Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics
Abstract
1. Introductory Concepts
1.1. Atomic and Nuclear Structure
1.1.1. Hyperfine Structure
1.1.2. Nuclear Moments as Probes for Nuclear Structure
1.2. Experimental Tools
1.2.1. Ion Traps
1.2.2. Optical and Optical-Radiofrequency Double Resonance Spectroscopy
1.2.3. Cooling of Trapped Charged Particles
2. Precision Atomic Structure Measurements with Ion Traps
Isotope | I | Ref. | |
---|---|---|---|
+ | 3/2 | 0.823312758(25) * | [54] |
0.82331294(11) * | [56] | ||
+ | 5/2 | 3.419804(27) | [57] |
+ | 5/2 | 3.64067(28) | [58] |
+ | 7/2 | −1.315349(9)[4] ** | [59] |
+ | 3/2 | 0.623876(3) | [60] |
+ | 5/2 | 1.37734(6) | [61] |
Isotope | I | Atomic State | Const. | Value (Hz) | Ref. |
---|---|---|---|---|---|
+ | 1/2 | A | 8,665,649,867(10) | [62] | |
+ | 3/2 | A | −742,772,280(430) | [8] | |
+ | 3/2 | A | −625,008,837.048(10) | [54] | |
−625,008,837.044(12) | [63] | ||||
+ | 3/2 | A | −2,677,302,988.8(72) | [9] | |
+ | 5/2 | A | −596,254,376(54) | [57] | |
−596,254,248.7(42) | [64] | ||||
− | 3/2 | 2P3/2 | A | 91,490,000(90,000) | [65] |
B | 26,240,000(230,000) | [65] | |||
+ | 7/2 | A | −806,402,071.60(8) | [55] | |
+ | 9/2 | A | −1,000,473,673(11) | [66] | |
+ | 1/2 | A | 14,530,507,349.9(11) | [67] | |
+ | 1/2 | A | 15,199,862,858(2) | [68] | |
15,199,862,855.0(2) | [69] | ||||
15,199,862,854.96(12) | [67] | ||||
15,199,862,855.02799(27) | [70] | ||||
+ | 1/2 | A | 9,107,913,698.97(50) | [3] | |
+ | 1/2 | A | 9,925,453,554.59(10) | [3] | |
+ | 3/2 | A | 3,591,670,117.45(29) | [71] | |
+ | 3/2 | A | 4,018,870,833.85(18) | [72] | |
A | 189,731,101(17) | [37] | |||
B | 44,536,612(34) | [37] | |||
C | 36.546(86) | [37] | |||
36.91(36) | [41] * | ||||
A | −12,029,234(11) | [40] | |||
B | 59,525,520(110) | [40] | |||
C | −12.41(77) | [40] | |||
+ | 5 | 9S4 | A | 517,281,950(150) | [4] |
B | 2,292,630(1000) | [4] | |||
7S3 | A | −561,647,000(100,000) | [44] | ||
+ | 5/2 | 9S4 | A | 1,585,450,570(250) | [4] |
B | 534,850(1900) | [4] | |||
+ | 5 | 9S4 | A | 599,010,680(40) | [4] |
B | −839,730(3000) | [4] | |||
7S3 | A | −650,334,000(2000) | [44] | ||
+ | 5/2 | 9S4 | A | 1,540,297,394(13) | [27] |
B | −660,862(231) | [27] | |||
C | 26(23) | [27] | |||
D | −6(5) | [27] | |||
7S3 | A | −1,672,457,109(266) | [44] | ||
+ | 5/2 | 9S4 | A | 684,565,993(9) | [27] |
B | −1,752,868(84) | [27] | |||
C | 3(7) | [27] | |||
D | −5(2) | [27] | |||
7S3 | A | −743,183,577(82) | [44] | ||
+ | 1/2 | S1/2 | A | 12,642,812,118.466(2) | [73] |
12,642,812,118.471(9) | [74] | ||||
12,642,812,118.4682(4) | [75] | ||||
+ | 5/2 | S1/2 | A | 3,497,240,079.85(3) | [76] |
+ | 1/2 | S1/2 | A | 40,507,347,997.8(10) | [77] |
40,507,347,996.9(3) | [78] | ||||
40,507,347,996.8(1) | [78] | ||||
40,507,347,996.84159(14)[41] ** | [79] | ||||
+ | 1/2 | P1/2 | A | 12,968,180,601.61(22) | [80] |
3. Perspectives for Nuclear Structure Studies with Trapped Radioactive Ions
Radioactive Ion Beam Production
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savard, G.; Werth, G. Precision nuclear measurements with ion traps. Annu. Rev. Nucl. Part. Sci. 2000, 50, 119–152. [Google Scholar] [CrossRef]
- Door, M.; Yeh, C.H.; Heinz, M.; Kirk, F.; Lyu, C.; Miyagi, T.; Berengut, J.C.; Bieroń, J.; Blaum, K.; Dreissen, L.S.; et al. Search for new bosons with ytterbium isotope shifts. arXiv 2024, arXiv:2403.07792. [Google Scholar]
- Knab, H.; Schupp, M.; Werth, G. Precision spectroscopy on trapped radioactive ions: Ground-state hyperfine splittings of 133Ba+ and 131Ba+. Europhys. Lett. 1987, 4, 1361. [Google Scholar] [CrossRef]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.; Georg, U.; Dembczynski, J.; Werth, G.; Collaboration, I. Ground-state hyperfine-structure measurements of unstable Eu+ isotopes in a Paul ion trap. Phys. Rev. A 1997, 56, 265. [Google Scholar] [CrossRef]
- Thielking, J.; Okhapkin, M.V.; Głowacki, P.; Meier, D.M.; von der Wense, L.; Seiferle, B.; Düllmann, C.E.; Thirolf, P.G.; Peik, E. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 2018, 556, 321–325. [Google Scholar] [CrossRef]
- Christensen, J.E.; Hucul, D.; Campbell, W.C.; Hudson, E.R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. Npj Quantum Inf. 2020, 6, 35. [Google Scholar] [CrossRef]
- Nakamura, T.; Wada, M.; Okada, K.; Takamine, A.; Ishida, Y.; Yamazaki, Y.; Kambara, T.; Kanai, Y.; Kojima, T.; Nakai, Y.; et al. Laser spectroscopy of 7,10Be+ in an online ion trap. Phys. Rev. A 2006, 74, 052503. [Google Scholar] [CrossRef]
- Okada, K.; Wada, M.; Nakamura, T.; Takamine, A.; Lioubimov, V.; Schury, P.; Ishida, Y.; Sonoda, T.; Ogawa, M.; Yamazaki, Y.; et al. Precision Measurement of the Hyperfine Structure of Laser-Cooled Radioactive 7Be+ Ions Produced by Projectile Fragmentation. Phys. Rev. Lett. 2008, 101, 212502. [Google Scholar] [CrossRef] [PubMed]
- Takamine, A.; Wada, M.; Okada, K.; Sonoda, T.; Schury, P.; Nakamura, T.; Kanai, Y.; Kubo, T.; Katayama, I.; Ohtani, S.; et al. Hyperfine Structure Constant of the Neutron Halo Nucleus 11Be+. Phys. Rev. Lett. 2014, 112, 162502. [Google Scholar] [CrossRef]
- Versolato, O.; Giri, G.; Van den Berg, J.; Böll, O.; Dammalapati, U.; Van Der Hoek, D.; Hoekstra, S.; Jungmann, K.; Kruithof, W.; Müller, S.; et al. Hyperfine structure of the 6d 2D3/2 level in trapped short-lived 211,209Ra+ ions. Phys. Lett. A 2011, 375, 3130–3133. [Google Scholar] [CrossRef]
- Thompson, R. Spectroscopy of trapped ions. Adv. At. Mol. Opt. Phys. 1993, 31, 63–136. [Google Scholar]
- Werth, G. Optical spectroscopy in ion traps. Eur. Phys. J. D 2007, 45, 121–124. [Google Scholar] [CrossRef]
- Werth, G.; Gheorghe, V.N.; Major, F.G.; Werth, G.; Gheorghe, V.N.; Major, F.G. Optical Spectroscopy. In Charged Particle Traps II: Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–159. [Google Scholar]
- Wang, L.B.; Mueller, P.; Bailey, K.; Drake, G.; Greene, J.; Henderson, D.; Holt, R.; Janssens, R.; Jiang, C.; Lu, Z.T.; et al. Laser Spectroscopic Determination of the 6He Nuclear Charge Radius. Phys. Rev. Lett. 2004, 93, 142501. [Google Scholar] [CrossRef]
- Mueller, P.; Sulai, I.; Villari, A.; Alcántara-Núñez, J.; Alves-Condé, R.; Bailey, K.; Drake, G.; Dubois, M.; Eléon, C.; Gaubert, G.; et al. Nuclear Charge Radius of 8He. Phys. Rev. Lett. 2007, 99, 252501. [Google Scholar] [CrossRef]
- Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J.; Gomez, E.; Gwinner, G.; Orozco, L.; Pearson, M.; Sprouse, G.; et al. Hyperfine anomalies in Fr: Boundaries of the spherical single particle model. Phys. Rev. Lett. 2015, 115, 042501. [Google Scholar] [CrossRef]
- Kimura, N.; Kono, Y.; Pipatpakorn, P.; Soutome, K.; Numadate, N.; Kuma, S.; Azuma, T.; Nakamura, N. Hyperfine-structure-resolved laser spectroscopy of many-electron highly charged ions. Commun. Phys. 2023, 6, 8. [Google Scholar] [CrossRef]
- Hur, J.; Aude Craik, D.P.; Counts, I.; Knyazev, E.; Caldwell, L.; Leung, C.; Pandey, S.; Berengut, J.C.; Geddes, A.; Nazarewicz, W.; et al. Evidence of two-source King plot nonlinearity in spectroscopic search for new Boson. Phys. Rev. Lett. 2022, 128, 163201. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, P.G.; Nazarewicz, W.; Ruiz, R.G. Beyond the charge radius: The information content of the fourth radial moment. Phys. Rev. C 2020, 101, 021301. [Google Scholar] [CrossRef]
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1955, 97, 380–395. [Google Scholar] [CrossRef]
- De Groote, R.; Kujanpää, S.; Koszorús, Á.; Li, J.; Moore, I. Magnetic octupole moment of 173Yb using collinear laser spectroscopy. Phys. Rev. A 2021, 103, 032826. [Google Scholar] [CrossRef]
- Gustavsson, M.G.; Mårtensson-Pendrill, A.M. Four decades of hyperfine anomalies. In Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 1998; Volume 30, pp. 343–360. [Google Scholar]
- Persson, J.R. Table of hyperfine anomaly in atomic systems. At. Data Nucl. Data Tables 2013, 99, 62–68. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Wilkins, S.; Ruiz, R.G. Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 2023, 129, 104005. [Google Scholar] [CrossRef]
- Neyens, G. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Rep. Prog. Phys. 2003, 66, 633. [Google Scholar] [CrossRef]
- de Groote, R.P.; Neyens, G. Spins and Electromagnetic Moments of Nuclei. In Handbook of Nuclear Physics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–36. [Google Scholar]
- Becker, O.; Enders, K.; Werth, G.; Dembczynski, J. Hyperfine-structure measurements of the 151,153Eu+ ground state. Phys. Rev. A 1993, 48, 3546. [Google Scholar] [CrossRef]
- Xiao, D.; Li, J.; Campbell, W.C.; Dellaert, T.; McMillin, P.; Ransford, A.; Roman, C.; Derevianko, A. Hyperfine structure of Yb+ 173: Toward resolving the Yb 173 nuclear-octupole-moment puzzle. Phys. Rev. A 2020, 102, 022810. [Google Scholar] [CrossRef]
- Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 37. [Google Scholar]
- Ghosh, P.K. Ion Traps; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Blaum, K.; Novikov, Y.N.; Werth, G. Penning traps as a versatile tool for precise experiments in fundamental physics. Contemp. Phys. 2010, 51, 149–175. [Google Scholar] [CrossRef]
- Dilling, J.; Blaum, K.; Brodeur, M.; Eliseev, S. Penning-trap mass measurements in atomic and nuclear physics. Annu. Rev. Nucl. Part. Sci. 2018, 68, 45–74. [Google Scholar] [CrossRef]
- Nagourney, W.; Sandberg, J.; Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 1986, 56, 2797. [Google Scholar] [CrossRef]
- Zoller, P.; Marte, M.; Walls, D. Quantum jumps in atomic systems. Phys. Rev. A 1987, 35, 198. [Google Scholar] [CrossRef]
- Schmidt, P.O.; Rosenband, T.; Langer, C.; Itano, W.M.; Bergquist, J.C.; Wineland, D.J. Spectroscopy using quantum logic. Science 2005, 309, 749–752. [Google Scholar] [CrossRef]
- Hume, D.B.; Rosenband, T.; Wineland, D.J. High-Fidelity Adaptive Qubit Detection through Repetitive Quantum Nondemolition Measurements. Phys. Rev. Lett. 2007, 99, 120502. [Google Scholar] [CrossRef]
- Lewty, N.C.; Chuah, B.L.; Cazan, R.; Sahoo, B.K.; Barrett, M.D. Spectroscopy on a single trapped 137Ba+ ion for nuclear magnetic octupole moment determination. Opt. Express 2012, 20, 21379–21384. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gaigalas, G.; Bieroń, J.; Ekman, J.; Jönsson, P.; Godefroid, M.; Froese Fischer, C. Re-evaluation of the nuclear magnetic octupole moment of 209Bi. Atoms 2022, 10, 132. [Google Scholar] [CrossRef]
- Rabi, I.I.; Millman, S.; Kusch, P.; Zacharias, J.R. The molecular beam resonance method for measuring nuclear magnetic moments. the magnetic moments of 3Li6, 3Li6 and 9F19. Phys. Rev. 1939, 55, 526. [Google Scholar] [CrossRef]
- Lewty, N.C.; Chuah, B.L.; Cazan, R.; Barrett, M.D.; Sahoo, B.K. Experimental determination of the nuclear magnetic octupole moment of 137Ba+ ion. Phys. Rev. A 2013, 88, 012518. [Google Scholar] [CrossRef]
- Hoffman, M.R. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- Itano, W.M.; Bergquist, J.C.; Bollinger, J.J.; Wineland, D.J. Cooling methods in ion traps. Phys. Scr. 1995, 1995, 106. [Google Scholar] [CrossRef]
- Karr, J.P. Precision measurements with non-laser-cooled trapped ions. J. Phys. At. Mol. Opt. Phys. 2009, 42, 154018. [Google Scholar] [CrossRef]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.; Revalde, G.; Dembczynski, J.; Werth, G. Hyperfine structure measurements in the 7 S 3 metastable finestructure level in stable and unstable Eu+ isotopes. Z. Für Phys. D At. Mol. Clust. 1997, 42, 171–175. [Google Scholar]
- Eschner, J.; Morigi, G.; Schmidt-Kaler, F.; Blatt, R. Laser cooling of trapped ions. JOSA B 2003, 20, 1003–1015. [Google Scholar] [CrossRef]
- Peik, E.; Abel, J.; Becker, T.; von Zanthier, J.; Walther, H. Sideband cooling of ions in radio-frequency traps. Phys. Rev. A 1999, 60, 439–449. [Google Scholar] [CrossRef]
- Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P. Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy. Phys. Rev. Lett. 1995, 75, 4011–4014. [Google Scholar] [CrossRef]
- Morigi, G.; Eschner, J.; Keitel, C.H. Ground State Laser Cooling Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 2000, 85, 4458–4461. [Google Scholar] [CrossRef] [PubMed]
- Roos, C.F.; Leibfried, D.; Mundt, A.; Schmidt-Kaler, F.; Eschner, J.; Blatt, R. Experimental Demonstration of Ground State Laser Cooling with Electromagnetically Induced Transparency. Phys. Rev. Lett. 2000, 85, 5547–5550. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.J.; Bergquist, J.C.; Bollinger, J.J.; Itano, W.M.; Wineland, D.J. Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 1986, 57, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Persson, J. Extraction of hyperfine anomalies without precise values of the nuclear magnetic dipole moment. Eur. Phys. J.-Hadron. Nucl. 1998, 2, 3–4. [Google Scholar] [CrossRef]
- Schmidt, T. Über die magnetischen Momente der Atomkerne. Z. Für Phys. 1937, 106, 358–361. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K.P. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Wineland, D.; Itano, W.M.; Van Dyck, R., Jr. High-Resolution Spectroscopy of Stored Ions. Adv. At. Mol. Phys. 1983, 19, 135–186. [Google Scholar]
- Arbes, F.; Benzing, M.; Gudjons, T.; Kurth, F.; Werth, G. Precise determination of the ground state hyperfine structure splitting of 43Ca II. Z. Für Phys. D At. Mol. Clust. 1994, 31, 27–30. [Google Scholar] [CrossRef]
- Nakamura, T.; Wada, M.; Okada, K.; Katayama, I.; Ohtani, S.; Schuessler, H. Precision spectroscopy of the Zeeman splittings of the 9Be+ 22S1/2 hyperfine structure for nuclear structure studies. Opt. Commun. 2002, 205, 329–336. [Google Scholar] [CrossRef]
- Itano, W.M.; Wineland, D. Precision measurement of the ground-state hyperfine constant of 25Mg+. Phys. Rev. A 1981, 24, 1364. [Google Scholar] [CrossRef]
- Rosenband, T.; Schmidt, P.O.; Hume, D.B.; Itano, W.M.; Fortier, T.M.; Stalnaker, J.E.; Kim, K.; Diddams, S.A.; Koelemeij, J.C.J.; Bergquist, J.C.; et al. Observation of the 1S0→3P0 Clock Transition in 27Al+. Phys. Rev. Lett. 2007, 98, 220801. [Google Scholar] [CrossRef]
- Hanley, R.K.; Allcock, D.T.C.; Harty, T.P.; Sepiol, M.A.; Lucas, D.M. Precision measurement of the 43Ca+ nuclear magnetic moment. Phys. Rev. A 2021, 104, 052804. [Google Scholar] [CrossRef]
- Marx, G.; Tommaseo, G.; Werth, G. Precise gJ-and gI-factor measurements of Ba+ isotopes. Eur. Phys. J. -At. Mol. Opt. Plasma Phys. 1998, 4, 279–284. [Google Scholar]
- Trapp, S.; Tommaseo, G.; Revalde, G.; Stachowska, E.; Szawiola, G.; Werth, G. Ion trap nuclear resonance on 151Eu+. Eur. Phys. J. -At. Mol. Opt. Plasma Phys. 2003, 26, 237–244. [Google Scholar]
- Schuessler, H.A.; Fortson, E.N.; Dehmelt, H.G. Hyperfine Structure of the Ground State of 3He+ by the Ion-Storage Exchange-Collision Technique. Phys. Rev. 1969, 187, 5–38. [Google Scholar] [CrossRef]
- Shiga, N.; Itano, W.M.; Bollinger, J.J. Diamagnetic correction to the 9Be+ ground-state hyperfine constant. Phys. Rev. A 2011, 84, 012510. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, K.; Che, H.; Yuan, W.; Zhang, J.; Lu, Z. Precision measurement of the 25Mg+ ground-state hyperfine constant. Phys. Rev. A 2017, 96, 052507. [Google Scholar] [CrossRef]
- Trainham, R.; Jopson, R.; Larson, D.J. Measurement of the hyperfine structure of 33 S-. Phys. Rev. A 1989, 39, 3223. [Google Scholar] [CrossRef]
- Sunaoshi, H.; Fukashiro, Y.; Furukawa, M.; Yamauchi, M.; Hayashibe, S.; Shinozuka, T.; Fujioka, M.; Satoh, I.; Wada, M.; Matsuki, S. A precision measurement of the hyperfine structure of 87Sr+. Hyperfine Interact. 1993, 78, 241–245. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, Z.B.; Wang, S.G.; Miao, K.; Wang, B.; Wang, L.J. High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ and 111Cd+ ions. Phys. Rev. A 2012, 86, 022523. [Google Scholar] [CrossRef]
- Tanaka, U.; Imajo, H.; Hayasaka, K.; Ohmukai, R.; Watanabe, M.; Urabe, S. Determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 1996, 53, 3982–3985. [Google Scholar] [CrossRef] [PubMed]
- Jelenković, B.M.; Chung, S.; Prestage, J.D.; Maleki, L. High-resolution microwave-optical double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 2006, 74, 022505. [Google Scholar] [CrossRef]
- Miao, S.N.; Zhang, J.W.; Qin, H.R.; Xin, N.C.; Han, J.Z.; Wang, L.J. Precision determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Opt. Lett. 2021, 46, 5882–5885. [Google Scholar] [CrossRef]
- Becker, W.; Werth, G. Precise determination of the ground state hyperfine splitting of 135Ba+. Z. Für Phys. Atoms Nucl. 1983, 311, 41–47. [Google Scholar] [CrossRef]
- Blatt, R.; Werth, G. Precision determination of the ground-state hyperfine splitting in 137Ba+ using the ion-storage technique. Phys. Rev. A 1982, 25, 1476–1482. [Google Scholar] [CrossRef]
- Fisk, P.T.; Sellars, M.J.; Lawn, M.A.; Coles, G. Accurate measurement of the 12.6 GHz "clock" transition in trapped 171Yb+ ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1997, 44, 344–354. [Google Scholar] [CrossRef]
- Tamm, C.; Schnier, D.; Bauch, A. Radio-frequency laser double-resonance spectroscopy of trapped 171Yb ions and determination of line shifts of the ground-state hyperfine resonance. Appl. Phys. B 1995, 60, 19–29. [Google Scholar] [CrossRef]
- Phoonthong, P.; Mizuno, M.; Kido, K.; Shiga, N. Determination of the absolute microwave frequency of laser-cooled 171Yb+. Appl. Phys. B 2014, 117, 673–680. [Google Scholar] [CrossRef]
- Münch, A.; Berkler, M.; Gerz, C.; Wilsdorf, D.; Werth, G. Precise ground-state hyperfine splitting in 171Yb II. Phys. Rev. A 1987, 35, 4147. [Google Scholar] [CrossRef]
- McGuire, M.D.; Petsch, R.; Werth, G. Precision determination of the ground-state hyperfine separation in 199Hg+ using the ion-storage technique. Phys. Rev. A 1978, 17, 1999–2004. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.N.; He, Y.H.; Li, H.X.; Chen, Y.H.; She, L.; Li, J.M. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap. Chin. Phys. Lett. 2014, 31, 063201. [Google Scholar] [CrossRef]
- Berkeland, D.J.; Miller, J.D.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Laser-Cooled Mercury Ion Frequency Standard. Phys. Rev. Lett. 1998, 80, 2089–2092. [Google Scholar] [CrossRef]
- Feng, X.; Li, G.Z.; Werth, G. High-precision hyperfine spectroscopy in M1-M1 double-resonance transitions on trapped 207Pb+. Phys. Rev. A 1992, 46, 2959–2961. [Google Scholar] [CrossRef] [PubMed]
- Groot-Berning, K.; Stopp, F.; Jacob, G.; Budker, D.; Haas, R.; Renisch, D.; Runke, J.; Thörle-Pospiech, P.; Düllmann, C.E.; Schmidt-Kaler, F. Trapping and sympathetic cooling of single thorium ions for spectroscopy. Phys. Rev. A 2019, 99, 023420. [Google Scholar] [CrossRef]
- Zitzer, G.; Tiedau, J.; Okhapkin, M.; Zhang, K.; Mokry, C.; Runke, J.; Düllmann, C.E.; Peik, E. Sympathetic cooling of trapped Th 3+ alpha-recoil ions for laser spectroscopy. Phys. Rev. A 2024, 109, 033116. [Google Scholar] [CrossRef]
- Koning, A.; Hilaire, S.; Goriely, S. TALYS: Modeling of nuclear reactions. Eur. Phys. J. A 2023, 59, 131. [Google Scholar] [CrossRef]
- Ishida, Y.; Wada, M.; Wollnik, H. A multi-reflection time-of-flight mass spectrometer for mass measurements of short-lived nuclei. Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2005, 241, 983–985. [Google Scholar] [CrossRef]
- Wolf, R.; Wienholtz, F.; Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, C.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Y.A.; et al. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 2013, 349, 123–133. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Scheidenberger, C. Multiple-reflection time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2013, 349, 134–144. [Google Scholar] [CrossRef]
- Jesch, C.; Dickel, T.; Plaß, W.R.; Short, D.; Andres, S.A.S.; Dilling, J.; Geissel, H.; Greiner, F.; Lang, J.; Leach, K.G.; et al. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF. In Proceedings of the TCP 2014: Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics, Takamatsu, Japan, 1–5 December 2014; Springer: Berlin/Heidelberg, Germany, 2017; pp. 175–184. [Google Scholar]
- Hirsh, T.Y.; Paul, N.; Burkey, M.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Levand, A.F.; Ying, L.L.; Marley, S.T.; et al. First operation and mass separation with the CARIBU MR-TOF. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2016, 376, 229–232. [Google Scholar] [CrossRef]
- Chauveau, P.; Delahaye, P.; De France, G.; El Abir, S.; Lory, J.; Merrer, Y.; Rosenbusch, M.; Schweikhard, L.; Wolf, R. PILGRIM, a multi-reflection time-of-flight mass spectrometer for Spiral2-S3 at GANIL. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2016, 376, 211–215. [Google Scholar] [CrossRef]
- Virtanen, V. Offline Commissioning of the Multi-Reflection Time-of-Flight Mass Separator at JYFLTRAP. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Groote, R.P. Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms 2024, 12, 60. https://doi.org/10.3390/atoms12120060
de Groote RP. Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms. 2024; 12(12):60. https://doi.org/10.3390/atoms12120060
Chicago/Turabian Stylede Groote, Ruben P. 2024. "Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics" Atoms 12, no. 12: 60. https://doi.org/10.3390/atoms12120060
APA Stylede Groote, R. P. (2024). Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms, 12(12), 60. https://doi.org/10.3390/atoms12120060