Hybrid Basis and Multi-Center Grid Method for Strong-Field Processes
Abstract
1. Introduction
2. Theoretical Approach
2.1. Partitioning of Physical Space
2.2. Radial FEDVR Functions
2.3. Hybrid Basis and Quadrature Approach
2.4. Calculation of Electronic Integrals
2.5. Construction of the Orthonormal Hybrid Basis
- Construct an othornomal basis of FEDVRs. We consider the space of the primitive FEDVR functions in and diagonalize the associated overlap matrixwhere is a diagonal matrix containing strictly positive eigenvalues and is the unitary matrix of eigenvectors. The orthonormal FEDVR basis functions are then expressed as linear combinations of the primitive ones,with the orthogonalization matrix . By construction they satisfy under Becke’s quadrature rule.
- Construct pure FEDVR functions orthogonal to the MOs. We diagonalize the projector on the MO spacein the subspace spanned by the orthonormalized FEDVR functions , for , yielding eigenvectors with eigenvalues , for , among which at least eigenvalues are zero. The corresponding eigenvectors (, with ) form, by construction, an orthonormal basis of pure FEDVRs orthogonal to the MO subspace.
- Construct mixed MO–FEDVR functions orthogonal to the MOs. To improve the spatial description, we refine the basis by considering the remaining eigenvectors with associated eigenvalues , for . Since these eigenvectors have nonzero overlap with the MO space, we remove their MO components by constructingwhere is the MO projector. The functions are, by construction, orthogonal to all pure FEDVRs and to the MOs, but they do not yet form an orthonormal set. To orthonormalize them, we proceed as in step (1) by diagonalizing their overlap matrix,where . The mixing of FEDVR and MO functions can lead to near-linear dependencies in the hybrid basis; overcompleteness is signaled by very small eigenvalues in . We therefore discard eigenvectors with , where is a chosen threshold. After this procedure, we retain (necessarily ) additional mixed FEDVR–MO functions, denoted with .
2.6. Time-Dependent Propagation
2.7. Observables
2.7.1. Photoelectron Spectra and Momentum Distributions
2.7.2. High-Harmonic Generation Spectra
3. Results and Discussion
3.1. Atomic Hydrogen (H) and One-Electron Model in Helium (He)
3.2. Dihydrogen Cation ()
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sartania, S.; Cheng, Z.; Lenzner, M.; Tempea, G.; Spielmann, C.; Krausz, F.; Ferencz, K. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt. Lett. 1997, 22, 1562–1564. [Google Scholar] [CrossRef]
- Brabec, T.; Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000, 72, 545–591. [Google Scholar] [CrossRef]
- Seidel, M.; Xiao, X.; Hussain, S.A.; Arisholm, G.; Hartung, A.; Zawilski, K.T.; Schunemann, P.G.; Habel, F.; Trubetskov, M.; Pervak, V.; et al. Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. 2018, 4, eaaq1526. [Google Scholar] [CrossRef]
- Furch, F.J.; Witting, T.; Osolodkov, M.; Schell, F.; Schulz, C.P.; J Vrakking, M.J. High power, high repetition rate laser-based sources for attosecond science. J. Phys. Photonics 2022, 4, 032001. [Google Scholar] [CrossRef]
- Corkum, P.B.; Krausz, F. Attosecond science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Plaja, L.; Torres, R.; Zaïr, A. Attosecond Physics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 177. [Google Scholar]
- Nisoli, M.; Decleva, P.; Calegari, F.; Palacios, A.; Martín, F. Attosecond Electron Dynamics in Molecules. Chem. Rev. 2017, 117, 10760–10825. [Google Scholar] [CrossRef]
- Biegert, J.; Calegari, F.; Dudovich, N.; Quéré, F.; Vrakking, M. Attosecond technology(ies) and science. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 070201. [Google Scholar] [CrossRef]
- Cruz-Rodriguez, L.; Dey, D.; Freibert, A.; Stammer, P. Quantum phenomena in attosecond science. Nat. Rev. Phys. 2024, 6, 691–704. [Google Scholar] [CrossRef]
- Klünder, K.; Johnsson, P.; Swoboda, M.; L’Huillier, A.; Sansone, G.; Nisoli, M.; Vrakking, M.J.J.; Schafer, K.J.; Mauritsson, J. Reconstruction of attosecond electron wave packets using quantum state holography. Phys. Rev. A 2013, 88, 033404. [Google Scholar] [CrossRef]
- Bello, R.Y.; Canton, S.E.; Jelovina, D.; Bozek, J.D.; Rude, B.; Smirnova, O.; Ivanov, M.Y.; Palacios, A.; Martín, F. Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Sci. Adv. 2018, 4, eaat3962. [Google Scholar] [CrossRef]
- Fuchs, J.; Douguet, N.; Donsa, S.; Martín, F.; Burgdörfer, J.; Argenti, L.; Cattaneo, L.; Keller, U. Towards the complete phase profiling of attosecond wave packets. Phys. Rev. Res. 2021, 3, 013195. [Google Scholar] [CrossRef]
- Beaulieu, S.; Comby, A.; Clergerie, A.; Caillat, J.; Descamps, D.; Dudovich, N.; Fabre, B.; Géneaux, R.; Légaré, F.; Petit, S.; et al. Attosecond-resolved photoionization of chiral molecules. Science 2017, 358, 1288–1294. [Google Scholar] [CrossRef]
- Bloch, E.; Larroque, S.; Rozen, S.; Beaulieu, S.; Comby, A.; Beauvarlet, S.; Descamps, D.; Fabre, B.; Petit, S.; Taïeb, R.; et al. Revealing the Influence of Molecular Chirality on Tunnel-Ionization Dynamics. Phys. Rev. X 2021, 11, 041056. [Google Scholar] [CrossRef]
- Fehre, K.; Eckart, S.; Kunitski, M.; Janke, C.; Trabert, D.; Hofmann, M.; Rist, J.; Weller, M.; Hartung, A.; Schmidt, L.P.H.; et al. Strong Differential Photoion Circular Dichroism in Strong-Field Ionization of Chiral Molecules. Phys. Rev. Lett. 2021, 126, 083201. [Google Scholar] [CrossRef]
- Ayuso, D.; Ordonez, A.F.; Decleva, P.; Ivanov, M.; Smirnova, O. Strong chiral response in non-collinear high harmonic generation driven by purely electric-dipole interactions. Opt. Express 2022, 30, 4659–4667. [Google Scholar] [CrossRef] [PubMed]
- Calegari, F.; Ayuso, D.; Trabattoni, A.; Belshaw, L.; de Camillis, S.; Anumula, S.; Frassetto, F.; Poletto, L.; Palacios, A.; Decleva, P.; et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 2014, 346, 336–339. [Google Scholar] [CrossRef]
- Kraus, P.M.; Mignolet, B.; Baykusheva, D.; Rupenyan, A.; Horný, L.; Penka, E.F.; Grassi, G.; Tolstikhin, O.I.; Schneider, J.; Jensen, F.; et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 2015, 350, 790–795. [Google Scholar] [CrossRef]
- Lara-Astiaso, M.; Galli, M.; Trabattoni, A.; Palacios, A.; Ayuso, D.; Frassetto, F.; Poletto, L.; de Camillis, S.; Greenwood, J.; Decleva, P.; et al. Attosecond Pump–Probe Spectroscopy of Charge Dynamics in Tryptophan. J. Phys. Chem. Lett. 2018, 9, 4570–4577. [Google Scholar] [CrossRef]
- Grell, G.; Guo, Z.; Driver, T.; Decleva, P.; Plésiat, E.; Picón, A.; González-Vázquez, J.; Walter, P.; Marangos, J.P.; Cryan, J.P.; et al. Effect of the shot-to-shot variation on charge migration induced by sub-fs x-ray free-electron laser pulses. Phys. Rev. Res. 2023, 5, 023092. [Google Scholar] [CrossRef]
- He, L.; He, Y.; Sun, S.; Goetz, E.; Le, A.T.; Zhu, X.; Lan, P.; Lu, P.; Lin, C.D. Attosecond probing and control of charge migration in carbon-chain molecule. Adv. Photonics 2023, 5, 056001. [Google Scholar] [CrossRef]
- Sansone, G.; Kelkensberg, F.; Pérez-Torres, J.F.; Morales, F.; Kling, M.F.; Siu, W.; Ghafur, O.; Johnsson, P.; Swoboda, M.; Benedetti, E.; et al. Electron localization following attosecond molecular photoionization. Nature 2010, 465, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Sainadh, U.S.; Xu, H.; Wang, X.; Atia-Tul-Noor, A.; Wallace, W.C.; Douguet, N.; Bray, A.; Ivanov, I.; Bartschat, K.; Kheifets, A.; et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 2019, 568, 75–77. [Google Scholar] [CrossRef]
- Tuthill, D.R.; Scarborough, T.D.; Gorman, T.T.; Hamer, K.A.; Jones, R.R.; Gaarde, M.B.; Lopata, K.; Mauger, F.; Schafer, K.J.; DiMauro, L.F. Investigation of Interferences in Carbon Dioxide through Multidimensional Molecular-Frame High-Harmonic Spectroscopy. J. Phys. Chem. A 2022, 126, 8588–8595. [Google Scholar] [CrossRef]
- Chini, M.; Zhao, K.; Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 2014, 8, 178–186. [Google Scholar] [CrossRef]
- Haas, J.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy for Chemical Analysis. Annu. Rev. Anal. Chem. 2016, 9, 45–68. [Google Scholar] [CrossRef]
- Oliveira, M.J.T.; Mignolet, B.; Kus, T.; Papadopoulos, T.A.; Remacle, F.; Verstraete, M.J. Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. J. Chem. Theory Comput. 2015, 11, 2221–2233. [Google Scholar] [CrossRef]
- Armstrong, G.S.J.; Khokhlova, M.A.; Labeye, M.; Maxwell, A.S.; Pisanty, E.; Ruberti, M. Dialogue on analytical and ab initio methods in attoscience. Eur. Phys. J. D 2021, 75, 209. [Google Scholar] [CrossRef]
- Rohringer, N.; Gordon, A.; Santra, R. Configuration-interaction-based time-dependent orbital approach for ab initio treatment of electronic dynamics in a strong optical laser field. Phys. Rev. A-At. Mol. Opt. Phys. 2006, 74, 043420. [Google Scholar] [CrossRef]
- Greenman, L.; Ho, P.J.; Pabst, S.; Kamarchik, E.; Mazziotti, D.A.; Santra, R. Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes. Phys. Rev. A 2010, 82, 023406. [Google Scholar] [CrossRef]
- Hochstuhl, D.; Bonitz, M. Time-dependent restricted-active-space configuration-interaction method for the photoionization of many-electron atoms. Phys. Rev. A 2012, 86, 053424. [Google Scholar] [CrossRef]
- Woźniak, A.P.; Przybytek, M.; Lewenstein, M.; Moszyński, R. Effects of electronic correlation on the high harmonic generation in helium: A time-dependent configuration interaction singles vs time-dependent full configuration interaction study. J. Chem. Phys. 2022, 156, 174106. [Google Scholar] [CrossRef]
- Sato, T.; Ishikawa, K.L. Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields. Phys. Rev. A-At. Mol. Opt. Phys. 2013, 88, 023402. [Google Scholar] [CrossRef]
- Miyagi, H.; Madsen, L.B. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. Phys. Rev. A-At. Mol. Opt. Phys. 2013, 87, 062511. [Google Scholar] [CrossRef]
- Nest, M.; Remacle, F.; Levine, R.D. Pump and probe ultrafast electron dynamics in LiH: A computational study. New J. Phys. 2008, 10, 025019. [Google Scholar] [CrossRef]
- Marques, M.A.; Gross, E.K. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 2004, 55, 427–455. [Google Scholar] [CrossRef] [PubMed]
- Mauger, F.; Giri, S.; Folorunso, A.S.; Hamer, K.A.; Jayasinghe, D.D.; Lopata, K.; Schafer, K.J.; Gaarde, M.B. Attosecond charge migration in organic molecules: Initiating and probing localized electron holes. In Advances in Atomic, Molecular, and Optical Physics; Dimauro, L.F., Perrin, H., Yelin, S., Eds.; Academic Press: Cambridge, MA, USA, 2025; Volume 74, pp. 1–46. [Google Scholar] [CrossRef]
- Brown, A.C.; Armstrong, G.S.; Benda, J.; Clarke, D.D.; Wragg, J.; Hamilton, K.R.; Mašín, Z.; Gorfinkiel, J.D.; van der Hart, H.W. RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Comput. Phys. Commun. 2020, 250, 107062. [Google Scholar] [CrossRef]
- Bondy, A.T.; Saha, S.; del Valle, J.C.; Harth, A.; Douguet, N.; Hamilton, K.R.; Bartschat, K. High-order harmonic generation in helium: A comparison study. Phys. Rev. A 2024, 109, 043113. [Google Scholar] [CrossRef]
- Marante, C.; Argenti, L.; Martín, F. Hybrid Gaussian–B-spline basis for the electronic continuum: Photoionization of atomic hydrogen. Phys. Rev. A 2014, 90, 012506. [Google Scholar] [CrossRef]
- Marante, C.; Klinker, M.; Kjellsson, T.; Lindroth, E.; González-Vázquez, J.; Argenti, L.; Martín, F. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2s22p5 threshold. Phys. Rev. A 2017, 96, 022507. [Google Scholar] [CrossRef]
- Randazzo, J.M.; Marante, C.; Chattopadhyay, S.; Schneider, B.I.; Olsen, J.; Argenti, L. ASTRA: Transition-density-matrix approach to molecular ionization. Phys. Rev. Res. 2023, 5, 043115. [Google Scholar] [CrossRef]
- Rescigno, T.N.; Horner, D.A.; Yip, F.L.; McCurdy, C.W. Hybrid approach to molecular continuum processes combining Gaussian basis functions and the discrete variable representation. Phys. Rev. A 2005, 72, 052709. [Google Scholar] [CrossRef]
- Yip, F.L.; McCurdy, C.W.; Rescigno, T.N. Hybrid Gaussian–discrete-variable representation approach to molecular continuum processes: Application to photoionization of diatomic Li2+. Phys. Rev. A 2008, 78, 023405. [Google Scholar] [CrossRef]
- Boys, S.F.; Wilkes, M.V. The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1960, 258, 402–411. [Google Scholar] [CrossRef]
- Schaefer, H.F., III (Ed.) Methods of Electronic Structure Theory; Plenum Press: New York, NY, USA, 1977. [Google Scholar]
- Rescigno, T.N.; McCurdy, C.W. Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 2000, 62, 032706. [Google Scholar] [CrossRef]
- Power, J.; Rawitscher, G. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation. Phys. Rev. E 2012, 86, 066707. [Google Scholar] [CrossRef]
- Becke, A.D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553. [Google Scholar] [CrossRef]
- Gharibnejad, H.; Douguet, N.; Schneider, B.; Olsen, J.; Argenti, L. A multi-center quadrature scheme for the molecular continuum. Comput. Phys. Commun. 2021, 263, 107889. [Google Scholar] [CrossRef]
- Manolopoulos, D.; Wyatt, R. Quantum scattering via the log derivative version of the Kohn variational principle. Chem. Phys. Lett. 1988, 152, 23–32. [Google Scholar] [CrossRef]
- Krylov, V.; Stroud, A. Approximate Calculation of Integrals; Dover Books on Mathematics; Dover Publications: Garden City, NY, USA, 2006. [Google Scholar]
- Lebedev, V. Values of the nodes and weights of ninth to seventeenth order gauss-markov quadrature formulae invariant under the octahedron group with inversion. Ussr Comput. Math. Math. Phys. 1975, 15, 44–51. [Google Scholar] [CrossRef]
- Grum-Grzhimailo, A.N.; Abeln, B.; Bartschat, K.; Weflen, D.; Urness, T. Ionization of atomic hydrogen in strong infrared laser fields. Phys. Rev. A 2010, 81, 043408. [Google Scholar] [CrossRef]
- Borràs, V.J.; Fernández-Milán, P.; Argenti, L.; González-Vázquez, J.; Martín, F. Photoionization cross sections and photoelectron angular distributions of molecules with XCHEM-2.0. Comput. Phys. Commun. 2024, 296, 109033. [Google Scholar] [CrossRef]
- Douguet, N.; Grum-Grzhimailo, A.N.; Gryzlova, E.V.; Staroselskaya, E.I.; Venzke, J.; Bartschat, K. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses. Phys. Rev. A 2016, 93, 033402. [Google Scholar] [CrossRef]
- Douguet, N.; Guchkov, M.; Bartschat, K.; Santos, S.F.d. Efficient Time-Dependent Method for Strong-Field Ionization of Atoms with Smoothly Varying Radial Steps. Atoms 2024, 12, 34. [Google Scholar] [CrossRef]
- Tong, X.M.; Lin, C.D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 2593. [Google Scholar] [CrossRef]
- Huzinaga, S. Gaussian-Type Functions for Polyatomic Systems. I. J. Chem. Phys. 1965, 42, 1293–1302. [Google Scholar] [CrossRef]
- Madsen, M.M.; Peek, J.M. Eigenparameters for the lowest twenty electronic states of the hydrogen molecule ion. At. Data Nucl. Data Tables 1970, 2, IN3-171. [Google Scholar] [CrossRef]
- Rahman, A. Polarizability of the hydrogen molecular-ion. Physica 1953, 19, 145–165. [Google Scholar] [CrossRef]
- Bates, D.R.; Öpik, U. Undulations in the photoionization cross section curves of molecules. J. Phys. B At. Mol. Phys. 1968, 1, 543. [Google Scholar] [CrossRef]
- Rescigno, T.N.; McCurdy, C.W.; Orel, A.E.; Lengsfield, B.H. The Complex Kohn Variational Method. In Computational Methods for Electron—Molecule Collisions; Huo, W.M., Gianturco, F.A., Eds.; Springer: Boston, MA, USA, 1995; pp. 1–44. [Google Scholar] [CrossRef]




| Exact Energy | Abs. Error | Rel. Error | |
|---|---|---|---|
| Energy (a.u.) | Rel. Error | |
|---|---|---|
| Gaussians only | −0.8329533 | |
| −1.102(3766) | ||
| −1.1026(282) | ||
| −1.10263(22) | ||
| −1.10263(28) | ||
| −1.10263(27) | ||
| Reference [60] | −1.1026342 | 0 |
| State | Reference [60] | ATTOMESA | Rel. Error |
|---|---|---|---|
| −1.10263421 | −1.10263(282) | ||
| −0.66753439 | −0.66753(319) | ||
| −0.42877182 | −0.428771(03) | ||
| −0.36086488 | −0.360864(52) | ||
| −0.25541317 | −0.255412(98) | ||
| −0.23577763 | −0.235777(53) | ||
| −0.22669963 | −0.226699(44) | ||
| −0.20086483 | −0.200864(54) | ||
| −0.17768105 | −0.177680(91) | ||
| −0.13731292 | −0.1373128(9) | ||
| −0.13079188 | −0.1307918(7) | ||
| −0.12671013 | −0.126710(03) | ||
| −0.12664387 | −0.126643(93) | ||
| −0.12619890 | −0.1261989(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamer, K.A.; Gharibnejad, H.; Argenti, L.; Douguet, N. Hybrid Basis and Multi-Center Grid Method for Strong-Field Processes. Atoms 2025, 13, 92. https://doi.org/10.3390/atoms13110092
Hamer KA, Gharibnejad H, Argenti L, Douguet N. Hybrid Basis and Multi-Center Grid Method for Strong-Field Processes. Atoms. 2025; 13(11):92. https://doi.org/10.3390/atoms13110092
Chicago/Turabian StyleHamer, Kyle A., Heman Gharibnejad, Luca Argenti, and Nicolas Douguet. 2025. "Hybrid Basis and Multi-Center Grid Method for Strong-Field Processes" Atoms 13, no. 11: 92. https://doi.org/10.3390/atoms13110092
APA StyleHamer, K. A., Gharibnejad, H., Argenti, L., & Douguet, N. (2025). Hybrid Basis and Multi-Center Grid Method for Strong-Field Processes. Atoms, 13(11), 92. https://doi.org/10.3390/atoms13110092

