High-Precision Experiments with Trapped Radioactive Ions Produced at Relativistic Energies
Abstract
:1. Introduction
2. Setup of the FRS Ion Catcher
2.1. Multipurpose Degrader System
2.2. Cryogenic Gas-Filled Stopping Cell
2.3. RFQ Beamline
2.4. MR-TOF-MS
3. Examples of Advantages for Experiments with Thermalized and Trapped Exotic Ions Produced at Synchrotron Facilities
3.1. Multi-Step Reactions in a Very Thick Target
3.2. Beta-Delayed Neutron Emission
3.3. Mean Range Bunching
3.4. Optimize Stopping
3.5. Using the Same Exotic Ions for Multiple, Simultaneous Experiments
3.6. The FRS Ion Catcher as a Tool for the Fragment Separator
4. Scientific Program and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoennessen, M. 2017 update of the discoveries of nuclides. Int. J. Mod. Phys. E 2018, 27, 1830002. [Google Scholar] [CrossRef]
- Blasche, K. SIS Beam Development 1989–1991. GSI-Rep. GSI-SIS-INT, 86-2.
- Geissel, H.; Armbruster, P.; Behr, K.; Brünle, A.; Burkard, K.; Chen, M.; Folger, H.; Franczak, B.; Keller, H.; Klepper, O.; et al. The GSI projectile fragment separator (FRS): A versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods B 1992, 70, 286–297. [Google Scholar] [CrossRef]
- Kurcewicz, J.; Farinon, F.; Geissel, H.; Pietri, S.; Nociforo, C.; Prochazka, A.; Weick, H.; Winfield, J.S.; Estrade, A.; Allegro, P.R.P.; et al. Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 2012, 717, 371–375. [Google Scholar] [CrossRef]
- Scheidenberger, C.; Geissel, H.; Mikkelsen, H.H.; Nickel, F.; Brohm, T.; Folger, H.; Irnich, H.; Magel, A.; Mohar, M.F.; Münzenberg, G.; et al. Direct observation of systematic deviations from the Bethe stopping theory for relativistic heavy ions. Phys. Rev. Lett. 1994, 73, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Geissel, H.; Purushothaman, S.; Weick, H.; Haettner, E.; Iwasa, N.; Scheidenberger, C.; Sørensen, A.; Tanaka, Y.; Abel, T.; et al. Accurate simultaneous lead stopping power and charge-state measurements in gases and solids: Benchmark data for basic atomic theory and nuclear applications. Phys. Lett. B 2023, 846, 138220. [Google Scholar] [CrossRef]
- Weick, H.; Geissel, H.; Scheidenberger, C.; Attallah, F.; Cortina, D.; Hausmann, M.; Münzenberg, G.; Radon, T.; Schatz, H.; Schmidt, K.; et al. Drastic Enhancement of Energy-Loss Straggling of Relativistic Heavy Ions due to Charge-State Fluctuations. Phys. Rev. Lett. 2000, 85, 2725–2728. [Google Scholar] [CrossRef] [PubMed]
- Schardt, D.; Schall, I.; Geissel, H.; Irnich, H.; Kraft, G.; Magel, A.; Mohar, M.; Münzenberg, G.; Nickel, F.; Scheidenberger, C.; et al. Nuclear fragmentation of high-energy heavy-ion beams in water. Adv. Space Res. 1996, 17, 87–94. [Google Scholar] [CrossRef]
- Haettner, E.; Geissel, H.; Franczak, B.; Kostyleva, D.; Purushothaman, S.; Tanaka, Y.; Amjad, F.; Boscolo, D.; Dickel, T.; Graeff, C.; et al. Production and separation of positron emitters for hadron therapy at FRS-Cave M. Nucl. Instrum. Methods B 2023, 541, 114–116. [Google Scholar] [CrossRef]
- Bernas, M.; Engelmann, C.; Armbruster, P.; Czajkowski, S.; Ameil, F.; Böckstiegel, C.; Dessagne, P.; Donzaud, C.; Geissel, H.; Heinz, A.; et al. Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750 · A MeV 238U. Phys. Lett. B 1997, 415, 111–116. [Google Scholar] [CrossRef]
- Pfützner, M.; Badura, E.; Bingham, C.; Blank, B.; Chartier, M.; Geissel, H.; Giovinazzo, J.; Grigorenko, L.V.; Grzywacz, R.; Hellström, M.; et al. First evidence for the two-proton decay of 45Fe. Eur. Phys. J. A 2003, 14, 279–285. [Google Scholar] [CrossRef]
- Hinke, C.B.; Böhmer, M.; Boutachkov, P.; Faestermann, T.; Geissel, H.; Gerl, J.; Gernhäuser, R.; Gorska, M.; Gottardo, A.; Grawe, H.; et al. Superallowed Gamow–Teller decay of the doubly magic nucleus 100Sn. Nature 2012, 486, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Ayet San Andrés, S.; Mollaebrahimi, A.; Dickel, T.; Bergmann, J.; Ebert, J.; Geissel, H.; Greiner, F.; Haettner, E.; Hornung, C.; Kalantar-Nayestanaki, N.; et al. Mass and half-life measurements of neutron-deficient iodine isotopes. Eur. Phys. J. A 2020, 56, 143. [Google Scholar] [CrossRef]
- Ayet San Andrés, S.; Hornung, C.; Ebert, J.; Plaß, W.R.; Dickel, T.; Geissel, H.; Scheidenberger, C.; Bergmann, J.; Greiner, F.; Haettner, E.; et al. High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states. Phys. Rev. C 2019, 99, 064313. [Google Scholar] [CrossRef]
- Hornung, C.; Amanbayev, D.; Dedes, I.; Kripko-Koncz, G.; Miskun, I.; Shimizu, N.; Ayet San Andrés, S.; Bergmann, J.; Dickel, T.; Dudek, J.; et al. Isomer studies in the vicinity of the doubly-magic nucleus 100Sn: Observation of a new low-lying isomeric state in 97Ag. Phys. Lett. B 2020, 802, 135200. [Google Scholar] [CrossRef]
- Mollaebrahimi, A.; Hornung, C.; Dickel, T.; Amanbayev, D.; Kripko-Koncz, G.; Plaß, W.R.; Ayet San Andrés, S.; Beck, S.; Blazhev, A.; Bergmann, J.; et al. Studying Gamow-Teller transitions and the assignment of isomeric and ground states at N = 50. Phys. Lett. B 2023, 839, 137833. [Google Scholar] [CrossRef]
- Miskun, I.; Dickel, T.; Mardor, I.; Hornung, C.; Amanbayev, D.; Ayet San Andrés, S.; Bergmann, J.; Ebert, J.; Geissel, H.; Górska, M.; et al. A novel method for the measurement of half-lives and decay branching ratios of exotic nuclei. Eur. Phys. J. A 2019, 55, 148. [Google Scholar] [CrossRef]
- Constantin, P.; Dickel, T.; Karpov, A.V.; Amanbayev, D.; Balabanski, D.; Geissel, H.; Mahajan, K.; Mardor, I.; Mollaebrahimi, A.; Plaß, W.R.; et al. In-cell multi-nucleon transfer reactions at the FRS Ion Catcher. Phys. Scr. 2024, 99, 075313. [Google Scholar] [CrossRef]
- Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; et al. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. Spec. Top. 2010, 183, 1–123. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M.P.; et al. The FRS Ion Catcher—A facility for high-precision experiments with stopped projectile and fission fragments. Nucl. Instrum. Methods B 2013, 317, 457–462. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Mardor, I.; Pietri, S.; Geissel, H.; Scheidenberger, C.; Amanbayev, D.; Ayet San Andrés, S.; Äystö, J.; Balabanski, D.L.; et al. The science case of the FRS Ion Catcher for FAIR Phase-0. Hyperfine Interact 2019, 240, 73. [Google Scholar] [CrossRef]
- Purushothaman, S.; Dickel, T.; Ayet San Andrés, S.; Bagchi, S.; Behr, K.H.; Bergmann, J.; Blatz, T.; Constantin, P.; Ebert, J.; Finley, A.; et al. A gas degrader for the low-energy branch of the Super-FRS at FAIR. GSI Sci. Rep. 2016, 2017. [Google Scholar]
- Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plaß, W.R.; Schäfer, D.; Scheidenberger, C.; de Walle, J.V.; Weick, H.; Dendooven, P. New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation. Europhys. Lett. 2011, 96, 52001. [Google Scholar] [CrossRef]
- Purushothaman, S.; Reiter, M.P.; Haettner, E.; Dendooven, P.; Dickel, T.; Geissel, H.; Ebert, J.; Jesch, C.; Plaß, W.R.; Ranjan, M.; et al. First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u. Europhys. Lett. 2013, 104, 42001. [Google Scholar] [CrossRef]
- Ranjan, M.; Dendooven, P.; Purushothaman, S.; Dickel, T.; Reiter, M.; Ayet San Andrés, S.; Haettner, E.; Moore, I.; Kalantar-Nayestanaki, N.; Geissel, H.; et al. Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR. Nucl. Instrum. Methods A 2015, 770, 87–97. [Google Scholar] [CrossRef]
- Miskun, I. A Novel Method for the Measurement of Half-Lives and Decay Branching Ratios of Exotic Nuclei with the FRS Ion Catcher. Ph.D. Thesis, Universität Gießen, Giessen, Germany, 2019. [Google Scholar]
- Plaß, W.R.; Dickel, T.; Ayet San Andrés, S.; Bagchi, S.; Balabanski, D.; Beck, S.; Constantin, P.; Eronen, T.; Geissel, H.; Greiner, F.; et al. Detector tests with the prototype CSC for the Super-FRS and direct mass measurements of neutron-deficient nuclides below 100-Sn. GSI Sci. Rep. 2018, 2018-1, 115. [Google Scholar]
- Miskun, I.; Dickel, T.; San Andrés, S.A.; Bergmann, J.; Constantin, P.; Ebert, J.; Geissel, H.; Greiner, F.; Haettner, E.; Hornung, C.; et al. Separation of atomic and molecular ions by ion mobility with an RF carpet. Int. J. Mass Spectrom. 2021, 459, 116450. [Google Scholar] [CrossRef]
- Haettner, E.; Plaß, W.R.; Czok, U.; Dickel, T.; Geissel, H.; Kinsel, W.; Petrick, M.; Schäfer, T.; Scheidenberger, C. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei. Nucl. Inst. Methods A 2018, 880, 138–151. [Google Scholar] [CrossRef]
- Reiter, M.P. Pilot Experiments with Relativistic Uranium Projectile and Fission Fragments Thermalized in a Cryogenic Gas-Filled Stopping Cell. Ph.D. Thesis, Justus-Liebig-Universität Gießen, Hesse, Germany, 2015. [Google Scholar]
- Yu, J.; Hornung, C.; Dickel, T.; Plaß, W.R.; Amanbayev, D.; Bergmann, J.; Ge, Z.; Greiner, F.; Geissel, H.; Gröf, L.; et al. A laser ablation carbon cluster ion source for the FRS Ion Catcher. Nucl. Instrum. Methods A 2024, 1064, 169371. [Google Scholar] [CrossRef]
- Miskun, I.; Reiter, M.P.; Rink, A.; Dickel, T.; Ayet San Andrés, S.; Ebert, J.; Geissel, H.; Greiner, F.; Haettner, E.; Hornung, C.; et al. An RFQ based beam line and mass filter to improve identification capabilities at the diagnostics unit of the prototype CSC for the LEB. GSI Sci. Rep. 2014 2015, 2015-1, 146p. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Ayet San Andrés, S.; Ebert, J.; Greiner, F.; Hornung, C.; Jesch, C.; Lang, J.; Lippert, W.; Majoros, T.; et al. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry. Phys. Scr. 2015, T166, 014069. [Google Scholar] [CrossRef]
- Greiner, F.; Dickel, T.; Ayet San Andrés, S.; Bergmann, J.; Constantin, P.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; et al. Removal of molecular contamination in low-energy RIBs by the isolation–dissociation–isolation method. Nucl. Instrum. Methods B 2020, 463, 324–326. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Czok, U.; Geissel, H.; Petrick, M.; Reinheimer, K.; Scheidenberger, C.; Yavor, M. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities. Nucl. Instrum. Methods B 2008, 266, 4560–4564. [Google Scholar] [CrossRef]
- Dickel, T.; Plaß, W.R.; Becker, A.; Czok, U.; Geissel, H.; Haettner, E.; Jesch, C.; Kinsel, W.; Petrick, M.; Scheidenberger, C.; et al. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei. Nucl. Instrum. Methods A 2015, 777, 172–188. [Google Scholar] [CrossRef]
- Yavor, M.I.; Plaß, W.R.; Dickel, T.; Geissel, H.; Haettner, E.; Jesch, C.; Kinsel, W.; Petrick, M.; Scheidenberger, C.; Simon, A. Ion-optical design of a high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator. Int. J. Mass Spectrom. 2015, 381–382, 1–9. [Google Scholar] [CrossRef]
- Dickel, T.; Yavor, M.I.; Lang, J.; Plaß, W.R.; Lippert, W.; Geissel, H.; Scheidenberger, C. Dynamical time focus shift in multiple-reflection time-of-flight mass spectrometers. Int. J. Mass Spectrom. 2017, 412, 1–7. [Google Scholar] [CrossRef]
- Mardor, I.; Ayet San Andrés, S.; Dickel, T.; Amanbayev, D.; Beck, S.; Bergmann, J.; Geissel, H.; Gröf, L.; Haettner, E.; Hornung, C.; et al. Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line. Phys. Rev. C 2021, 103, 034319. [Google Scholar] [CrossRef]
- Plaß, W.R.; Dickel, T.; Scheidenberger, C. Multiple-reflection time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2013, 349–350, 134–144. [Google Scholar] [CrossRef]
- Spătaru, A.; Hornung, C.; Dickel, T.; Haettner, E.; Pietri, S.; San Andrés, S.A.; Bagchi, S.; Balabanski, D.L.; Bergmann, J.; Ebert, J.; et al. First coupling of the FRS particle identification and the FRS-Ion Catcher data acquisition systems: The case of 109In. Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2022, 522, 32–37. [Google Scholar] [CrossRef]
- Dickel, T.; Hornung, C.; Amanbayev, D.; Ayet San Andrés, S.; Beck, S.; Bergmann, J.; Geissel, H.; Gerl, J.; Górska, M.; Gröf, L.; et al. Mean range bunching of exotic nuclei produced by in-flight fragmentation and fission—Stopped-beam experiments with increased efficiency. Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2023, 541, 275–278. [Google Scholar] [CrossRef]
- Dickel, T.; Plaß, W.R.; Ayet San Andrés, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; et al. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer. Phys. Lett. B 2015, 744, 137–141. [Google Scholar] [CrossRef]
- Bradbury, N.E.; Nielsen, R.A. Absolute Values of the Electron Mobility in Hydrogen. Phys. Rev. 1936, 49, 388–393. [Google Scholar] [CrossRef]
- Suzuki, H.; Kubo, T.; Fukuda, N.; Inabe, N.; Kameda, D.; Takeda, H.; Yoshida, K.; Kusaka, K.; Yanagisawa, Y.; Ohtake, M.; et al. Production cross section measurements of radioactive isotopes by BigRIPS separator at RIKEN RI Beam Factory. Nucl. Instrum. Methods B 2013, 317, 756–768. [Google Scholar] [CrossRef]
- Miskun, I. In Preparation. Ph.D. Thesis, Universität Gießen, Giessen, Germany, 2019. [Google Scholar]
- Hall, O.; Davinson, T.; Griffin, C.; Woods, P.; Appleton, C.; Bruno, C.; Estrade, A.; Kahl, D.; Sexton, L.; Burrows, I.; et al. The Advanced Implantation Detector Array (AIDA). Nucl. Instrum. Methods A 2023, 1050, 168166. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Hanelt, E.; Geissel, H.; Münzenberg, G.; Dufour, J. The momentum-loss achromat—A new method for the isotopical separation of relativistic heavy ions. Nucl. Instrum. Methods A 1987, 260, 287–303. [Google Scholar] [CrossRef]
- Kubo, T. In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan. Nucl. Instrum. Methods B 2003, 204, 97–113. [Google Scholar] [CrossRef]
- Kostyleva, D.; Kiselev, O.; Bezbakh, A.; Chudoba, V.; Eremin, V.; Fomichev, A.; Gorshkov, A.; Krupko, S.; Mukha, I.; Muzalevskii, I.; et al. Study of the Silicon Detectors for Time-of-Flight Measurements at the Super-FRS Facility and Expert Experiments at FAIR. Acta Phys. Pol. B 2018, 49, 503. [Google Scholar] [CrossRef]
- Hornung, C.; Dickel, T.; Amanbayev, D.; Ayet San Andrés, S.; Balabanski, D.L.; Beck, S.; Bergmann, J.; Constantin, P.; Ebert, J.; Geissel, H.; et al. Mass tagging: Verification and calibration of particle identification by high-resolution mass measurements. Nucl. Instrum. Methods B 2023, 541, 257–259. [Google Scholar] [CrossRef]
- Zhao, J.; Dickel, T.; Reiter, M.P.; Thirolf, P.G.; Wada, M.; Tortorelli, N.; Brencic, Z. Fission isomer studies with the FRS. PoS 2023, FAIRness2022, 063. [Google Scholar] [CrossRef]
- Varga, L.; Wilsenach, H.; Hall, O.; Dickel, T.; Reiter, M.; Amanbayev, D.; Davinson, T.; Morrissey, D.; Pohjalainen, I.; Tortorelli, N.; et al. Novel device to study double-alpha decay at the FRS Ion Catcher. Nucl. Instrum. Methods A 2024, 1063, 169252. [Google Scholar] [CrossRef]
- Dickel, T.; Plaß, W.; Geissel, H.; Heiße, F.; Miskun, I.; Purushothman, S.; Reiter, M.; Rink, A.K.; Scheidenberger, C. Conceptional design of a novel next-generation cryogenic stopping cell for the Low-Energy Branch of the Super-FRS. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 376, 216–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dickel, T.; Plaß, W.R.; Haettner, E.; Hornung, C.; Purushothaman, S.; Scheidenberger, C.; Weick, H. High-Precision Experiments with Trapped Radioactive Ions Produced at Relativistic Energies. Atoms 2024, 12, 51. https://doi.org/10.3390/atoms12100051
Dickel T, Plaß WR, Haettner E, Hornung C, Purushothaman S, Scheidenberger C, Weick H. High-Precision Experiments with Trapped Radioactive Ions Produced at Relativistic Energies. Atoms. 2024; 12(10):51. https://doi.org/10.3390/atoms12100051
Chicago/Turabian StyleDickel, Timo, Wolfgang R. Plaß, Emma Haettner, Christine Hornung, Sivaji Purushothaman, Christoph Scheidenberger, and Helmut Weick. 2024. "High-Precision Experiments with Trapped Radioactive Ions Produced at Relativistic Energies" Atoms 12, no. 10: 51. https://doi.org/10.3390/atoms12100051
APA StyleDickel, T., Plaß, W. R., Haettner, E., Hornung, C., Purushothaman, S., Scheidenberger, C., & Weick, H. (2024). High-Precision Experiments with Trapped Radioactive Ions Produced at Relativistic Energies. Atoms, 12(10), 51. https://doi.org/10.3390/atoms12100051