Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics
Abstract
:1. Introductory Concepts
1.1. Atomic and Nuclear Structure
1.1.1. Hyperfine Structure
1.1.2. Nuclear Moments as Probes for Nuclear Structure
1.2. Experimental Tools
1.2.1. Ion Traps
1.2.2. Optical and Optical-Radiofrequency Double Resonance Spectroscopy
1.2.3. Cooling of Trapped Charged Particles
2. Precision Atomic Structure Measurements with Ion Traps
Isotope | I | Ref. | |
---|---|---|---|
+ | 3/2 | 0.823312758(25) * | [54] |
0.82331294(11) * | [56] | ||
+ | 5/2 | 3.419804(27) | [57] |
+ | 5/2 | 3.64067(28) | [58] |
+ | 7/2 | −1.315349(9)[4] ** | [59] |
+ | 3/2 | 0.623876(3) | [60] |
+ | 5/2 | 1.37734(6) | [61] |
Isotope | I | Atomic State | Const. | Value (Hz) | Ref. |
---|---|---|---|---|---|
+ | 1/2 | A | 8,665,649,867(10) | [62] | |
+ | 3/2 | A | −742,772,280(430) | [8] | |
+ | 3/2 | A | −625,008,837.048(10) | [54] | |
−625,008,837.044(12) | [63] | ||||
+ | 3/2 | A | −2,677,302,988.8(72) | [9] | |
+ | 5/2 | A | −596,254,376(54) | [57] | |
−596,254,248.7(42) | [64] | ||||
− | 3/2 | 2P3/2 | A | 91,490,000(90,000) | [65] |
B | 26,240,000(230,000) | [65] | |||
+ | 7/2 | A | −806,402,071.60(8) | [55] | |
+ | 9/2 | A | −1,000,473,673(11) | [66] | |
+ | 1/2 | A | 14,530,507,349.9(11) | [67] | |
+ | 1/2 | A | 15,199,862,858(2) | [68] | |
15,199,862,855.0(2) | [69] | ||||
15,199,862,854.96(12) | [67] | ||||
15,199,862,855.02799(27) | [70] | ||||
+ | 1/2 | A | 9,107,913,698.97(50) | [3] | |
+ | 1/2 | A | 9,925,453,554.59(10) | [3] | |
+ | 3/2 | A | 3,591,670,117.45(29) | [71] | |
+ | 3/2 | A | 4,018,870,833.85(18) | [72] | |
A | 189,731,101(17) | [37] | |||
B | 44,536,612(34) | [37] | |||
C | 36.546(86) | [37] | |||
36.91(36) | [41] * | ||||
A | −12,029,234(11) | [40] | |||
B | 59,525,520(110) | [40] | |||
C | −12.41(77) | [40] | |||
+ | 5 | 9S4 | A | 517,281,950(150) | [4] |
B | 2,292,630(1000) | [4] | |||
7S3 | A | −561,647,000(100,000) | [44] | ||
+ | 5/2 | 9S4 | A | 1,585,450,570(250) | [4] |
B | 534,850(1900) | [4] | |||
+ | 5 | 9S4 | A | 599,010,680(40) | [4] |
B | −839,730(3000) | [4] | |||
7S3 | A | −650,334,000(2000) | [44] | ||
+ | 5/2 | 9S4 | A | 1,540,297,394(13) | [27] |
B | −660,862(231) | [27] | |||
C | 26(23) | [27] | |||
D | −6(5) | [27] | |||
7S3 | A | −1,672,457,109(266) | [44] | ||
+ | 5/2 | 9S4 | A | 684,565,993(9) | [27] |
B | −1,752,868(84) | [27] | |||
C | 3(7) | [27] | |||
D | −5(2) | [27] | |||
7S3 | A | −743,183,577(82) | [44] | ||
+ | 1/2 | S1/2 | A | 12,642,812,118.466(2) | [73] |
12,642,812,118.471(9) | [74] | ||||
12,642,812,118.4682(4) | [75] | ||||
+ | 5/2 | S1/2 | A | 3,497,240,079.85(3) | [76] |
+ | 1/2 | S1/2 | A | 40,507,347,997.8(10) | [77] |
40,507,347,996.9(3) | [78] | ||||
40,507,347,996.8(1) | [78] | ||||
40,507,347,996.84159(14)[41] ** | [79] | ||||
+ | 1/2 | P1/2 | A | 12,968,180,601.61(22) | [80] |
3. Perspectives for Nuclear Structure Studies with Trapped Radioactive Ions
Radioactive Ion Beam Production
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savard, G.; Werth, G. Precision nuclear measurements with ion traps. Annu. Rev. Nucl. Part. Sci. 2000, 50, 119–152. [Google Scholar] [CrossRef]
- Door, M.; Yeh, C.H.; Heinz, M.; Kirk, F.; Lyu, C.; Miyagi, T.; Berengut, J.C.; Bieroń, J.; Blaum, K.; Dreissen, L.S.; et al. Search for new bosons with ytterbium isotope shifts. arXiv 2024, arXiv:2403.07792. [Google Scholar]
- Knab, H.; Schupp, M.; Werth, G. Precision spectroscopy on trapped radioactive ions: Ground-state hyperfine splittings of 133Ba+ and 131Ba+. Europhys. Lett. 1987, 4, 1361. [Google Scholar] [CrossRef]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.; Georg, U.; Dembczynski, J.; Werth, G.; Collaboration, I. Ground-state hyperfine-structure measurements of unstable Eu+ isotopes in a Paul ion trap. Phys. Rev. A 1997, 56, 265. [Google Scholar] [CrossRef]
- Thielking, J.; Okhapkin, M.V.; Głowacki, P.; Meier, D.M.; von der Wense, L.; Seiferle, B.; Düllmann, C.E.; Thirolf, P.G.; Peik, E. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 2018, 556, 321–325. [Google Scholar] [CrossRef]
- Christensen, J.E.; Hucul, D.; Campbell, W.C.; Hudson, E.R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. Npj Quantum Inf. 2020, 6, 35. [Google Scholar] [CrossRef]
- Nakamura, T.; Wada, M.; Okada, K.; Takamine, A.; Ishida, Y.; Yamazaki, Y.; Kambara, T.; Kanai, Y.; Kojima, T.; Nakai, Y.; et al. Laser spectroscopy of 7,10Be+ in an online ion trap. Phys. Rev. A 2006, 74, 052503. [Google Scholar] [CrossRef]
- Okada, K.; Wada, M.; Nakamura, T.; Takamine, A.; Lioubimov, V.; Schury, P.; Ishida, Y.; Sonoda, T.; Ogawa, M.; Yamazaki, Y.; et al. Precision Measurement of the Hyperfine Structure of Laser-Cooled Radioactive 7Be+ Ions Produced by Projectile Fragmentation. Phys. Rev. Lett. 2008, 101, 212502. [Google Scholar] [CrossRef] [PubMed]
- Takamine, A.; Wada, M.; Okada, K.; Sonoda, T.; Schury, P.; Nakamura, T.; Kanai, Y.; Kubo, T.; Katayama, I.; Ohtani, S.; et al. Hyperfine Structure Constant of the Neutron Halo Nucleus 11Be+. Phys. Rev. Lett. 2014, 112, 162502. [Google Scholar] [CrossRef]
- Versolato, O.; Giri, G.; Van den Berg, J.; Böll, O.; Dammalapati, U.; Van Der Hoek, D.; Hoekstra, S.; Jungmann, K.; Kruithof, W.; Müller, S.; et al. Hyperfine structure of the 6d 2D3/2 level in trapped short-lived 211,209Ra+ ions. Phys. Lett. A 2011, 375, 3130–3133. [Google Scholar] [CrossRef]
- Thompson, R. Spectroscopy of trapped ions. Adv. At. Mol. Opt. Phys. 1993, 31, 63–136. [Google Scholar]
- Werth, G. Optical spectroscopy in ion traps. Eur. Phys. J. D 2007, 45, 121–124. [Google Scholar] [CrossRef]
- Werth, G.; Gheorghe, V.N.; Major, F.G.; Werth, G.; Gheorghe, V.N.; Major, F.G. Optical Spectroscopy. In Charged Particle Traps II: Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–159. [Google Scholar]
- Wang, L.B.; Mueller, P.; Bailey, K.; Drake, G.; Greene, J.; Henderson, D.; Holt, R.; Janssens, R.; Jiang, C.; Lu, Z.T.; et al. Laser Spectroscopic Determination of the 6He Nuclear Charge Radius. Phys. Rev. Lett. 2004, 93, 142501. [Google Scholar] [CrossRef]
- Mueller, P.; Sulai, I.; Villari, A.; Alcántara-Núñez, J.; Alves-Condé, R.; Bailey, K.; Drake, G.; Dubois, M.; Eléon, C.; Gaubert, G.; et al. Nuclear Charge Radius of 8He. Phys. Rev. Lett. 2007, 99, 252501. [Google Scholar] [CrossRef]
- Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J.; Gomez, E.; Gwinner, G.; Orozco, L.; Pearson, M.; Sprouse, G.; et al. Hyperfine anomalies in Fr: Boundaries of the spherical single particle model. Phys. Rev. Lett. 2015, 115, 042501. [Google Scholar] [CrossRef]
- Kimura, N.; Kono, Y.; Pipatpakorn, P.; Soutome, K.; Numadate, N.; Kuma, S.; Azuma, T.; Nakamura, N. Hyperfine-structure-resolved laser spectroscopy of many-electron highly charged ions. Commun. Phys. 2023, 6, 8. [Google Scholar] [CrossRef]
- Hur, J.; Aude Craik, D.P.; Counts, I.; Knyazev, E.; Caldwell, L.; Leung, C.; Pandey, S.; Berengut, J.C.; Geddes, A.; Nazarewicz, W.; et al. Evidence of two-source King plot nonlinearity in spectroscopic search for new Boson. Phys. Rev. Lett. 2022, 128, 163201. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, P.G.; Nazarewicz, W.; Ruiz, R.G. Beyond the charge radius: The information content of the fourth radial moment. Phys. Rev. C 2020, 101, 021301. [Google Scholar] [CrossRef]
- Schwartz, C. Theory of Hyperfine Structure. Phys. Rev. 1955, 97, 380–395. [Google Scholar] [CrossRef]
- De Groote, R.; Kujanpää, S.; Koszorús, Á.; Li, J.; Moore, I. Magnetic octupole moment of 173Yb using collinear laser spectroscopy. Phys. Rev. A 2021, 103, 032826. [Google Scholar] [CrossRef]
- Gustavsson, M.G.; Mårtensson-Pendrill, A.M. Four decades of hyperfine anomalies. In Advances in Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 1998; Volume 30, pp. 343–360. [Google Scholar]
- Persson, J.R. Table of hyperfine anomaly in atomic systems. At. Data Nucl. Data Tables 2013, 99, 62–68. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Wilkins, S.; Ruiz, R.G. Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 2023, 129, 104005. [Google Scholar] [CrossRef]
- Neyens, G. Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei. Rep. Prog. Phys. 2003, 66, 633. [Google Scholar] [CrossRef]
- de Groote, R.P.; Neyens, G. Spins and Electromagnetic Moments of Nuclei. In Handbook of Nuclear Physics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–36. [Google Scholar]
- Becker, O.; Enders, K.; Werth, G.; Dembczynski, J. Hyperfine-structure measurements of the 151,153Eu+ ground state. Phys. Rev. A 1993, 48, 3546. [Google Scholar] [CrossRef]
- Xiao, D.; Li, J.; Campbell, W.C.; Dellaert, T.; McMillin, P.; Ransford, A.; Roman, C.; Derevianko, A. Hyperfine structure of Yb+ 173: Toward resolving the Yb 173 nuclear-octupole-moment puzzle. Phys. Rev. A 2020, 102, 022810. [Google Scholar] [CrossRef]
- Major, F.G.; Gheorghe, V.N.; Werth, G. Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 37. [Google Scholar]
- Ghosh, P.K. Ion Traps; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Blaum, K.; Novikov, Y.N.; Werth, G. Penning traps as a versatile tool for precise experiments in fundamental physics. Contemp. Phys. 2010, 51, 149–175. [Google Scholar] [CrossRef]
- Dilling, J.; Blaum, K.; Brodeur, M.; Eliseev, S. Penning-trap mass measurements in atomic and nuclear physics. Annu. Rev. Nucl. Part. Sci. 2018, 68, 45–74. [Google Scholar] [CrossRef]
- Nagourney, W.; Sandberg, J.; Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 1986, 56, 2797. [Google Scholar] [CrossRef]
- Zoller, P.; Marte, M.; Walls, D. Quantum jumps in atomic systems. Phys. Rev. A 1987, 35, 198. [Google Scholar] [CrossRef]
- Schmidt, P.O.; Rosenband, T.; Langer, C.; Itano, W.M.; Bergquist, J.C.; Wineland, D.J. Spectroscopy using quantum logic. Science 2005, 309, 749–752. [Google Scholar] [CrossRef]
- Hume, D.B.; Rosenband, T.; Wineland, D.J. High-Fidelity Adaptive Qubit Detection through Repetitive Quantum Nondemolition Measurements. Phys. Rev. Lett. 2007, 99, 120502. [Google Scholar] [CrossRef]
- Lewty, N.C.; Chuah, B.L.; Cazan, R.; Sahoo, B.K.; Barrett, M.D. Spectroscopy on a single trapped 137Ba+ ion for nuclear magnetic octupole moment determination. Opt. Express 2012, 20, 21379–21384. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gaigalas, G.; Bieroń, J.; Ekman, J.; Jönsson, P.; Godefroid, M.; Froese Fischer, C. Re-evaluation of the nuclear magnetic octupole moment of 209Bi. Atoms 2022, 10, 132. [Google Scholar] [CrossRef]
- Rabi, I.I.; Millman, S.; Kusch, P.; Zacharias, J.R. The molecular beam resonance method for measuring nuclear magnetic moments. the magnetic moments of 3Li6, 3Li6 and 9F19. Phys. Rev. 1939, 55, 526. [Google Scholar] [CrossRef]
- Lewty, N.C.; Chuah, B.L.; Cazan, R.; Barrett, M.D.; Sahoo, B.K. Experimental determination of the nuclear magnetic octupole moment of 137Ba+ ion. Phys. Rev. A 2013, 88, 012518. [Google Scholar] [CrossRef]
- Hoffman, M.R. Observation of the Nuclear Magnetic Octupole Moment of 137Ba+. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2014. [Google Scholar]
- Itano, W.M.; Bergquist, J.C.; Bollinger, J.J.; Wineland, D.J. Cooling methods in ion traps. Phys. Scr. 1995, 1995, 106. [Google Scholar] [CrossRef]
- Karr, J.P. Precision measurements with non-laser-cooled trapped ions. J. Phys. At. Mol. Opt. Phys. 2009, 42, 154018. [Google Scholar] [CrossRef]
- Enders, K.; Stachowska, E.; Marx, G.; Zölch, C.; Revalde, G.; Dembczynski, J.; Werth, G. Hyperfine structure measurements in the 7 S 3 metastable finestructure level in stable and unstable Eu+ isotopes. Z. Für Phys. D At. Mol. Clust. 1997, 42, 171–175. [Google Scholar]
- Eschner, J.; Morigi, G.; Schmidt-Kaler, F.; Blatt, R. Laser cooling of trapped ions. JOSA B 2003, 20, 1003–1015. [Google Scholar] [CrossRef]
- Peik, E.; Abel, J.; Becker, T.; von Zanthier, J.; Walther, H. Sideband cooling of ions in radio-frequency traps. Phys. Rev. A 1999, 60, 439–449. [Google Scholar] [CrossRef]
- Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P. Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy. Phys. Rev. Lett. 1995, 75, 4011–4014. [Google Scholar] [CrossRef]
- Morigi, G.; Eschner, J.; Keitel, C.H. Ground State Laser Cooling Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 2000, 85, 4458–4461. [Google Scholar] [CrossRef] [PubMed]
- Roos, C.F.; Leibfried, D.; Mundt, A.; Schmidt-Kaler, F.; Eschner, J.; Blatt, R. Experimental Demonstration of Ground State Laser Cooling with Electromagnetically Induced Transparency. Phys. Rev. Lett. 2000, 85, 5547–5550. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.J.; Bergquist, J.C.; Bollinger, J.J.; Itano, W.M.; Wineland, D.J. Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 1986, 57, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Persson, J. Extraction of hyperfine anomalies without precise values of the nuclear magnetic dipole moment. Eur. Phys. J.-Hadron. Nucl. 1998, 2, 3–4. [Google Scholar] [CrossRef]
- Schmidt, T. Über die magnetischen Momente der Atomkerne. Z. Für Phys. 1937, 106, 358–361. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K.P. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Wineland, D.; Itano, W.M.; Van Dyck, R., Jr. High-Resolution Spectroscopy of Stored Ions. Adv. At. Mol. Phys. 1983, 19, 135–186. [Google Scholar]
- Arbes, F.; Benzing, M.; Gudjons, T.; Kurth, F.; Werth, G. Precise determination of the ground state hyperfine structure splitting of 43Ca II. Z. Für Phys. D At. Mol. Clust. 1994, 31, 27–30. [Google Scholar] [CrossRef]
- Nakamura, T.; Wada, M.; Okada, K.; Katayama, I.; Ohtani, S.; Schuessler, H. Precision spectroscopy of the Zeeman splittings of the 9Be+ 22S1/2 hyperfine structure for nuclear structure studies. Opt. Commun. 2002, 205, 329–336. [Google Scholar] [CrossRef]
- Itano, W.M.; Wineland, D. Precision measurement of the ground-state hyperfine constant of 25Mg+. Phys. Rev. A 1981, 24, 1364. [Google Scholar] [CrossRef]
- Rosenband, T.; Schmidt, P.O.; Hume, D.B.; Itano, W.M.; Fortier, T.M.; Stalnaker, J.E.; Kim, K.; Diddams, S.A.; Koelemeij, J.C.J.; Bergquist, J.C.; et al. Observation of the 1S0→3P0 Clock Transition in 27Al+. Phys. Rev. Lett. 2007, 98, 220801. [Google Scholar] [CrossRef]
- Hanley, R.K.; Allcock, D.T.C.; Harty, T.P.; Sepiol, M.A.; Lucas, D.M. Precision measurement of the 43Ca+ nuclear magnetic moment. Phys. Rev. A 2021, 104, 052804. [Google Scholar] [CrossRef]
- Marx, G.; Tommaseo, G.; Werth, G. Precise gJ-and gI-factor measurements of Ba+ isotopes. Eur. Phys. J. -At. Mol. Opt. Plasma Phys. 1998, 4, 279–284. [Google Scholar]
- Trapp, S.; Tommaseo, G.; Revalde, G.; Stachowska, E.; Szawiola, G.; Werth, G. Ion trap nuclear resonance on 151Eu+. Eur. Phys. J. -At. Mol. Opt. Plasma Phys. 2003, 26, 237–244. [Google Scholar]
- Schuessler, H.A.; Fortson, E.N.; Dehmelt, H.G. Hyperfine Structure of the Ground State of 3He+ by the Ion-Storage Exchange-Collision Technique. Phys. Rev. 1969, 187, 5–38. [Google Scholar] [CrossRef]
- Shiga, N.; Itano, W.M.; Bollinger, J.J. Diamagnetic correction to the 9Be+ ground-state hyperfine constant. Phys. Rev. A 2011, 84, 012510. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, K.; Che, H.; Yuan, W.; Zhang, J.; Lu, Z. Precision measurement of the 25Mg+ ground-state hyperfine constant. Phys. Rev. A 2017, 96, 052507. [Google Scholar] [CrossRef]
- Trainham, R.; Jopson, R.; Larson, D.J. Measurement of the hyperfine structure of 33 S-. Phys. Rev. A 1989, 39, 3223. [Google Scholar] [CrossRef]
- Sunaoshi, H.; Fukashiro, Y.; Furukawa, M.; Yamauchi, M.; Hayashibe, S.; Shinozuka, T.; Fujioka, M.; Satoh, I.; Wada, M.; Matsuki, S. A precision measurement of the hyperfine structure of 87Sr+. Hyperfine Interact. 1993, 78, 241–245. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, Z.B.; Wang, S.G.; Miao, K.; Wang, B.; Wang, L.J. High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ and 111Cd+ ions. Phys. Rev. A 2012, 86, 022523. [Google Scholar] [CrossRef]
- Tanaka, U.; Imajo, H.; Hayasaka, K.; Ohmukai, R.; Watanabe, M.; Urabe, S. Determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 1996, 53, 3982–3985. [Google Scholar] [CrossRef] [PubMed]
- Jelenković, B.M.; Chung, S.; Prestage, J.D.; Maleki, L. High-resolution microwave-optical double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 2006, 74, 022505. [Google Scholar] [CrossRef]
- Miao, S.N.; Zhang, J.W.; Qin, H.R.; Xin, N.C.; Han, J.Z.; Wang, L.J. Precision determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Opt. Lett. 2021, 46, 5882–5885. [Google Scholar] [CrossRef]
- Becker, W.; Werth, G. Precise determination of the ground state hyperfine splitting of 135Ba+. Z. Für Phys. Atoms Nucl. 1983, 311, 41–47. [Google Scholar] [CrossRef]
- Blatt, R.; Werth, G. Precision determination of the ground-state hyperfine splitting in 137Ba+ using the ion-storage technique. Phys. Rev. A 1982, 25, 1476–1482. [Google Scholar] [CrossRef]
- Fisk, P.T.; Sellars, M.J.; Lawn, M.A.; Coles, G. Accurate measurement of the 12.6 GHz "clock" transition in trapped 171Yb+ ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1997, 44, 344–354. [Google Scholar] [CrossRef]
- Tamm, C.; Schnier, D.; Bauch, A. Radio-frequency laser double-resonance spectroscopy of trapped 171Yb ions and determination of line shifts of the ground-state hyperfine resonance. Appl. Phys. B 1995, 60, 19–29. [Google Scholar] [CrossRef]
- Phoonthong, P.; Mizuno, M.; Kido, K.; Shiga, N. Determination of the absolute microwave frequency of laser-cooled 171Yb+. Appl. Phys. B 2014, 117, 673–680. [Google Scholar] [CrossRef]
- Münch, A.; Berkler, M.; Gerz, C.; Wilsdorf, D.; Werth, G. Precise ground-state hyperfine splitting in 171Yb II. Phys. Rev. A 1987, 35, 4147. [Google Scholar] [CrossRef]
- McGuire, M.D.; Petsch, R.; Werth, G. Precision determination of the ground-state hyperfine separation in 199Hg+ using the ion-storage technique. Phys. Rev. A 1978, 17, 1999–2004. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.N.; He, Y.H.; Li, H.X.; Chen, Y.H.; She, L.; Li, J.M. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap. Chin. Phys. Lett. 2014, 31, 063201. [Google Scholar] [CrossRef]
- Berkeland, D.J.; Miller, J.D.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Laser-Cooled Mercury Ion Frequency Standard. Phys. Rev. Lett. 1998, 80, 2089–2092. [Google Scholar] [CrossRef]
- Feng, X.; Li, G.Z.; Werth, G. High-precision hyperfine spectroscopy in M1-M1 double-resonance transitions on trapped 207Pb+. Phys. Rev. A 1992, 46, 2959–2961. [Google Scholar] [CrossRef] [PubMed]
- Groot-Berning, K.; Stopp, F.; Jacob, G.; Budker, D.; Haas, R.; Renisch, D.; Runke, J.; Thörle-Pospiech, P.; Düllmann, C.E.; Schmidt-Kaler, F. Trapping and sympathetic cooling of single thorium ions for spectroscopy. Phys. Rev. A 2019, 99, 023420. [Google Scholar] [CrossRef]
- Zitzer, G.; Tiedau, J.; Okhapkin, M.; Zhang, K.; Mokry, C.; Runke, J.; Düllmann, C.E.; Peik, E. Sympathetic cooling of trapped Th 3+ alpha-recoil ions for laser spectroscopy. Phys. Rev. A 2024, 109, 033116. [Google Scholar] [CrossRef]
- Koning, A.; Hilaire, S.; Goriely, S. TALYS: Modeling of nuclear reactions. Eur. Phys. J. A 2023, 59, 131. [Google Scholar] [CrossRef]
- Ishida, Y.; Wada, M.; Wollnik, H. A multi-reflection time-of-flight mass spectrometer for mass measurements of short-lived nuclei. Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2005, 241, 983–985. [Google Scholar] [CrossRef]
- Wolf, R.; Wienholtz, F.; Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, C.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Y.A.; et al. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer. Int. J. Mass Spectrom. 2013, 349, 123–133. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Scheidenberger, C. Multiple-reflection time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2013, 349, 134–144. [Google Scholar] [CrossRef]
- Jesch, C.; Dickel, T.; Plaß, W.R.; Short, D.; Andres, S.A.S.; Dilling, J.; Geissel, H.; Greiner, F.; Lang, J.; Leach, K.G.; et al. The MR-TOF-MS isobar separator for the TITAN facility at TRIUMF. In Proceedings of the TCP 2014: Proceedings of the 6th International Conference on Trapped Charged Particles and Fundamental Physics, Takamatsu, Japan, 1–5 December 2014; Springer: Berlin/Heidelberg, Germany, 2017; pp. 175–184. [Google Scholar]
- Hirsh, T.Y.; Paul, N.; Burkey, M.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Levand, A.F.; Ying, L.L.; Marley, S.T.; et al. First operation and mass separation with the CARIBU MR-TOF. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2016, 376, 229–232. [Google Scholar] [CrossRef]
- Chauveau, P.; Delahaye, P.; De France, G.; El Abir, S.; Lory, J.; Merrer, Y.; Rosenbusch, M.; Schweikhard, L.; Wolf, R. PILGRIM, a multi-reflection time-of-flight mass spectrometer for Spiral2-S3 at GANIL. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2016, 376, 211–215. [Google Scholar] [CrossRef]
- Virtanen, V. Offline Commissioning of the Multi-Reflection Time-of-Flight Mass Separator at JYFLTRAP. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Groote, R.P. Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms 2024, 12, 60. https://doi.org/10.3390/atoms12120060
de Groote RP. Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms. 2024; 12(12):60. https://doi.org/10.3390/atoms12120060
Chicago/Turabian Stylede Groote, Ruben P. 2024. "Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics" Atoms 12, no. 12: 60. https://doi.org/10.3390/atoms12120060
APA Stylede Groote, R. P. (2024). Application of Atomic Spectroscopy of Trapped Radioactive Ions in Nuclear Physics. Atoms, 12(12), 60. https://doi.org/10.3390/atoms12120060