Next Article in Journal / Special Issue
Special Issue on Spectral Line Shapes in Plasmas
Previous Article in Journal / Special Issue
Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas
Open AccessArticle

On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

1
Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
2
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, UMR CNRS 8112, UPMC, 5 Place Jules Janssen, 92195 Meudon Cedex, France
*
Author to whom correspondence should be addressed.
Atoms 2014, 2(3), 357-377; https://doi.org/10.3390/atoms2030357
Received: 5 May 2014 / Revised: 20 June 2014 / Accepted: 16 July 2014 / Published: 7 August 2014
(This article belongs to the Special Issue Spectral Line Shapes in Plasmas)

Abstract

The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.
Keywords: Stark broadening; isolated lines; impact approximation Stark broadening; isolated lines; impact approximation

1. Introduction

Stark broadening parameters of neutral atom and ion lines are of interest for a number of problems in astrophysical, laboratory, laser produced, fusion or technological plasma investigations. Especially the development of space astronomy has enabled the collection of a huge amount of spectroscopic data of all kinds of celestial objects within various spectral ranges. Consequently, the atomic data for trace elements, which had not been of interest in astrophysics before, have become more and more important, and, since we do not know a priori the chemical composition of a star, the interest for a very extensive list of such data, as well as for the corresponding databases has been increasing, stimulating the theoretical and experimental work on spectral lineshape research.Such data are particularly needed for interpretation, synthesis and analysis of high resolution spectra with well-resolved line profiles, obtained from space born instruments in space missions like the Far Ultraviolet Spectroscopy Explorer (FUSE), the Goddard High Resolution Spectrograph (GHRS—the Hubble Space Telescope), the International Ultraviolet Explorer and many others. Space high resolution spectroscopy has demonstrated that ionized manganese, tellurium, gold, indium, tin, chromium, ruthenium, zinc, copper, selenium, rare earths and other trace elements, which prior to the epoch of space born stellar spectroscopy had been completely insignificant for astrophysics, are present in hot stellar atmospheres, where Stark broadening is particularly significant.
In comparison with laboratory plasmas, conditions in astrophysical plasmas, where the Stark broadening mechanism is important, are incomparably more various. This broadening mechanism is of interest for astrophysical plasmas with such extreme conditions like for example the plasma in interstellar molecular clouds, with typical electron temperatures around 30 K or smaller, and typical electron densities of several electrons per cubic centimeter. In plasma of such low density, free electrons may be recombined in a very distant orbit with very large principal quantum number values of several hundreds and deexcited in cascade radiating in the radio domain. Since such distant electrons are weakly bounded with the core, even very weak electric microfields can have a significant influence.
Hydrogen, which is usually the main constituent of stellar atmospheres for temperatures larger or near 10,000 K is ionized in such amount that Stark broadening is the dominant collisional broadening mechanism for spectral lines. This is the case for white dwarfs and hot stars of the O, B and A type. Even for lower temperatures and for cooler stars of the solar type, Stark broadening may be important for spectral lines originating from highly excited atoms, where the distant, weakly bounded, optical electron is significantly influenced by weak electric microfields. This broadening mechanism is also important even for cooler stars for the investigation and modeling of subphotospheric layers.
In the above mentioned cases, when Stark broadening is of interest, the corresponding line broadening parameters (line widths and shifts) are significant e.g. for interpretation, synthesis and analysis of stellar spectral lines, determination of chemical abundances of elements from equivalent widths of absorption lines, estimation of the radiative transfer through the stellar atmospheres and subphotospheric layers, opacity calculations, radiative acceleration considerations, nucleosynthesis research and other astrophysical topics. Stark broadening is of interest for the investigation of neutron stars. The electron densities and temperatures in atmospheres of such stars are orders of magnitude larger than in atmospheres of white dwarfs and are typical for stellar interiors. Temperatures in the extremely thin atmospheric layer where the photospheric emission originates are of the order of 106–107 K and electron densities of the order of 1024 cm−3, which are plasma conditions where Stark broadening dominates.
Stark broadening data are also of interest for laboratory plasma diagnostics, laser produced plasma investigation and modeling, the design of laser devices, inertial fusion plasma and for analysis and modeling of various plasmas in technology, as for example for laser welding and piercing and for plasmas in light sources.
The most sophisticated theoretical method for the calculation of a Stark broadened line profile is the quantum mechanical strong coupling approach, but due to its complexity and numerical difficulties, it is not adequate for large scale determination of Stark broadening parameters, in particular for e.g., complex spectra, heavy elements or transitions between highly excited energy levels. Consequently, in a lot of cases, the semiclassical approach remains the most efficient method for Stark broadening calculations, which has provided the largest set of existing theoretical results.
In order to complete as much as possible the Stark broadening data important for various topics in astrophysics, physics and technology, Stark broadening parameters for a number of spectral lines of various emitters have been determined in a series of papers, using the semiclassical perturbation formalism [1,2]. The corresponding computer code was innovated and optimized several times (see the article Sahal-Bréchot et al. in this issue). Up to now, Stark broadening parameters (line widths and shifts) for spectral lines or multiplets of the following atoms and ions have been calculated and published: He I, Li I, Li II, Be I, Be II, Be III, B II, B III, C II, C III, C IV, C V, N I, N II, N III, N IV, N V, O I, O II, O III, O IV, O V, OVI, OVII, F I, F II, F III, F V, F VI, F VII, Ne I, Ne II, Ne III, Ne IV, Ne V, Ne VIII, Na I, Na IX, Na X, Mg I, Mg II, Mg XI, Al I, Al III, Al V, Al XI, Si I, Si IV, Si V, Si VI, Si XI, Si XII, Si XIII, P IV, P V, P VI, S III, S IV, S V, S VI, Cl I, Cl IV, Cl VI, Cl VII, Ar I, Ar II, Ar III, Ar IV, Ar VIII, K I, K VIII, K IX, Ca I, Ca II, Ca V, Ca IX, Ca X, Sc III, Sc X, Sc XI, Ti IV, Ti XI, Ti XII, V V, V XIII, Co I, Cr II, Mn II, Mn III, Fe II, Co III, Ni II, Cu I, Zn I, Ga I, Ga III, Ge I, Ge III, Ge IV, Se I, Br I, Kr I, Kr II, Kr VIII, Rb I, Sr I, Y III, Pd I, Ag I, Cd I, Cd II, Cd III, In II, In III, Te I, I I, Ba I, Ba II, Au I, Hg II, Tl III, Pb IV, and Ra II. In total, Stark broadening parameters have been calculated and published for 123 atomic and ionic species for 49 chemical elements, during a period of more than thirty years.
The obtained Stark broadening data have been used and cited many times for various applications and investigations. The literature where Stark broadening data might be used (as described in more detail previously) has been analyzed many times, but the set of data considered here allows examination of the purposes such data have actually been used for. This is interesting to analyze not only in order to demonstrate the possibilities of their applicability but first of all to see the needs of their principal users in order to adapt the presentation of results and plans for future investigations in accordance with the needs of consumers of such results. We will exclude from this analysis applications and citations concerning the theoretical and experimental research of Stark broadening and consider only applications in other research fields, published in international journals.

2. Applications of Stark Broadening Data Obtained by the Semiclassical Perturbation Method for Astrophysical Research

The analysis of citations of Stark broadening data obtained by semiclassical perturbation method shows that the largest number of citations is for astrophysical applications. For various investigations in astrophysics, our data for He I, Na I, C IV, Si II, Si IV, Li I, N V, Hg II, O VI, S VI, Mg I, Mg II, Ba I, Ba II, Ca I and Ca II have been used.
After hydrogen, helium has the largest cosmic abundance, so it is not surprising that our Stark broadening data for He spectral lines [3,4,5,6,7] have often been used for different investigations in astrophysics [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83]. For example, they have been used for the following astrophysical problems: non Local Thermodynamical Equilibrium (LTE) model analysis of the interacting binary Beta Lyrrae [8], research of variability of Balmer lines in Ap stars [9], consideration if Delta Orionis C and HD 58260 of peculiar helium-strong stars [10], determination of the chemical composition of two double clusters and of a loose association [11], the critical analysis of the ultraviolet temperature scale of the helium-dominated DB and DBV white dwarfs [12], the effective temperature calibration of MK spectral classes dwarf stars using spectral synthesis [13], investigation of the extreme helium star BD-90-4395 [14], the ionization and excitation of hydrogen and helium in cool giant stars [15], the constitution of the atmospheric layers and the extreme ultraviolet-spectrum of hot hydrogen-rich white dwarfs [16], interpretation of spectral properties of hot hydrogen-rich white dwarfs with stratified H/He model [17], radiative accelerations on iron [18], non-LTE radiative acceleration of helium in the atmospheres of sdOB stars [19], research of hot stars with peculiar helium and noble gas abundances [20,25], a spectroscopic analysis of DAO and hot DA white dwarfs with the investigation of the implications of the presence of helium in the stellar nature [21]. The considered Stark broadening data have been entered into a spectrum synthesis program for binary stars [22] and have been used for the helium surface mapping and spectrum variability considerations of ET Andromedae [23,26], for the investigation of the He λ10830 Å spectral line formation mechanism in classical cepheides [24], for the consideration of hot white dwarfs in the Extreme-Ultraviolet Explorer survey [27], for the search for forced oscillations in eclipsing and spectroscopic binaries [28], for investigations of the evolutionary state and helium abundance in He-rich stars [29] and the consideration of how much hydrogen is in white dwarfs [49], for a study of the effect of diffusion and mass-loss on the helium abundance in hot white dwarfs and subdwarfs [30], for the spectral analysis of the low gravity extreme helium stars [51] and a field horizontal-branch B-type star [83], for comparison with theoretical results obtained within the Stark broadening theory of solar Rydberg lines in the far infrared spectrum [58], for the research of dynamic processes in Be star atmospheres based on the example of He I 2P-nD line formation [59], for the investigation of winds of hot stars [60], for a study of the atmospheric variations of a peculiar Be star [61], for the application of a new tool for fitting observations with synthetic spectra [62], for the determination of the abundance of 3He isotope in HgMn star atmospheres [63], and for the investigation of the helium stratification in the atmospheres of magnetic helium peculiar B-type stars [64].
Results for Si II ion lines [84], obtained within the semiclassical perturbation method have been applied in numerous astronomical researches of stellar atmospheres, such as e.g. in [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131]. The data have been used for silicon abundance analyses for a number of A (mainly) and B type stars [85,86,87,88,91,92,93,97,99,101,103,105,106,109,110,111,113,114,115,116,117,118] but also for normal F main sequence stars [89,112]. The discussed Si II Stark broadening data have also been used for an investigation of blue stragglers of M 67 [90], determination of the effective temperature of B-type stars from the Si II lines of the UV multiplet 13.04 at 130.5–130.9 nm [94], analysis of the red spectrum of Ap stars [95], non-LTE analysis of subluminous O type hot subdwarf in the binary system HD 128220 [98], a discussion on the significance of Stark spectral line shifts for element abundance determination with the method of atmospheric model [102], a discussion of the nature of the F STR λ 4077 type stars [104] and have been used for atmosphere research, He surface mapping and spectrum variability considerations of ET Andromedae [107,108].
Results obtained for lithium [132] have been used for a study of the non-LTE formation of Li I lines in cool stars [133] and Stark-broadening parameters of ionized mercury spectral lines [134], have been used for determination of Hg abundances in normal late-B and HgMn stars from co-added spectra from International Ultraviolet Explorer [135].
Our data for Ca II [136,137] have been used for the calcium abundance analysis of the double-lined spectroscopic binary α Andromedae [138], for the investigation of the pressure shifts and abundance gradients in the atmosphere of a DAZ white dwarf [139], for the analysis of VLT/X-shooter observations in order to determine the chemical composition of cool white dwarfs [140], and for abundance analysis of two late A-type stars [141].
Mg I [142,143] Stark broadening parameters have been used for analysis of stellar atmospheric parameters [144], for a non-LTE analysis of Mg I in the solar atmosphere [145], investigation of A-type stars [146,147] and for astrophysical tests of atomic data for the stellar Mg abundance determination [148]. Also, Mg II [149] data have been used for investigation of the pressure shifts and abundance gradients in the atmosphere of a DAZ white dwarf [139].
Na I [150] data were used for non-LTE calculations for neutral Na in late-type stars [151] and, Ba I and Ba II data [152,153] for abundance analysis of late A-type stars [154] and for quantitative spectroscopy of Deneb [155].
Results for multiply charged ions C IV [156], Si IV [157], N V [158], O VI [159] and S VI [160] have been used for non-LTE analysis of a SDO binary [161], analysis of PG 1159 stars [162] with the accent on the influence of gravitational settling and selective radiative forces [163], for high resolution UV spectroscopy of hot (pre-)white dwarfs with the Hubble Space Telescope [164], spectral energy distribution and the atmospheric properties of a helium-rich white-dwarf [165], for an investigation of stellar masses, kinematics, and white dwarf composition for three close DA+dMe binaries [166], for the calculation of C IV, N V, O VI and Si IV resonance lines formed in accretion shocks in T Tauri stars [167], for analysis of UV spectroscopic data for central star of Sh 2-216, obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope [168], for the spectral analysis of planetary nebulas K 1-27 [169,170] and for their very hot hydrogen-deficient central stars. These data have also been used for the study of the extreme ultraviolet (EUV) spectrum of the unique bare stellar core H1504+65 [171], for analysis of the FUSE spectra of a He-poor SDO star [172] and of a hot evolved star [173], GD 605, as well as for the analysis of He I lines in atmospheres of B-type stars [174] and for iron opacity predictions under solar interior conditions [175].

3. Applications of Stark Broadening Data Obtained by the Semiclassical Perturbation Method for Research in Physics and for Plasmas in Technology

If we do not take into account the usage of Stark broadening data for theoretical and experimental research of Stark broadening, the applications of Stark broadening parameters obtained by semiclassical perturbation method are not as numerous as in astrophysics. Semiclassical Stark broadening parameters of He I, Li II, Be II, Na I, Ca I, Ca II, Mg I, Mg II, Sr I, Ba I, Ba II, Zn I, Ag I, Cd I, Cu I, Ar I, Ar VIII, Al III, C IV and S V have been used for various physical problems.
Stark broadening data for helium [3,5] have been used for the analysis of the measurements of the hyperfine structure of the 1s3s3S1 state of Helium 3 [35], for the determination of emission coefficients of low temperature thermal iron-helium plasma [44] and for the analysis of the net emission of Ar–H2–He thermal plasmas at atmospheric pressure [57].
Na I data [174] have been used for the derivation of electron density radial profiles from Stark broadening in a sodium plasma produced by laser resonance saturation [175] and for the study of the mechanisms of resonant laser ionization [176], Be II [177] data for oscillator strength ratio measurements [178], Ca I [179,180] for the determination of differential and integrated cross sections for the electron excitation of the 41Po state of calcium atom [181] and for investigation of charged particle motion in an explosively generated ionizing shock [182], Ca II [137] for chlorine detection in cement with laser-induced breakdown spectroscopy [183] and for dynamical plasma study during CaCu3Ti4O12 and Ba0.6Sr0.4TiO3 pulsed laser deposition [184], Mg I [185] and Mg II [186] for consideration of plasma plume induced during laser welding of magnesium alloys [187], Sr I [188] for investigation of vapor-phase oxidation during pulsed laser deposition of SrBi2Ta2O9. [189], for the measurement and control of ionization of the depositing flux during thin film growth [190] and for space and time resolved emission spectroscopy of Sr2FeMoO6 laser induced plasma [191], Li II [192] for examination of spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas [193] and for modeling of continuous absorption of electromagnetic radiation in dense partially ionized plasmas [194], Ba I and Ba II [152,153] for investigation of plasma properties of laser-ablated strontium target [195] and for laser-based optical emission studies of barium plasma [196], Ag I [197] for determination of absolute differential cross sections for electron excitation of silver at small scattering angles [198], Cd I [199] for investigation of cadmium plasma produced by laser ablation, namely for its diagnostics [200], for comparison with zinc plasma [201] and for the research and diagnostics of deposition of wide bandgap semiconductors and nanostructure of deposits [202], Cu I [203] for investigation of characteristics of plume plasma and its effects on ablation depth during ultrashort laser ablation of copper in air [204] and Ar I [205] for spectroscopic investigation of the high-current phase of a pulsed gas metal arc welding (GMAW) process [206], for consideration of characteristics of plasma spray-physical Vapor Deposition (PVD) and impact on coating properties [207], for measurement of the temporal evolution of electron density in a nanosecond pulsed argon microplasma [208] and for the study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures [209].
Stark broadening parameters of Zn I spectral lines [210] have been used for experimental verification of a radiative model of laser-induced plasma expanding into vacuum [211], analysis of optical emission for the optimization of femtosecond laser processing [212], diagnostics of a laser-induced zinc plasma [213], comparison of zinc and cadmium plasma produced by laser ablation [201], spectroscopic characterization of laser ablation brass plasma [214], stoichiometric investigations of laser-ablated brass plasma [215], investigation of laser ablation and deposition of wide bandgap semiconductors and nanostructure of deposits [202], research of photoluminescence of nanoparticles in vapor phase of colliding plasma [216], consideration of the role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy [217], for comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions [218], for investigation of dynamics of laser ablated colliding plumes [219], the investigation of brass plasmoid in external magnetic field [220], and research of emission dynamics of an expanding ultrafast-laser produced Zn plasma [221].
Stark broadening data for Al III [222] spectral lines have been used for examination of a novel plasma source for dense plasma effects [223] and for simulations of spectra from dense aluminum plasmas [224]. Data for C IV [156] have been used for the investigation of long-living plasmoids from an atmospheric discharge [225], data for S V [226] for time-integrated, spatially resolved plasma characterization of steel samples in the vacuum ultraviolet (VUV) [227], and data for Ar VIII [228] for investigation of optical emission spectra of ZnMnO plasma produced by a pulsed laser [229].

4. Conclusions

From the analysis of applications of Stark broadening parameters calculated using semiclassical perturbation method [1,2] one can conclude that principal users of such data are astronomers, using them especially for the investigation of A and B type stars, white dwarfs and hot stars in evolved evolution stages (especially PG1159 type). We note here that in white dwarf and hot pre-white dwarf atmospheres, Stark broadening is the dominant broadening mechanism in comparison with thermal Doppler broadening and for atmospherae modeling, spectra analysis and synthesis, abundance determination, radiative transfer calculation or plasma diagnostics, the knowledge of reliable Stark broadening parameters is essential. For A type stars, Stark broadening is the principal pressure broadening mechanism and often an important correction, the neglect of which may introduce serious errors, especially in abundance determinations. For B-type stars, especially for later types, Stark broadening may also be a non-negligible correction. The most used data are for spectral lines of He I and Si II. Concerning plasmas in physics and technology, the most frequent applications concern laser produced plasma, and the most used data are Stark broadening parameters of Zn I.
In order to make the application and usage of Stark broadening data obtained using the semiclassical perturbation method easier, the here analyzed data are displayed online in the STARK-B database [230], which is part of the Virtual Atomic and Molecular Data Centre—VAMDC [231].

Acknowledgments

This paper is part of the projects 176002 and III44022 of the Ministry of Education, Science and Technological Development of Republic of Serbia. This work was also done within the LABEX [email protected] project and received financial state aid managed by the Agence Nationale de la Recherche, as part of the program "Investissements d'avenir" under the reference ANR-11-IDEX-0004-02.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Sahal-Bréchot, S. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astron. Astrophys. 1969, 91–123. [Google Scholar]
  2. Sahal-Bréchot, S. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued). Astron. Astrophys. 1969, 322–354. [Google Scholar]
  3. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral Helium lines. J. Quant. Spectrosc. Radiat. Transfer 1984, 31, 301–313. [Google Scholar] [CrossRef]
  4. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral helium lines of astrophysical interest: Regularities within spectral series. Astron. Astrophys. 1984, 136, 289–298. [Google Scholar]
  5. Dimitrijević, M.S.; Sahal-Bréchot, S. Comparison of measured and calculated Stark broadening parameters for neutral-helium lines. Phys. Rev. A 1985, 31, 316–320. [Google Scholar] [CrossRef]
  6. Dimitrijević, M.S.; Sahal-Bréchot, S. Tables for He I lines Stark broadening parameters. Bull. Obs. Astron. Belgrade 1989, 141, 57–86. [Google Scholar]
  7. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of He I lines. Astron. Astrophys. Suppl. Ser. 1990, 82, 519–529. [Google Scholar]
  8. Dimitrov, D.L. The interacting binary Beta Lyr. II. Non-LTE model analysis and evolutionary conclusions. Bull. Astron. Inst. Czechosl. 1987, 38, 240–252. [Google Scholar]
  9. Musielok, B.; Madej, J. Variability of Balmer lines in Ap stars. Astron. Astrophys. 1988, 202, 143–152. [Google Scholar]
  10. Bohlender, D.A. Delta Orionis C and HD 58260: Peculiar helium—strong stars? Astrophys. J. 1989, 346, 459–468. [Google Scholar] [CrossRef]
  11. Dufton, P.L.; Brown, P.J.F.; Fitzsimmons, A.; Lennon, D.J. The chemical composition of the northern double cluster H and Chi Persei and the loose association Cepheus OB III. Astron. Astrophys. 1990, 232, 431–436. [Google Scholar]
  12. Thejll, P.; Vennes, S.; Shipman, H.L. A critical analysis of the ultraviolet temperature scale of the helium-dominated DB and DBV white dwarfs. Astrophys. J. 1991, 370, 355–369. [Google Scholar] [CrossRef]
  13. Gray, R.O.; Corbally, C.J. The calibration of MK spectral classes using spectral synthesis. I. The effective temperature calibration of dwarf stars. Astron. J. 1994, 107, 742–746. [Google Scholar] [CrossRef]
  14. Jeffery, C.S.; Heber, U. The Extreme Helium Star BD 90 4395. Astron. Astrophys. 1992, 260, 133–150. [Google Scholar]
  15. Luttermoser, D.G.; Johnson, H.R. Ionization and excitation in cool giant stars. 1. Hydrogen and helium. Astrophys. J. 1992, 388, 579–594. [Google Scholar] [CrossRef]
  16. Vennes, S. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs. Astrophys. J. 1992, 390, 590–601. [Google Scholar]
  17. Vennes, S.; Fontaine, G. An interpretation of the Spectral Properties of Hot Hydrogen-Rich White Dwarfs with Stratified H/He Model Atmospheres. Astrophys. J. 1992, 401, 288–310. [Google Scholar] [CrossRef]
  18. Alecian, G.; Michaud, G.; Tully, J. Radiative Accelerations on Iron Using Opacity Project Data. Astrophys. J. 1993, 411, 882–890. [Google Scholar] [CrossRef]
  19. Michaud, G.; Bergeron, P.; Heber, U.; Wesemael, F. Studies of hot B subdwarfs. VII Non-LTE radiative acceleration of helium in the atmospheres of sdOB stars. Astrophys. J. 1989, 338, 417–423. [Google Scholar] [CrossRef]
  20. Dufton, P.L.; Conlon, E.S.; Keenan, F.P.; McCausland, R.J.H.; Holmgren, D.E. 3 Stars at High Galactic Latitudes with Peculiar Helium Abundances. Astron. Astrophys. 1993, 269, 201–208. [Google Scholar]
  21. Bergeron, P.; Wesemael, F.; Beauchamp, A.; Wood, M.A.; Lamontagne, R.; Fontaine, G.; Liebert, J. A spectroscopic analysis of DAO and hot white dwarfs: The implications of the presence of helium and the nature of DAO stars. Astrophys. J. 1994, 432, 305–325. [Google Scholar] [CrossRef]
  22. Linnell, A.P.; Hubeny, I. A spectrum synthesis program for binary stars. Astrophys. J. 1994, 434, 738–746. [Google Scholar] [CrossRef]
  23. Piskunov, N.; Ryabchikova, T.A.; Kuschnig, R.; Weiss, W.W. Spectrum variability of ET Andromedae: Si and He surface mapping. Astron. Astrophys. 1994, 291, 910–918. [Google Scholar]
  24. Sasselov, D.D.; Lester, J.B. The He I lambda 10830 line in classical cepheides II. Mechanism of formation. Astrophys. J. 1994, 423, 785–794. [Google Scholar] [CrossRef]
  25. Зaхaрoвa, Л.A. Исслелование атмосфер лвух HgMn-звезд с предполагаемыми аномалиями благородных газов (Study of Two HgMn-Stars with Suspected Anomalies of Abundances of Noble Gases). Aстрoн. Ж 1994, 71, 588. [Google Scholar]
  26. Kuschnig, R.; Ryabchikova, T.; Piskunov, N.; Weiss, W.W.; LeContel, J.M. The atmosphere of the peculiar binary system Eta Andromedae. Astron. Astrophys. 1995, 294, 757–762. [Google Scholar]
  27. Vennes, S.; Thejll, P.A.; Wickramasinghe, D.T.; Bessell, M.S. Hot White Dwarfs in the Extreme Ultraviolet Explorer Survey. 1. Properties of a Southern Hemisphere Sample. Astrophys. J. 1996, 467, 782–793. [Google Scholar] [CrossRef]
  28. Harmanec, P.; Hadrava, P.; Yang, S.; Holmgren, D.; North, P.; Koubsky, P.; Kubat, J.; Poretti, E. Search for Forced Oscillations in Binaries. I. The Eclipsing and Spectroscopic Binary V436 Persei = 1 Persei. Astron. Astrophys. 1997, 319, 867–880. [Google Scholar]
  29. Zboril, M.; North, P.; Glagolevskij, Y.V.; Betrix, F. Properties of He Rich Stars. I. Their Evolutionary State and Helium Abundance. Astron. Astrophys. 1997, 324, 949–958. [Google Scholar]
  30. Unglaub, K.; Bues, I. The Effect of Diffusion and Mass Loss on the Helium Abundance in Hot White Dwarfs and Subdwarfs. Astron. Astrophys. 1998, 338, 75–84. [Google Scholar]
  31. Jeffery, C.S.; Woolf, V.M.; Pollacco, D.L. Time-resolved spectral analysis of the pulsating helium star V652 Her. Astron. Astrophys. 1998, 376, 497–517. [Google Scholar] [CrossRef]
  32. Labrosse, N.; Gouttebroze, P. Formation of helium spectrum in solar quiescent prominences. Astron. Astrophys. 2001, 380, 323–340. [Google Scholar] [CrossRef]
  33. Pandey, G.; Kameswara Rao, N.; Lambert, D.L.; Jeffery, C.S.; Asplund, M. Abundance analyses of cool extreme helium stars. Mon. Not. R. Astron. Soc. 2001, 324, 937–959. [Google Scholar] [CrossRef]
  34. Smith, G.R. Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation – II. Non-Maxwellian electron distributions. Monthly Not. Royal Astron. Soc. 2003, 341, 143–163. [Google Scholar] [CrossRef]
  35. Andersson, M.; Pendrill, L.R. Improved measurements of the hyperfine structure of the 1s3s3S1 state of Helium 3. Phys. Scripta 1984, 30, 403–406. [Google Scholar] [CrossRef]
  36. Sakhibullin, N.A.; Schabert, W.J. Role of blending in the formation of helium singlet lines in the atmospheres of Bp stars. Sov. Astron. Lett. 1990, 16, 231–233. [Google Scholar]
  37. Zboril, M.; Žižnovsky, J.; Zverko, J.; Budaj, J. Elemental abundance analysis of Phi Herculis and Omicron Pegasi with coadded spectra. Contrib. Astron. Obs. Skalnate. Pleso. 1992, 22, 9–24. [Google Scholar]
  38. Catanzaro, G.; Leone, F.; Dall, T.H. Balmer lines as Teff and log g indicators for non-solar composition atmospheres. An application to the extremely helium-weak star HR 6000. Astron. Astrophys. 2004, 425, 641–648. [Google Scholar] [CrossRef]
  39. Ding, M.D.; Li, H.; Fang, C. On the formation of the He I 10830 A line in a flaring atmosphere. Astron. Astrophys. 2005, 432, 699–704. [Google Scholar] [CrossRef]
  40. Mortimore, A.N.; Lynas-Gray, A.E. Helium, Carbon and Silicon abundances in the HW Vir eclipsing binary subdwarf-B primary. Balt. Astron. 2006, 15, 207. [Google Scholar]
  41. Eisenstein, D.J.; Liebert, J.; Koester, D.; Kleinmann, S.J.; Nitta, A.; Smith, P.S.; Barentine, J.C.; Brewington, H.J.; Brinkmann, J.; Harvanek, M.; Krzesinski, J.; Neilsen, E.H.; Long, D.; Schneider, D.P.; Snedden, S.A. Hot DB white dwarfs from the Sloan digital sky survey. Astron. J. 2006, 132, 676–691. [Google Scholar] [CrossRef]
  42. Cidale, L.S.; Arias, M.L.; Torres, A.F.; Zorec, J.; Frémat, Y.; Cruzado, A. Fundamental parameters of He-weak and He-strong stars. Astron. Astrophys. 2007, 468, 263–272. [Google Scholar] [CrossRef]
  43. Labrosse, N.; Goutebroze, P.; Vial, J.-C. Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet. Astron. Astrophys. 2007, 463, 1171–1179. [Google Scholar] [CrossRef]
  44. Moscicki, T.; Hoffman, J.; Szymanski, Z. Net emission coefficients of low temperature thermal iron-helium plasma. Opt. Appl. 2008, 38, 365–373. [Google Scholar]
  45. Latour, M.; Fontaine, G.; Brassard, P.; Green, E.M.; Chayer, P.; Randal, S.K. An analysis of the pulsating star SDSS J160043.6+074802.9 using new non-LTE model atmospheres and spectra for hot O subdwarfs. Astrophys. J. 2011, 733, 100, (1–15). [Google Scholar] [CrossRef]
  46. Linnell, A.P.; De Stefano, P.; Hubeny, I. BINSYN: A Publicly Available Program for Simulating Spectra and Light Curves of Binary Systems with or without Accretion Disks. Publ. Astron. Soc. Pac. 2012, 124, 885–894. [Google Scholar] [CrossRef]
  47. Dodin, A.V.; Lamzin, S.A.; Sitnova, T.M. Non-LTE modeling of narrow emission components of He and Ca lines in optical spectra of classical T Tauri stars. Astron. Lett. 2013, 39, 315–335. [Google Scholar] [CrossRef]
  48. Kopylov, I.M.; Leushin, V.V.; Topil'Skaya, G.P.; Tsymbal, V.V.; Gvozd', Yu.A. Investigation of spectral classification and temperature scale criteria of spectral classes. II. Analysis of spectral criteria. Astrofiz. Issled. Izv. Spets. Astrofiz. Obs. 1989, 28, 72–87. [Google Scholar]
  49. Mac Donald, J.; Vennes, S. How much hydrogen is there in a white dwarf? Astrophys. J. 1991, 371, 719–738. [Google Scholar] [CrossRef]
  50. Ryabchikova, T.A.; Stateva, I. Helium lines in the He-weak star 36 Lyncis. In Model Atmospheres and Spectrum Synthesis; Adelman, S.J., Kupka, F., Weiss, W.W., Eds.; ASP Conference Series; 1996; Volume 108, pp. 265–269. [Google Scholar]
  51. Jeffery, C.S.; Hamill, P.J.; Harrison, P.M.; Jeffers, S.V. Spectral Analysis of the Low Gravity Extreme Helium Stars LSS 4357, LS II+33o5 and LSS 99. Astron. Astrophys. 1998, 340, 476–482. [Google Scholar]
  52. Eisenstein, D.J.; Liebert, J.; Koester, D.; Kleinmann, S.J.; Nitta, A.; Smith, P.S.; Barentine, J.C.; Brewington, H.J.; Brinkmann, J.; Harvanek, M.; Krzesinski, J.; Neilsen, E.H.; Long, D.; Schneider, D.P.; Snedden, S.A. Hot DB white dwarfs from the Sloan digital sky survey. Astron. J. 2006, 132, 676–691. [Google Scholar] [CrossRef]
  53. Bouret, J.-C.; Lanz, T.; Martins, F.; Marcolino, W.L.F.; Hillier, D.J.; Depagne, E.; Hubeny, I. Massive stars at low metallicity. Evolution and surface abundances of O dwarfs in the SMC. Astron. Astrophys. 2013, 555, A1. [Google Scholar] [CrossRef]
  54. Leushin, V.V.; Glagolevskij, Yu.V.; North, P. Helium abundance in atmospheres of He-rich stars. In Magnetic Fields of Chemically Peculiar and Related Stars; Glagolevskij, Yu. V., Romanyuk, I.I., Eds.; Russian Academy of Sciences, Special Astrophysical Observatory: Moscow, Russia, 2000; pp. 173–179. [Google Scholar]
  55. Glagolevskij, Yu.V.; Leushin, V.V.; Chuntonov, G.A.; Shulyak, D. The Atmospheres of Helium-Deficient Bp Stars. Astron. Lett. 2006, 32, 54–68. [Google Scholar] [CrossRef]
  56. Glagolevskij, Yu.V.; Leushin, V.V.; Chountonov, G.A. Chemical composition of the He-w stars HD 37058, 212454, and 224926. Astrophys. Bull. 2007, 62, 319–330. [Google Scholar] [CrossRef]
  57. Cressault, Y.; Rouffet, M. E.; Gleizes, A.; Meillot, E. Net emission of Ar–H2–He thermal plasmas at atmospheric pressure. J. Phys. D 2010, 43, 335204. [Google Scholar] [CrossRef]
  58. Van Regemorter, H.; Hoang-Binh, D. Stark broadening theory of solar Rydberg lines in the far infrared spectrum. Astron. Astrophys. 1993, 277, 623–634. [Google Scholar]
  59. Smith, M.A.; Hubeny, I.; Lanz, T.; Meylan, T. Dynamic processes in Be star atmospheres II. He I 2P-nD line formation in lambda Eridani (outburst). Astrophys. J. 1994, 432, 392–402. [Google Scholar] [CrossRef]
  60. Butler, K. Atmospheres and winds of hot stars: The impact of new opacity calculations and continuing needs. In Astrophysical Applications ofPowerful New Databases; Adelman, S.J., Wiese, W.L., Eds.; ASP Conf. Series; 1995; Volume 78, pp. 509–525. [Google Scholar]
  61. Israelian, G.; Friedjung, M.; Graham, J.; Muratorio, G.; Rossi, C.; de Winter, D. The atmospheric variations of the peculiar B[e] star HD 45677 (FS Canis Majoris). Astron. Astrophys. 1996, 311, 643–650. [Google Scholar]
  62. Valenti, J.A.; Piskunov, N. Spectroscopy Made Easy A New Tool for Fitting Observations with Synthetic Spectra. Astron. Astrophys. Supp. 1996, 118, 595–603. [Google Scholar]
  63. Zakharova, L. A.; Ryabchikova, T. A. The 3He isotope in the atmospheres of HgMn stars. Astron. Lett. 1996, 22, 152–156. [Google Scholar]
  64. Leone, F.; Lanzafame, A.C. Behavior of the HeI 587.6, 667.8, 706.5 and 728.1 nm Lines in B-Type Stars On the Helium Stratification in the Atmosphere of Magnetic Helium Peculiar Stars. Astron. Astrophys. 1997, 320, 893–898. [Google Scholar]
  65. Leushin, V.V.; Glagolevskij, Yu.V.; North, P. Helium abundance in atmospheres of He-rich stars. In Magnetic Fields of Chemically Peculiar and Related Stars; Glagolevskij, Yu. V., Romanyuk, I.I., Eds.; Russian Academy of Sciences, Special Astrophysical Observatory: Moscow, Russia, 2000; pp. 173–179. [Google Scholar]
  66. Piskunov, N.; Kupka, F. Model atmospheres with individualized abundances. Astrophys. J. 2001, 547, 1040–1056. [Google Scholar] [CrossRef]
  67. Smith, G.R. Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation – II. Non-Maxwellian electron distributions. Monthly Not. Royal Astron. Soc. 2003, 341, 143–163. [Google Scholar] [CrossRef]
  68. Domiciano de Souza, A.; Zorec, J.; Jankov, S.; Vakili, F.; Abe, L.; Janot-Pacheco, E. Stellar differential rotation and inclination angle from spectro-interferometry. Astron. Astrophys. 2004, 418, 781–794. [Google Scholar] [CrossRef]
  69. Lyubimkov, L.S.; Rostopchin, S.I.; Lambert, D.L. Surface abundance of light elements for a large sample of early B-type stars – III. An analysis of helium lines in spectra of 102 stars. Mon. Not. R. Astron. Soc. 2004, 351, 745–767. [Google Scholar] [CrossRef]
  70. Castelli, F.; Hubrig, S. A spectroscopic atlas of the HgMn star HD 175640 (B9 V) λλ 3040 – 10 000 A. Astron. Astrophys. 2004, 425, 263–270. [Google Scholar] [CrossRef]
  71. Przybilla, N.; Butler, K.; Heber, U.; Jeffrey, C.S. Extreme helium stars: Non-LTE matters; Helium and hydrogen spectra of the unique objectsV652 Her and HD 144941. Astron. Astrophys. 2005, 443, L25–L28. [Google Scholar] [CrossRef]
  72. Eisenstein, D.J.; Liebert, J.; Koester, D.; Kleinmann, S.J.; Nitta, A.; Smith, P.S.; Barentine, J.C.; Brewington, H.J.; Brinkmann, J.; Harvanek, M.; Krzesinski, J.; Neilsen, E.H.; Long, D.; Schneider, D.P.; Snedden, S.A. Hot DB white dwarfs from the Sloan digital sky survey. Astron. J. 2006, 132, 676–691. [Google Scholar] [CrossRef]
  73. Glagolevskij, Yu.V.; Leushin, V.V.; Chuntonov, G.A.; Shulyak, D. The Atmospheres of Helium-Deficient Bp Stars. Astron. Lett. 2006, 32, 54–68. [Google Scholar] [CrossRef]
  74. Mortimore, A.N.; Lynas-Gray, A.E. Helium, Carbon and Silicon abundances in the HW Vir eclipsing binary subdwarf-B primary. Balt. Astron. 2006, 15, 207–210. [Google Scholar]
  75. Przybilla, N.; Butler, K.; Heber, U.; Jeffrey, C.S. Improved helium line formation for extreme helium stars. Balt. Astron. 2006, 15, 127–130. [Google Scholar]
  76. Cidale, L.S.; Arias, M.L.; Torres, A.F.; Zorec, J.; Frémat, Y.; Cruzado, A. Fundamental parameters of He-weak and He-strong stars. Astron. Astrophys. 2007, 468, 263–272. [Google Scholar] [CrossRef]Glagolevskij, Yu.V.; Leushin, V.V.; Chountonov, G.A. Chemical composition of the He-w stars HD 37058, 212454, and 224926. Astrophysical Bulletin 2007, 62, 319–330. [Google Scholar] [CrossRef]
  77. Nieva, M.F.; Przybilla, N. Hydrogen and helium line formation in OB dwarfs and giants; A hybrid non-LTE approach. Astron. Astrophys. 2007, 467, 295–309. [Google Scholar] [CrossRef]
  78. Schiller, F.; Przybilla, N. Quantitative spectroscopy of Deneb. Astron. Astrophys. 2008, 479, 849–858. [Google Scholar] [CrossRef]
  79. Bohlender, D. A.; Rice, J. B.; Hechler, P. Doppler imaging of the helium-variable star a Centauri. Astron. Astrophys. 2010, 520, A44. [Google Scholar] [CrossRef]
  80. Koester, D. White dwarf spectra and atmosphere modelsoppler imaging of the helium-variable star a Centauri. Memorie della Società. Astronomica Italiana. 2010, 81, 921–931. [Google Scholar]
  81. Falcon, R.E.; Winget, D.E.; Montgomery, M.H.; Williams, K.A. A Gravitational Redshift Determination of the Mean Mass of White Dwarfs: DBA and DB Stars. Astrophys. J. 2012, 757, 116. [Google Scholar] [CrossRef]
  82. Ferrero, G.; Gamen, R.; Benvenuto, O.; Fernández-Lajús, E. Apsidal motion in massive close binary systems – I. HD 165052, an extreme case? Mon. Not. R. Astron. Soc. 2013, 433, 1300–1311. [Google Scholar] [CrossRef]
  83. Bonifacio, P.; Castelli, F.; Hack, M. The field horizontal-branch B-type star Feige 86. Astron. Astrophys. Supp. 1995, 110, 441–468. [Google Scholar]
  84. Lanz, T.; Dimitrijević, M.S.; Artru, M.-C. . Stark broadening of visible Si II lines in stellar atmospheres. Astron. Astrophys. 1988, 192, 249–254. [Google Scholar]
  85. Adelman, S.J. Elemental abundance analyses with co-added DAO spectrograms – IV. Revision of Previous Analyses. Mon. Not. R. Astron. Soc. 1988, 235, 749–762. [Google Scholar] [CrossRef]
  86. Adelman, S.J. Elemental abundance analyses with co-added DAO spectrograms – V. The Mercury-Manganese Stars Phi-Herculis, 28-Herculis and Hr-7664. Mon. Not. R. Astron. Soc. 1988, 235, 763–785. [Google Scholar] [CrossRef]
  87. Adelman, S.J. Elemental abundance analyses with co-added DAO spectrograms – VI. The Mercury-Manganese Stars Nu-Cancri, Iota Coronae Borealis and Hr-8349. Mon. Not. R. Astron. Soc. 1989, 239, 487–511. [Google Scholar] [CrossRef]
  88. Adelman, S.J. Elemental abundance analyses with DAO spectrograms – VII. The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae and Nu Capricorni and the use of Reticon spectra. Mon. Not. R. Astr. Soc. 1991, 252, 116–131. [Google Scholar] [CrossRef]
  89. Adelman, S.J.; Bolcal, C.; Hill, G.; Kocer, D. Elemental abundance analyses with DAO spectrograms – VIII. The normal F main sequence stars Theta Cygni and Iota Piscium. Mon. Not. R. Astr. Soc. 1991, 252, 329–333. [Google Scholar] [CrossRef]
  90. Mathys, G. The blue stragglers of M 67. Astron. Astrophys. 1991, 245, 467–484. [Google Scholar]
  91. Adelman, S.J. Elemental abundance analyses with DAO spectrograms – X. The mercury— manganese stars Pi 1 Bootis, v Herculis and HR 7361. Mon. Not. R. Astron. Soc. 1992, 258, 167–176. [Google Scholar] [CrossRef]
  92. Adelman, S.J.; Philippe, A.G.D. Elemental abundances of the B-star and A-star Gamma Geminorum, 7-Sextantis, Hr-4817, and Hr-5780. Publ. Astron. Soc. Pac. 1992, 104, 316–321. [Google Scholar] [CrossRef]
  93. Bolcal, C.; Kocer, D.; Adelman, S.J. Elemental abundance analyses with DAO spectrograms. IX. The metallic-lined stars 15 - Vulpeculae and 32 – Aquarii. Mon. Not. R. Astron. Soc. 1992, 258, 270–276. [Google Scholar] [CrossRef]
  94. Singh, J.; Castelli, F. Effective temperature of B-type stars from the Si II lines of the UV multiplet 13.04 at 130.5–130.9 nm. Astron. Astrophys. 1992, 253, 431–446. [Google Scholar]
  95. Lanz, T.; Artru, M.C.; Didelon, P.; Mathys, G. The Ga-II lines in the red spectrum of Ap stars. Astron. Astrophys. 1993, 272, 465–476. [Google Scholar]
  96. Lopez-Garcia, Z.; Adelman, S.J. An abundance analysis of the silicon CP star HD 43819, in Peculiar versus normal phenomena in A-type and related stars. Astron. Soc. Pac. Conf. Series 1993, 44, 149–153. [Google Scholar]
  97. Pintaldo, O.I.; Adelman, S.J. Elemental abundance analyses with DAO spectrograms. XI. B stars Gamma Pegasi and Iota Herculis. Mon. Not. R. Astron. Soc. 1993, 264, 63–70. [Google Scholar] [CrossRef]
  98. Rauch, T. NLTE Analysis of subluminous O stars: The hot subdwarf in the binary system HD 128220. Astron. Astrophys. 1993, 276, 171–183. [Google Scholar]
  99. Adelman, S.J. Elemental abundance analyses with DAO spectrograms—XII. The mercury—manganese stars HR 4072A and 7775 and the metallic-lined star HR 4072B. Mont. Not. R. Astron. Soc. 1994, 266, 97–113. [Google Scholar] [CrossRef]
  100. Adelman, S.J. Elemental abundance analyses with DAO spectrograms. XIII. The superficially normal early A-type stars 68 Tauri, 21 Lyncis and Alpha Draconis. Mont. Not. Roy. Soc. 1994, 271, 355–371. [Google Scholar] [CrossRef]
  101. Adelman, S.J.; Davis Philip, A.G. Elemental abundances of the B and A stars. II. Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780. Publ. Astron. Soc. Pacific 1994, 106, 1239–1247. [Google Scholar] [CrossRef]
  102. Khokhlova, V.L. On the significance of Stark line shifts for element abundance determinations by the model atmosphere method. Astron. Lett. 1994, 20, 89–90. [Google Scholar]
  103. Lopez-Garcia, Z.; Adelman, S.J. Elemental abundance studies of CP stars: The silicon star HD 43819 and the CP star HD 147550. Astron. Astrophys. Supp. 1994, 107, 353–363. [Google Scholar]
  104. North, P.; Berthet, S.; Lanz, T. The nature of the F STR Lambda 4077 stars V. Spectroscopic data. Astron. Astrophys. Supp. 1994, 103, 321–347. [Google Scholar]
  105. Wahlgren, G.M.; Adelman, S.J.; Robinson, R.D. An optical region elemental abundance analysis of the chemically peculiar HgMn star Chi Lupi. Astrophys. J. 1994, 434, 349–362. [Google Scholar] [CrossRef]
  106. Zverko, J.; Zboril, M.; Žižnovsky, J. Abundance determination in the CP star 21 Canum Venaticorum by means of spectrum synthesis. Astron. Astrophys. 1994, 283, 932–936. [Google Scholar]
  107. Kuschnig, R.; Ryabchikova, T.; Piskunov, N.; Weiss, W.W.; LeContel, J.M. The atmosphere of the peculiar binary system ET Andromedae. Astron. Astrophys. 1995, 294, 757–762. [Google Scholar]
  108. Piskunov, N.; Ryabchikova, T.A.; Kuschnig, R.; Weiss, W.W. Spectrum variability of ET Andromedae: Si and He surface mapping. Astron. Astrophys. 1994, 291, 910–918. [Google Scholar]
  109. Adelman, S.J. Elemental Abundance Analyses with DAO Spectrograms. 15. The Superficially Normal Late B-Type and Early A-Type Stars Merak, Pi Draconis and Kappa Cephei. Mon. Not. R. Astron. Soc. 1996, 280, 130–142. [Google Scholar] [CrossRef]
  110. Adelman, S.J.; Philip, A.G.D. Elemental Abundances of the BStar and AStar – 3. Gamma Geminorum, Hr 1397, Hr 2154, HD 60825 and 7 Sextantis. Mon. Not. R. Astron. Soc. 1996, 282, 1181–1190. [Google Scholar] [CrossRef]
  111. Pintaldo, O.I.; Adelman, S.J. Elemental abundance analyses with Complejo Astronomico El Leoncito REOSC echelle spectrograms. I. Kappa Cancri, HR 7245, and Ksi Octantis. Astron. Astrophys. Supp. 1996, 118, 283–291. [Google Scholar]
  112. Adelman, S.J.; Caliskan, H.; Kocer, D.; Bolcal, C. Elemental Abundance Analyses with DAO Spectrograms – XVI. The Normal F Main Sequence Stars Sigma Bootis, Theta Cygni and Iota Piscum, and the Am Stars 15 Vulpeculae and 32 Aquarii. Mon. Not. R. Astron. Soc. 1997, 288, 470–500. [Google Scholar] [CrossRef]
  113. Caliskan, H.; Adelman, S.J. Elemental Abundance Analyses with DAO Spectrograms .17. The Superficially Normal Early A Stars 2 Lyncis, Omega Ursa Majoris and Phi Aquilae. Mon. Not. R. Astron. Soc. 1997, 288, 501–511. [Google Scholar] [CrossRef]
  114. Adelman, S.J. Elemental Abundance Analyses with DAO Spectrograms XIX The Superficially Normal B Stars Zeta Draconis, Eta Lyrae, 8 Cygni and 22 Cygni. Mon. Not. R. Astron. Soc. 1998, 296, 856–862. [Google Scholar] [CrossRef]
  115. Adelman, S.J.; Albayrak, B. Elemental Abundance Analyses with DAO Spectrograms 20 The Early A Stars Epsilon Serpentis, 29Vulpeculae and Sigma Aquarii. Mon. Not. R. Astron. Soc. 1998, 300, 359–372. [Google Scholar] [CrossRef]
  116. Pintado, O.I.; Adelman, S.J.; Gulliver, A.F. Elemental Abundance Analyses with Complejo Astronomico El Leoncito REOSC Echelle Spectrograms III Hr 4487, 14 Hydrae, and 3 Centauri A. Astron. Astrophys. Supp. 1998, 129, 563–567. [Google Scholar]
  117. Adelman, S.J.; Caliskan, H.; Cay, T.; Kocer., D.; Tektanali, H.G. Elemental Abundance Analyses with DAO Spectrograms – XXI. The hot metallic-lined stars 60 Leonis and 6 Lyrae. Mon. Not. R. Astron. Soc. 1998, 305, 591–601. [Google Scholar]
  118. Lopez-Garcia, Z.; Adelman, S.J. Elemental Abundance Studies of CP Stars – II. The Silicon Stars H 133029 and HD 192913. Astron. Astrophys. Supp. 1999, 137, 227–232. [Google Scholar]
  119. Lopez-Garcia, Z.; Adelman, S.J.; Pintado, O.I. Elemental abundance studies of CP stars III. The magnetic CP stars alpha Scl and HD 170973. Astron. Astrophys. 2001, 367, 859–864. [Google Scholar] [CrossRef]
  120. Albacete-Colombo, J.F.; Lopez-Garcia, Z.; Levato, H.; Malaroda, S.M.; Grosso, M. Elemental abundance study of the CP star HD 206653. Astron. Astrophys. 2002, 392, 613–617. [Google Scholar] [CrossRef]
  121. Alonso, M.S.; Lopez-Garcia, Z.; Malaroda, S.; Leone, F. Elemental abundance studies of CP stars. The helium-weak stars HD 19400, HD 34797 and HD 35456. Astron. Astrophys. 2003, 402, 331–334. [Google Scholar] [CrossRef]
  122. Zboril, M.; Žižnovsky, J.; Zverko, J.; Budaj, J. Elemental abundance analysis of Phi Herculis and Omicron Pegasi with coadded spectra. Contrib. Astron. Obs. Skalnate. Pleso. 1992, 22, 9–24. [Google Scholar]
  123. Castelli, F.; Hubrig, S. A spectroscopic atlas of the HgMn star HD 175640 (B9 V) λλ 3040 – 10 000 A. Astron. Astrophys. 2004, 425, 263–270. [Google Scholar] [CrossRef]
  124. Saffe, C.; Levato, H.; Lopez-Garcia, Z. Elemental abundance studies of CP stars. The silicon stars HD 87240 and HD 96729. Revista. Mexicana de Astronomia. y Astropfisica. 2005, 41, 415–421. [Google Scholar]
  125. Lehmann, H.; Tsymbal, V.; Mkrtichian, D.E.; Fraga, L. The helium-weak silicon star HR 7224. I. Radial velocity and line profile variations. Astron. Astrophys. 2006, 457, 1033–1041. [Google Scholar] [CrossRef]
  126. Schiller, F.; Przybilla, N. Quantitative spectroscopy of Deneb. Astron. Astrophys. 2008, 479, 849–858. [Google Scholar] [CrossRef]
  127. Collado, A.; López-García, Z. Chemical Abundances of the magnetic CP star HD 168733. Revista. Mexicana de Astronomía. y Astrofísica. 2009, 45, 95–105. [Google Scholar]
  128. Fossati, L.; Ryabchikova, T.; Bagnulo, S.; Alecian, E.; Grunhut, J.; Kochukhov, O.; Wade, G. The chemical abundance analysis of normal early A- and late B-type stars. Astron. Astrophys. 2009, 503, 945–962. [Google Scholar] [CrossRef]
  129. Saffe, C.; Levato, H. Elemental abundance studies of CP stars. The silicon stars HD 87405 and HD 146555. Revista. Mexicana de Astronomia. y Astrofisica. 2009, 45, 171–178. [Google Scholar]
  130. Saffe, C.; Nunez, N.; Levato, H. Upper Main Sequence Stars with Anomalous Abundances. The HgMn stars HR 3273, HR 8118 HR 8567 and HR 8937. Revista. Mexicana de Astronomia. y Astrofisica. 2011, 47, 219–234. [Google Scholar]
  131. Vennes, S.; Kawka, A.; Németh, P. Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745. Mon. Not. R. Astron. Soc. 2011, 413, 2545–2553. [Google Scholar] [CrossRef]
  132. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Li (I) lines. J. Quant. Spectrosc. Radiat. Transfer 1991, 46, 41–53. [Google Scholar] [CrossRef]
  133. Carlsson, M.; Rutten, R.J.; Bruls, J.H.M.J.; Schukina, N.G. The non-LTE formation of Li I lines in cool stars. Astron. Astrophys. 1994, 288, 860–882. [Google Scholar]
  134. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark-broadening parameters of ionized mercury spectral lines of astrophysical interest. J. Quant. Spectrosc. Radiat. Transf. 1992, 47, 315–318. [Google Scholar] [CrossRef]
  135. Smith, K.C. Elemental Abundances in Normal Late-B and HgMn Stars from Co-Added IUE Spectra. V. Mercury. Astron. Astrophys. 1997, 319, 928–947. [Google Scholar]
  136. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Ca II spectral lines. J. Quant. Spectrosc. Radiat. Transf. 1993, 49, 157–164. [Google Scholar] [CrossRef]
  137. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening parameter tables for Ca II lines of astrophysical interest. Bull. Astron. Belgrade 1992, 145, 81–99. [Google Scholar]
  138. Ryabchikova, T.A.; Malanushenko, V.P.; Adelman, S.J. Orbital elements and abundance analyses of the double-lined spectroscopic binary alpha Andromedae. Astron. Astrophys. 1999, 351, 963–972. [Google Scholar]
  139. Vennes, S.; Kawka, A.; Németh, P. Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745. Mon. Not. R. Astron. Soc. 2011, 413, 2545–2553. [Google Scholar] [CrossRef]
  140. Kawka, A.; Vennes, S. VLT/X-shooter observations and the chemical composition of cool white dwarfs. Astron. Astrophys. 2012, 538, A13. [Google Scholar] [CrossRef]
  141. Bikmaev, I.F.; Ryabchikova, T.A.; Bruntt, H.; Musaev, F.A.; Mashonkina, L.I.; Belyakova, E.V.; Shimansky, V.V.; Barklem, P.S.; Galazutdinov, G. Abundance analysis of two late A-type stars HD 32115 and HD 37594. Astron. Astrophys. 2002, 389, 537–546. [Google Scholar] [CrossRef]
  142. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening parameter tables for Mg I lines of interest for solar and stellar spectra research. I. Bull. Astron. Belgrade 1994, 149, 31–84, (Erratum in Bull. Astron. Belgrade 1994, 150, 121).. [Google Scholar]
  143. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of solar Mg I lines. Astron. Astrophys. Supp. 1996, 117, 127–129. [Google Scholar]
  144. Fossati, L.; Ryabchikova, T.; Shulyak, D.V.; Haswell, C.A.; Elmasli, A.; Pandey, C.P.; Barnes, T.G.; Zwintz, K. The accuracy of stellar atmospheric parameter determinations: a case study with HD 32115 and HD 37594. Mon. Not. R. Astron. Soc. 2011, 417, 495–507. [Google Scholar] [CrossRef]
  145. Zhao, G.; Butler, K.; Gehren, T. NonLTE Analysis of Neutral Magnesium in the Solar Atmosphere. Astron. Astrophys. 1998, 333, 219–230. [Google Scholar]
  146. Przybilla, N.; Butler, K.; Becker, S.R.; Kudritzki, R.P. Non-LTE line formation for Mg I/II: Abundances and stellar parameters; Model atom and first results on A-type stars. Astron. Astrophys. 2001, 369, 1009–1026. [Google Scholar] [CrossRef]
  147. Ryde, N.; Korn, A.J.; Richter, M.J.; Ryde, F. The Zeeman-sensitive emission lines of Mg I at 12 microns in Procyon. Astrophys. J. 2004, 617, 551–558. [Google Scholar] [CrossRef]
  148. Mashonkina, L. Astrophysical tests of atomic data important for the stellar Mg abundance determinations. Astron. Astrophys. 2013, 550, A28. [Google Scholar] [CrossRef]
  149. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening parameter tables for Mg I lines of interest for solar and stellar spectra research. II. Bull. Astron. Belgrade 1995, 151, 101–114. [Google Scholar]
  150. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Na (I) lines with principal quantum number of the upper state between 6 and 10. J. Quant. Spectrosc. Radiat. Transfer 1990, 44, 421–431. [Google Scholar] [CrossRef]
  151. Lind, K.; Asplund, M.; Barklem, P.S.; Belyaev, A.K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 2011, 528, A103. [Google Scholar] [CrossRef]
  152. Dimitrijević, M.S.; Sahal-Bréchot, S. On the Stark broadening of Ba II spectral lines. XVIII Symp. Phys. Ioniz. Gases (Kotor.) 1996, 548–551. [Google Scholar]
  153. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Ba I and Ba II spectral lines. Astron. Astrophys. Supp. 1997, 122, 163–166. [Google Scholar]
  154. Bikmaev, I.F.; Ryabchikova, T.A.; Bruntt, H.; Musaev, F.A.; Mashonkina, L.I.; Belyakova, E.V.; Shimansky, V.V.; Barklem, P.S.; Galazutdinov, G. Abundance analysis of two late A-type stars HD 32115 and HD 37594. Astron. Astrophys. 2002, 389, 537–546. [Google Scholar] [CrossRef]
  155. Schiller, F.; Przybilla, N. Quantitative spectroscopy of Deneb. Astron. Astrophys. 2008, 479, 849–858. [Google Scholar]
  156. Dimitrijević, M.S.; Sahal-Bréchot, S.; Bommier, V. Stark broadening of spectral lines of multicharged ions of astrophysical interest – I. C IV lines. Astron. Astrophys. Supp. 1991, 89, 581–590. [Google Scholar]
  157. Dimitrijević, M.S.; Sahal-Bréchot, S.; Bommier, V. Stark broadening of spectral lines of multicharged ions of astrophysical interest – II. Si IV lines. Astron. Astrophys. Supp. 1991, 89, 591–598. [Google Scholar]
  158. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of spectral lines of multicharged ions of astrophysical interest – IV. N V lines. Astron. Astrophys. Supp. 1992, 95, 109–120. [Google Scholar]
  159. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of spectral lines of multicharged ions of astrophysical interest – III. O VI lines. Astron. Astrophys. Supp. 1992, 93, 359–371. [Google Scholar]
  160. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of spectral lines of multicharged ions of astrophysical interest – VIII. S VI lines. Astron. Astrophys. Supp. 1993, 100, 91–101. [Google Scholar]
  161. Rauch, T. NLTE Analysis of a SDO binary: HD128220. Lect. Not. Phys. 1992, 401, 267–269. [Google Scholar] [CrossRef]
  162. Werner, K. Analysis of PG 1159 stars. Lect. Not. Phys. 1992, 401, 273–287. [Google Scholar] [CrossRef]
  163. Unglaub, K.; Bues, I. The influence of gravitational settling and selective radiative forces in PG 1159 stars. Astron. Astrophys. 1996, 306, 843–859. [Google Scholar]
  164. Werner, K.; Dreizler, S.; Heber, U.; Rauch, T.; Fleming, T.A.; Sion, E.M.; Vauclair, G. High resolution UV spectroscopy of two hot (pre-)white dwarfs with the Hubble Space Telescope. KPD 0005+5106 and RXJ 2117+3412. Astron. Astrophys. 1996, 307, 860–868. [Google Scholar]
  165. Vennes, S.; Dupuis, J.; Chayer, P.; Polomski, E.F.; Dixon, W.V.; Hurwitz, M. The Complete Spectral Energy Distribution and the Atmospheric Properties of the Helium Rich White Dwarf MCT 05012858. Astrophys. J. 1998, 500, L41–L44. [Google Scholar] [CrossRef]
  166. Vennes, S.; Thorstensen, J.R.; Polomski, E.F. Stellar masses, kinematics, and white dwarf composition for three close DA+dMe binaries. Astrophys. J. 1999, 523, 386–398. [Google Scholar] [CrossRef]
  167. Lamzin, S.A. Calculation of profiles of CIV, NV, OVI, and SiIV resonance lines formed in accretion shocks in T Tauri stars: A plane layer. Astron. Rep. 2003, 47, 498–510. [Google Scholar] [CrossRef]
  168. Rauch, T.; Ziegler, M.; Werner, K.; Kruk, J.W.; Oliveira, C.M.; Vande Putte, D.; Mignani, R.P.; Kerber, F. High-resolution FUSE and HST ultraviolet spectroscopy of central star of Sh 2–216. Astron. Astrophys. 2007, 470, 317–329. [Google Scholar] [CrossRef]
  169. Rauch, T.; Koeppen, J.; Werner, K. Spectral analysis of the planetary nebula K 1–27 and its very hot hydrogen-deficient central star. Astron. Astrophys. 1994, 286, 543–554. [Google Scholar]
  170. Rauch, T.; Koeppen, J.; Werner, K. Spectral analysis of the multiple-shell planetary nebula LoTr4 and its very hot hydrogen-deficient central star. Astron. Astrophys. 1996, 310, 613–628. [Google Scholar]
  171. Werner, K.; Wolf, B. The EUV spectrum of the unique bare stellar core H1504+65. Astron. Astrophys. 1999, 347, L9–L13. [Google Scholar]
  172. Fontaine, M.; Chayer, P.; Wesemael, F.; Fontaine, G.; Lamontagne, R. Analysis of the FUSE spectra of the He-poor SDO star MCT 0019–2441. Balt. Astron. 2006, 15, 99–102. [Google Scholar]
  173. Fontaine, M.; Chayer, P.; Oliveira, C.M.; Wesemael, F.; Fontaine, G. Analysis of the FUSE spectrum of the hot, evolved star GD 605. Astrophys. J. 2008, 678, 394–407. [Google Scholar] [CrossRef]
  174. Dimitrijević, M.S.; Sahal-Bréchot, S. Broadening of neutral sodium lines. J. Quant. Spectrosc. Radiat. Transf. 1985, 34, 149–161. [Google Scholar] [CrossRef]
  175. Cappelli, M.A.; Measures, R.M. Electron density radial profiles derived from Stark broadening in a sodium plasma produced by laser resonance saturation. Appl. Optics 1987, 26, 1058–1067. [Google Scholar] [CrossRef]
  176. Leonov, A.G.; Chekhov, D.I.; Starostin, A.N. Mechanisms of Resonant Laser Ionization. J. Exper. Theor. Phys. 1997, 84, 703–715. [Google Scholar] [CrossRef]
  177. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Be II spectral lines. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 397–403. [Google Scholar] [CrossRef]
  178. Villoresi, P.; Bidoli, P.; Nicolosi, P. Absorption Spectra and Oscillator Strength Ratio Measurements for Δn=1 Transitions from Excited Levels of Be I and Be II. J. Quant. Spectrosc. Radiat. Transf. 1997, 57, 847–857. [Google Scholar] [CrossRef]
  179. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral calcium spectral lines. Astron. Astrophys. Supp. 1999, 140, 191–192. [Google Scholar]
  180. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening parameter tables for neutral calcium spectral lines II. Serb. Astron. J. 2000, 161, 39–88. [Google Scholar]
  181. Milisavljević, S.; Šević, D.; Pejčev, V.; Filipović, D.M.; Marinković, B.P. Differential and integrated cross sections for the electron excitation of the 4 1Po state of calcium atom. J. Phys. B 2004, 37, 3571–3581. [Google Scholar] [CrossRef]
  182. Boswell, C.J.; O’Connor, P.D. Charged particle motion in an explosively generated ionizing shock. In Shock Compression of Condensed Matter; Elert, M.L., Buttler, W.T., Furnish, M.D., Anderson, W.W., Proud, W.G., Eds.; Am. Inst. Phys. Conf. Ser.; 2009; Volume 1195, pp. 400–403. [Google Scholar]
  183. Gehlen, C.D.; Wiens, E.; Noll, R.; Wilsch, G.; Reichling, K. Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range. Spectrochim. Acta B 2009, 64, 1135–1140. [Google Scholar] [CrossRef]
  184. Lagrange, J.F.; Hermann, J.; Wolfman, J.; Motret, O. Dynamical plasma study during CaCu3Ti4O12 and Ba0.6Sr0.4TiO3 pulsed laser deposition by local thermodynamic equilibrium modeling. J. Phys. D Appl. Phys. 2010, 43, 285. [Google Scholar]
  185. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Mg I spectral lines. Phys. Scr. 1995, 52, 41–51. [Google Scholar] [CrossRef]
  186. Dimitrijević, M.S.; Sahal-Bréchot, S. Electron-impact broadening of Mg II spectral lines for astrophysical and laboratory plasma research. Phys. Scr. 1998, 58, 61–71. [Google Scholar] [CrossRef]
  187. Hoffman, J.; Szymanski, Z.; Azharonok, V. Plasma plume induced during laser welding of magnesium alloys. In International Conference on Research and Applications of Plasmas (PLASMA 2005), Opole, Poland, 6–9 September 2005; Sadowski, M.J., Dudeck, M., Hartfuss, H.J., Pawelec, E., Eds.; AIP Conference Proceedings. 2006; 812, pp. 469–472. [Google Scholar]
  188. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Sr I spectral lines. Astron. Astrophys. Supp. 1996, 119, 529–530. [Google Scholar]
  189. Christou, C.; Garg, A.; Barber, Z.H. Vapor-phase oxidation during pulsed laser deposition of SrBi2Ta2O9. J. Vac. Sci. Tech. A 2001, 19, 2061–2068. [Google Scholar] [CrossRef]
  190. Barber, Z.H.; Christou, C.; Chiu, K.-F.; Garg, A. The measurement and control of ionization of the depositing flux during thin film growth. Vac. 2003, 69, 53–62. [Google Scholar]
  191. Santagata, A.; Di Trolio, A.; Parisi, G.P.; Larciprete, R. Space and time resolved emission spectroscopy of Sr 2FeMoO 6 laser induced plasma. Appl. Surf. Sci. 2005, 248, 19–23. [Google Scholar]
  192. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Li II spectral lines. Phys. Scr. 1996, 54, 50–55. [Google Scholar] [CrossRef]
  193. Coons, R.W.; Harilal, S.S.; Polek, M.; Hassanein, A. Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas. Anal. Bioanal. Chem. 2011, 400, 3239–3246. [Google Scholar] [CrossRef]
  194. Mihajlov, A.A.; Sakan, N.M.; Srećković, V.A.; Vitel, Y. Modeling of continuous absorption of electromagnetic radiation in dense partially ionized plasmas. J. Phys. A 2011, 44, 095502. [Google Scholar] [CrossRef]
  195. Hafeez, S.; Shaikh, N.M.; Rashid, B.; Baig, M.A. Plasma properties of laser-ablated strontium target. J. Appl. Phys. 2008, 103, 083117. [Google Scholar] [CrossRef]
  196. Hanif, M.; Salik, M. Laser-based optical emission studies of barium plasma. Appl. Phys. B 2013, 110, 563–571. [Google Scholar] [CrossRef]
  197. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of Ag I spectral lines. Atom. Data Nucl. Data 2003, 85, 269–290. [Google Scholar] [CrossRef]
  198. Tošić, S.D.; Pejčev, V.; Šević, D.; McEachran, R.P.; Stauffer, A.D.; Marinković, B.P. Absolute differential cross sections for electron excitation of silver at small scattering angles. Nucl. Instr. Method Phys. Res. B 2012, 279, 53–57. [Google Scholar] [CrossRef]
  199. Simić, Z.; Dimitrijević, M.S.; Milovanović, N.; Sahal-Bréchot, S. Stark broadening of Cd I spectral lines. Astron. Astrophys. 2005, 441, 391–393. [Google Scholar] [CrossRef]
  200. Shaikh, N.M.; Rashid, B.; Hafeez, S.; Mahmood, S.; Saleem, M.; Baig, M.A. Diagnostics of cadmium plasma produced by laser ablation. J. Appl. Phys. 2006, 100, 073102. [Google Scholar] [CrossRef]
  201. Shaikh, N.M.; Hafeez, S.; Baig, M.A. Comparison of zinc and cadmium plasma produced by laser ablation. Spectrochim. Acta B 2007, 62, 1311–1320. [Google Scholar] [CrossRef]
  202. Sanz, M.; Lopez-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M. Laser ablation and deposition of wide bandgap semiconductors: Plasma and nanostructure of deposits diagnosis. J. Nanoparticle Res. 2011, 13, 6621–6631. [Google Scholar] [CrossRef][Green Version]
  203. Zmerli, B.; Ben Nessib, N.; Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening calculations of neutral copper spectral lines and temperature dependence. Phys. Scr. 2010, 82, 055301. [Google Scholar] [CrossRef]
  204. Hu, Wenqian; Shin, Yung C.; King, Galen. Characteristics of plume plasma and its effects on ablation depth during ultrashort laser ablation of copper in air. J. Phys. D Appl. Phys. 2012, 45, 355204. [Google Scholar] [CrossRef]
  205. Dimitrijević, M.S.; Christova, M.; Sahal-Bréchot, S. Stark broadening of visible Ar I spectral lines. Phys. Script. 2007, 75, 809–819. [Google Scholar] [CrossRef]
  206. Rouffet, M.E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K.D.; Uhrlandt, D. Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J. Phys. D 2010, 43, 434003. [Google Scholar] [CrossRef]
  207. Mauer, G.; Vaßen, R. Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties. J. Phys. Conf. Series 2012, 406, 012005. [Google Scholar] [CrossRef]
  208. Zhu, Xi-Ming; Walsh, J.L.; Chen, Wen-Cong; Pu, Yi-Kang. Measurement of the temporal evolution of electron density in a nanosecond pulsed argon microplasma: Using both Stark broadening and an OES line-ratio method. J. Phys. D 2012, 45, 295201. [Google Scholar] [CrossRef]
  209. Zhang, W.; Hua, X.; Liao, W.; Li, F.; Wang, M. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures. Opt. Laser Technol. 2014, 56, 158–166. [Google Scholar] [CrossRef]
  210. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of neutral zinc spectral lines. Astron. Astrophys. Supp. 1999, 140, 193–196. [Google Scholar]
  211. Gornushkin, I.B.; Kazakov, A.Ya.; Omenetto, N.; Smith, B.W.; Winefordner, J.D. Experimental verification of a radiative model of laser-induced plasma expanding into vacuum. Spectrochim. Acta B 2005, 60, 215–230. [Google Scholar] [CrossRef]
  212. Deng, Y.Z.; Zheng, H.Y.; Murukeshan, V.M.; Zhou, W. Analysis of Optical Emission towards Optimisation of Femtosecond Laser Processing. J. Laser Micro Nanoengineering. 2006, 1, 136–141. [Google Scholar] [CrossRef]
  213. Shaikh, N.M.; Rashid, B.; Hafeez, S.; Jamil, Y.; Baig, M.A. Measurement of electron density and temperature of a laser-induced zinc plasma. J. Physics D Appl. Phys. 2006, 39, 1384–1391. [Google Scholar] [CrossRef]
  214. Shaikh, N.M.; Hafeez, S.; Kalyar, M.A.; Ali, R.; Baig, M.A. Spectroscopic characterization of laser ablation brass plasma. J. Appl. Phys. B 2008, 104, 103108. [Google Scholar] [CrossRef]
  215. Patel, D.N.; Pandey, P.K.; Thareja, R.K. Stoichiometric investigations of laser-ablated brass plasma. Appl. Opt. 2012, 51, B192–B200. [Google Scholar] [CrossRef]
  216. Gupta, Shyam L.; Thareja, Raj K. Photoluminescence of nanoparticles in vapor phase of colliding plasma. J. Appl. Phys. 2013, 113, 143308. [Google Scholar] [CrossRef]
  217. Diwakar, P.K.; Harilal, S.S.; Freeman, J.R.; Hassanein, A. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy. Spectrochim. Acta B Phys. Plasmas 2013, 87, 65–73. [Google Scholar]
  218. Freeman, J.R.; Harilal, S.S.; Diwakar, P.K.; Verhoff, B.; Hassanein, A. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions. Spectrochim. Acta B Phys. Plasmas 2013, 87, 43–50. [Google Scholar]
  219. Gupta, Shyam L; Pandey, P.K.; Thareja, Raj K. Dynamics of laser ablated colliding plumes. Phys. Plasmas 2013, 20, 013511. [Google Scholar] [CrossRef]
  220. Patel, D.N.; Pandey, Pramod K.; Thareja, Raj K. Brass plasmoid in external magnetic field at different air pressures. Phys. Plasmas 2013, 20, 103503. [Google Scholar] [CrossRef]
  221. Smijesh, N.; Philip, Reji. Emission dynamics of an expanding ultrafast-laser produced Zn plasma under different ambient pressures. J. Appl. Phys. 2013, 114, 093301. [Google Scholar] [CrossRef]
  222. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of spectral lines of multicharged ions of astrophysical interest. VII. Al III lines. Astron. Astrophys. Supp. 1993, 99, 585–589. [Google Scholar]
  223. Heading, D.J.; Benett, G.R.; Wark, J.S.; Lee, R.W. Novel plasma source for dense plasma effects. Phys. Rev. Lett. 1995, 74, 3616–3619. [Google Scholar] [CrossRef]
  224. Heading, D.J.; Wark, J.S.; Bennett, G.R.; Lee, R.W. Simulations of spectra from dense aluminium plasmas. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 167–180. [Google Scholar] [CrossRef]
  225. Versteegh, A.; Behringer, K.; Fantz, U.; Fussmann, G.; Juttner, B.; Noack, S. Long-living plasmoids from an atmospheric discharge. Plasma Sources Sci. T. 2008, 17, 024014. [Google Scholar] [CrossRef]
  226. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening of spectral lines of multicharged ions of astrophysical interest. XVI. S V spectral lines. Astron. Astrophys. Supp. 1998, 127, 543–544. [Google Scholar]
  227. Bengoechea, J.; Kennedy, E.T. Time-integrated, spatially resolved plasma characterization of steel samples in the VUV. J. Anal. Atom. Spectrom. 2004, 19, 468–473. [Google Scholar] [CrossRef]
  228. Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening parameter tables for Ar VIII. Serb. Astron. J. 1999, 160, 15–20. [Google Scholar]
  229. Uzuriaga, J.; Chamorro, J.C.; Marín, R.A.; Riascos, H. Optical emission spectra of ZnMnO plasma produced by a pulsed laser. J. Phys. Conf. Ser. 2012, 370, 012056. [Google Scholar] [CrossRef]
  230. Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N. STARK-B Database. LERMA, Observatory of Paris, France and Astronomical Observatory, Belgrade, Serbia. 2014. Available online: http://stark-b.obspm.fr (accessed on 30 April 2014).
  231. Dubernet, M. L.; Boudon, V.; Culhane, J. L.; Dimitrijevic, M. S.; Fazliev, A. Z.; Joblin, C.; Kupka, F.; Leto, G.; et al. Virtuel Atomic and Molecular Data Centre. JQSRT 2010, 111, 2151–2159. [Google Scholar] [CrossRef][Green Version]
Back to TopTop