, 90, 055006. [Google Scholar] [CrossRef] [Green Version]
- Fuyuto, K.; Hisano, J.; Senaha, E. Toward verification of electroweak baryogenesis by electric dipole moments. Phys. Lett. B 2016, 755, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Luders, G. Proof of the TCP theorem. Ann. Phys. 2000, 281, 1004–1018. [Google Scholar] [CrossRef]
- Das, B.P.; Nayak, M.K.; Abe, M.; Prasannaa, V.S. Handbook of Relativistic Quantum Chemistry; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Andreev, V.; Hutzler, N.R. Improved Limit on the Electric Dipole Moment of the Electron. Nature 2018, 562, 355–360. [Google Scholar]
- Cairncross, W.B.; Gresh, D.N.; Grau, M.; Cossel, K.C.; Roussy, T.S.; Ni, Y.Q.; Zhou, Y.; Ye, J.; Cornell, E.A. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 2017, 119, 153001. [Google Scholar] [CrossRef]
- Hudson, J.J.; Kara, D.M.; Smallman, I.J.; Sauer, B.E.; Tarbutt, M.R.; Hinds, E.A. Improved measurement of the shape of the electron. Nature 2011, 473, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Kara, D.M.; Smallman, I.J.; Hudson, J.J.; Sauer, B.E.; Tarbutt, M.R.; Hinds, Ed.A. Measurement of the electron’s electric dipole moment using YbF molecules: Methods and data analysis. New J. Phys. 2012, 14, 103051. [Google Scholar] [CrossRef]
- Aggarwal, P.; Bethlem, H.L.; Borschevsky, A.; Denis, M.; Esajas, K.; Haase, Pi A.B.; Hao, Y.L.; Hoekstra, S.; Jungmann, K.; Meijknecht, T.B.; et al. Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D 2018, 72, 197. [Google Scholar] [CrossRef]
- Vutha, A.C.; Horbatsch, M.; Hessels, E.A. Oriented polar molecules in a solid inert-gas matrix: A proposed method for measuring the electric dipole moment of the electron. Atoms 2018, 6, 3. [Google Scholar] [CrossRef]
- Vutha, A.C.; Horbatsch, M.; Hessels, E.A. Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: A scheme for measuring the electron electric dipole moment. Phys. Rev. A 2018, 98, 032513. [Google Scholar] [CrossRef] [Green Version]
- Kozyryev, I.; Hutzler, N.R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 2017, 119, 133002. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, F. DESY Reports, 006-90 (1990). Available online: https://lib-extopc.kek.jp/preprints/PDF/1990/9003/9003294.pdf (accessed on 10 June 2019).
- Pospelov, M.; Ritz, A. CKM benchmarks for electron electric dipole moment experiments. Phys. Rev. D 2014, 89, 056006. [Google Scholar] [CrossRef]
- Salpeter, E. Some atomic effects of an electronic electric dipole moment. Phys. Rev. 1958, 112, 1642. [Google Scholar] [CrossRef]
- Hunter, L.R. Tests of time-reversal invariance in atoms, molecules, and the neutron. Science 1991, 252, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Schiff, L. Measurability of nuclear electric dipole moments. Phys. Rev. 1963, 132, 2194. [Google Scholar] [CrossRef]
- Abe, M.; Gopakumar, G.; Hada, M.; Das, B.P.; Tatewaki, H.; Mukherjee, D. Application of relativistic coupled-cluster theory to the effective electric field in YbF. Phys. Rev. A 2014, 90, 022501. [Google Scholar] [CrossRef]
- Das, B.P. Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee, D., Ed.; Springer: Berlin, Germany, 1989; p. 411. [Google Scholar]
- Griffiths, D. Introduction to Quantum Mechanics, 2nd ed.; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Sucher, J. Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 1980, 22, 348. [Google Scholar] [CrossRef]
- Dyall, K.G.; Faegri, K., Jr. Introduction to Relativistic Quantum Chemistry; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Stanton, R.E.; Havriliak, S. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem, Phys. 1984, 81, 1910. [Google Scholar] [CrossRef]
- Bishop, R.F.; Kummel, H.G. The coupled-cluster method. Phys. Today 1987, 40, 52. [Google Scholar] [CrossRef]
- Bishop, R.F. Microscopic Quantum Many-Body Theories and Their Applications; Springer: Berlin, Germany, 1997. [Google Scholar]
- Kvasnicka, V.; Laurinc, V.; Biskupic, S. Coupled-cluster approach in electronic structure theory of molecules. Phys. Rep. 1982, 90, 159–202. [Google Scholar] [CrossRef]
- Cizek, J. Advances in Chemical Physics, Volume XIV: Correlation Effects in Atoms and Molecules; Lefebvre, W.C., Moser, C., Eds.; Interscience Publishers: New York, NY, USA, 1969. [Google Scholar]
- Shavitt, I.; Bartlett, R.J. Many Body Methods in Chemistry and Physics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lindgren, I.; Morrison, J. Atomic Many-Body Theory, 2nd ed.; Springer: Berlin, Germany, 1986. [Google Scholar]
- Salter, E.A.; Sekino, H.; Bartlett, R.J.J. Property evaluation and orbital relaxation in coupled cluster methods. Chem. Phys. 1987, 87, 502–509. [Google Scholar] [CrossRef]
- Yanai, T.; Abe, M.; Hirata, S.; Iikura, H.; Inoue, H.; Kamiya, M.; Kawashima, Y.; Nakajima, T.; Nakano, H.; Nakao, Y.; et al. UTCHEM: A Program for ab initio Quantum Chemistry; Goos, G., Hartmanis, J., van Leeuwen, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2003; Volume 2660, p. 84. [Google Scholar]
- Yanai, T.; Nakajima, T.; Ishikawa, Y.; Hirao, K. A new computational scheme for the Dirac-Hartree-Fock method employing an efficient integral algorithm. J. Chem. Phys. 2001, 114, 6526–6538. [Google Scholar] [CrossRef]
- Abe, M.; Yanai, T.; Nakajima, T.; Hirao, K. A four-index transformation in Dirac’s four-component relativistic theory. Chem. Phys. Lett. 2004, 388, 68–73. [Google Scholar] [CrossRef]
- Visscher, L.; Jensen, H.J.A.; Saue, T.; Dubbilard, S.; Bast, R.; Dyall, K.G.; Ekström, U.; Eliav, E.; Fleig, T.; Gomes, A.S.P.; et al. DIRAC: A Relativistic Ab initio Electronic Structure Program, Release DIRAC08. 2008. Available online: http://www.diracprogram.org/ (accessed on 10 June 2019).
- Abe, M.; Prasannaa, V.S.; Das, B.P. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches. Phys. Rev. A 2018, 97, 032515. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.S.P.; Dyall, K.G.; Visscher, L. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La-Lu. Theor. Chem. Acc. 2010, 127, 369. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatewaki, H.; Koga, T.; Matsuoka, O. Relativistic Gaussian basis sets for molecular calculations: Fully optimized single-family exponent basis sets for H–Hg. J. Comput. Chem. 2006, 27, 48–52. [Google Scholar] [CrossRef]
- Noro, T.; Sekiya, M.; Koga, T. Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q). Theor. Chem. Acc. 2012, 131, 1124. [Google Scholar] [CrossRef]
- Sauer, B.E.; Cahn, S.B.; Kozlov, M.G.; Redgrave, G.D.; Hinds, E.A. Perturbed hyperfine doubling in the A2Π1/2 and [18.6]0.5 states of YbF. J. Chem. Phys. 1999, 110, 8424–8428. [Google Scholar] [CrossRef]
- Parpia, F.A. Ab initio calculation of the enhancement of the electric dipole moment of an electron in the YbF molecule. J. Phys. B 1998, 31, 1409. [Google Scholar] [CrossRef]
- Quiney, H.M.; Skaane, H.; Grant, I.P. Hyperfine and PT-odd effects in YbF. J. Phys. B At., Mol. Opt. Phys. 1998, 31, L85. [Google Scholar] [CrossRef]
- Titov, A.V.; Mosyagin, N.S.; Ezhov, V.F. P,T-Odd Spin-Rotational Hamiltonian for YbF Molecule. Phys. Rev. Lett. 1996, 77, 5346. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.K.; Chaudhuri, R.K. Ab initio calculation of P, T-odd effects in YbF molecule. Chem. Phys. Lett. 2006, 419, 191–194. [Google Scholar] [CrossRef]
- Gaul, K.; Berger, R. Zeroth order regular approximation approach to electric dipole moment interactions of the electron. J. Chem. Phys. 2017, 147, 014109. [Google Scholar] [CrossRef] [PubMed]
- Prasannaa, V.S.; Vutha, A.C.; Abe, M.; Das, B.P. Mercury monohalides: Suitability for electron electric dipole moment searches. Phys. Rev. Lett. 2015, 114, 183001. [Google Scholar] [CrossRef] [PubMed]
- Dyall, K.G. Relativistic and nonrelativistic finite nucleus optimized double zeta basis sets for the 4p, 5p and 6p elements. Theor. Chem. Acc. 1998, 99, 366–371. [Google Scholar]
- Schuchardt, K.L.; Didier, B.T.; Elsetha-gen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 2007, 47, 1045. [Google Scholar] [CrossRef] [PubMed]
- Knecht, S.; Fux, S.; van Meer, R.; Visscher, L.; Reiher, M.; Saue, T. Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theor. Chem. Acc. 2011, 129, 631–650. [Google Scholar] [CrossRef]
- Cheung, N.-H.; Cool, T.A. Franck-Condon factors and r-centroids for the B2Σ-X2Σ systems of HgCl, HgBr, and HgI. J. Quant. Spectrosc. Radiat. Transfer 1979, 21, 397–432. [Google Scholar] [CrossRef]
- Meyer, E.R.; Bohn, J.L.; Deskevich, M.P. Candidate molecular ions for an electron electric dipole moment experiment. Phys. Rev. A 2006, 73, 062108. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.R.; Bohn, J.L. Prospects for an electron electric-dipole moment search in metastable ThO and ThF+. Phys. Rev. A 2008, 78, 010502. [Google Scholar] [CrossRef]
- Dmitriev, Y.Y.; Khait, Y.G.; Kozlov, M.G.; Labzovsky, L.N.; Mitrushenkov, A.O.; Shtoff, A.V.; Titov, A.V. Calculation of the spin-rotational Hamiltonian including P-and P, T-odd weak interaction terms for HgF and PbF molecules. Phys. Lett. A 1992, 167, 280–286. [Google Scholar] [CrossRef]
- Rennick, C.J.; Lam, J.; Doherty, W.G.; Softley, T.P. Magnetic trapping of cold bromine atoms. Phys. Rev. Lett. 2014, 112, 023002. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, N.R.; Lu, H.I.; Doyle, J.M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 2012, 112, 4803–4827. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, J.; Lin, Q.; Xu, L.; Wang, H.; Yang, T.; Yin, J. Laser-cooled HgF as a promising candidate to measure the electric dipole moment of the electron. Phys. Rev. A 2019, 99, 032502. [Google Scholar] [CrossRef] [Green Version]
- Dyall, K.G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. J. Phys. Chem. A 2009, 113, 12638–12644. [Google Scholar] [CrossRef] [PubMed]
- Mestdagh, J.M.; Visticot, J.P. Semiempirical electrostatic polarization model of the ionic bonding in alkali and alkaline earth hydroxides and halides. Chem. Phys. 1991, 155, 79–89. [Google Scholar] [CrossRef]
- Ryzlewicz, C.; Törring, T. Formation and microwave spectrum of the 2Σ-radical barium-monofluoride. Chem. Phys. 1980, 51, 329–334. [Google Scholar] [CrossRef]
- Kozlov, M.G.; Titov, A.V.; Mosyagin, N.S.; Souchko, P.V. Enhancement of the electric dipole moment of the electron in the BaF molecule. Phys. Rev. A 1997, 56, R3326. [Google Scholar] [CrossRef]
- Nayak, M.K.; Chaudhuri, R.K. Ab initio calculation of P, T-odd interaction constant in BaF: a restricted active space configuration interaction approach. J. Phys. B 2006, 391231. [Google Scholar]
- Sunaga, A.; Prasannaa, V.S.; Abe, M.; Hada, M.; Das, B.P. Ultracold mercury-alkali-metal molecules for electron-electric-dipole-moment searches. Phys. Rev. A 2019, 99, 040501. [Google Scholar] [CrossRef]
- Dyall, K.G.; Gomes, A.S.P. Revised relativistic basis sets for the 5d elements Hf–Hg. Theor. Chem. Acc. 2010, 125, 97. [Google Scholar] [CrossRef]
- Dyall, K.G. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar. Theor. Chem. Acc. 2016, 135, 128. [Google Scholar] [CrossRef]
- Thiel, L.; Hotop, H.; Meyer, W. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited. J. Chem. Phys. 2003, 119, 9008–9020. [Google Scholar] [CrossRef]
- Park, J.W.; Yan, Z.Z.; Loh, H.; Will, S.A.; Zwierlein, M.W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 2017, 357, 372–375. [Google Scholar] [CrossRef]
- Hara, H.; Takasu, Y.; Yamaoka, Y.; Doyle, J.M.; Takahashi, Y. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 2011, 106, 205304. [Google Scholar] [CrossRef]
- Hansen, A.H.; Khramov, A.Y.; Dowd, W.H.; Jamison, A.O.; Plotkin-Swing, B.; Roy, R.J.; Gupta, S. Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap. Phys. Rev. A 2013, 87, 013615. [Google Scholar] [CrossRef]
- Kozyryev, I.; Baum, L.; Matsuda, K.; Augenbraun, B.L.; Anderegg, L.; Sedlack, A.P.; Doyle, J.M. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 2017, 118, 173201. [Google Scholar] [CrossRef]
- Isaev, T.A.; Zaitsevskii, A.V.; Eliav, E. Laser-coolable polyatomic molecules with heavy nuclei. J. Phys. B 2017, 50, 225101. [Google Scholar] [CrossRef] [Green Version]
- Steimle, T.; Arizona State University, Tempe, AZ, USA. Private communication, 2018.
- Gaul, K.; Marquardt, S.; Isaev, T.; Berger, R. Systematic study of relativistic and chemical enhancements of P, T-odd effects in polar diatomic radicals. Phys. Rev. A 2019, 99, 032509. [Google Scholar] [CrossRef]
- Denis, M.; Haase, P.A.B.; Timmermans, R.G.E.; Eliav, E.; Hutzler, N.R.; Borschevsky, A. Enhancement factor for the electric dipole moment of the electron in the BaOH and YbOH molecules. arXiv 2019, arXiv:1901.02265. [Google Scholar] [CrossRef]
- Prasannaa, V.S.; Shitara, N.; Sakurai, A.; Abe, M.; Das, B.P. Enhanced sensitivity of the electron electric dipole moment from YbOH: The role of theory. arXiV 2019, arXiv:1902.09975. [Google Scholar] [CrossRef]
- Arponen, J. Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems. Ann. Phys. (NY) 1983, 151, 311–382. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Das, B.P. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the Hg199 Atom. Phys. Rev. Lett. 2018, 120, 203001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasmal, S.; Pathak, H.; Nayak, M.K.; Vaval, N.; Pal, S. Relativistic coupled-cluster study of RaF as a candidate for the parity-and time-reversal-violating interaction. Phys. Rev. A 2016, 93, 062506. [Google Scholar] [CrossRef]
- Monkhorst, H.J. Calculation of properties with the coupled-cluster method. Int. J. Quant. Chem., Supplement: Proceedings of the International Symposium on Atomic, Molecular, and Solid state Theory, Collision Phenomena, and Computational Methods 1977, 12, S11. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560120850 (accessed on 10 June 2019).
- Bishop, R.F. An overview of coupled cluster theory and its applications in physics. Theoret. Chim. Acta 1991, 80, 95–148. [Google Scholar] [CrossRef]
- Faulstich, F.M.; Laestadius, A.; Kvaal, S.; Legeza, O.; Schneider, R. Analysis of The Coupled-Cluster Method Tailored by Tensor-Network States in Quantum Chemistry. arXiv 2018, arXiv:1802.05699. [Google Scholar]
Method | (GV/cm) | PDM (D) |
---|---|---|
DF | −18.2 | 3.21 |
CCSD | −23.1 | 3.60 |
Molecule | Basis | DF | LECC | FFCC |
---|---|---|---|---|
HgF | DZ | −104.25 | −115.42 | −116.37 |
HgCl | DZ | −103.57 | −113.56 | −114.31 |
HgBr | DZ | −97.89 | −109.29 | −109.56 |
HgI | DZ | −96.85 | −109.30 | −109.56 |
BaF | QZ | −4.80 | −6.50 | −6.46 |
Molecule | DF | LECC |
---|---|---|
HgLi | −13.74 | −37.79 |
HgNa | −7.59 | −20.33 |
HgK | −5.73 | −16.24 |
Basis | DF | LECC |
---|---|---|
DZ | −17.78 | −23.49 |
TZ | −18.00 | −23.85 |
QZ | −18.02 | −23.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasannaa, V.S.; Sunaga, A.; Abe, M.; Hada, M.; Shitara, N.; Sakurai, A.; Das, B.P. The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules. Atoms 2019, 7, 58. https://doi.org/10.3390/atoms7020058
Prasannaa VS, Sunaga A, Abe M, Hada M, Shitara N, Sakurai A, Das BP. The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules. Atoms. 2019; 7(2):58. https://doi.org/10.3390/atoms7020058
Chicago/Turabian StylePrasannaa, V. S., A. Sunaga, M. Abe, M. Hada, N. Shitara, A. Sakurai, and B. P. Das. 2019. "The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules" Atoms 7, no. 2: 58. https://doi.org/10.3390/atoms7020058
APA StylePrasannaa, V. S., Sunaga, A., Abe, M., Hada, M., Shitara, N., Sakurai, A., & Das, B. P. (2019). The Role of Relativistic Many-Body Theory in Electron Electric Dipole Moment Searches Using Cold Molecules. Atoms, 7(2), 58. https://doi.org/10.3390/atoms7020058