Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods
Abstract
1. Introduction
2. Bayesian Model Selection
3. Method
4. Model Comparison Results
4.1. Profile Selection
4.2. Search of Satellites
4.3. Spectral Line or Parabola
5. Conclusions
Funding
Conflicts of Interest
References
- von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Applications in the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bernitt, S.; Brown, G.V.; Rudolph, J.K.; Steinbrugge, R.; Graf, A.; Leutenegger, M.; Epp, S.W.; Eberle, S.; Kubicek, K.; Mackel, V.; et al. An unexpectedly low oscillator strength as the origin of the Fe[thinsp]xvii emission problem. Nature 2012, 492, 225–228. [Google Scholar] [CrossRef]
- Kühn, S.; Shah, C.; López-Urrutia, J.R.C.; Fujii, K.; Steinbrügge, R.; Stierhof, J.; Togawa, M.; Harman, Z.; Oreshkina, N.S.; Cheung, C.; et al. High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. Phys. Rev. Lett. 2020, 124, 225001. [Google Scholar] [CrossRef]
- Kühn, S.; Cheung, C.; Oreshkina, N.S.; Steinbrügge, R.; Togawa, M.; Shah, C.; Bernitt, S.; Buck, J.; Hoesch, M.; Seltmann, J. Oscillator-strength ratio of two Fe XVII soft X-ray transitions essential for plasma diagnostics finally agrees with theory. arXiv 2022, arXiv:2201.09070. [Google Scholar]
- Hirtl, A.; Anagnostopoulos, D.F.; Covita, D.S.; Fuhrmann, H.; Gorke, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Jensen, T.S.; et al. Redetermination of the strong-interaction width in pionic hydrogen. Eur. J. Phys. A 2021, 57, 70. [Google Scholar] [CrossRef]
- Gotta, D.; Amaro, F.; Anagnostopoulos, D.; Bühler, P.; Covita, D.; Fuhrmann, H.; Gorke, H.; Gruber, A.; Hennebach, M.; Hirtl, A.; et al. Pionic hydrogen and deuterium. EPJ Web Conf. 2022, 262, 01005. [Google Scholar] [CrossRef]
- Cox, D.; Hinkley, D. Theoretical Statistics; CRC Press LLC: Boca Raton, FL, USA, 2017. [Google Scholar]
- King, G.; Lovell, A.; Neufcourt, L.; Nunes, F. Direct Comparison between Bayesian and Frequentist Uncertainty Quantification for Nuclear Reactions. Phys. Rev. Lett. 2019, 122, 232502. [Google Scholar] [CrossRef]
- Sivia, D.S.; Skilling, J. Data Analysis: A Bayesian Tutorial, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 2008, 49, 71–104. [Google Scholar] [CrossRef]
- von Toussaint, U. Bayesian inference in physics. Rev. Mod. Phys. 2011, 83, 943–999. [Google Scholar] [CrossRef]
- Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
- Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006, 1, 833–859. [Google Scholar] [CrossRef]
- Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al. Nested sampling for physical scientists. Nat. Rev. Methods Prim. 2022, 2, 39. [Google Scholar] [CrossRef]
- Lötzsch, R.; Beyer, H.; Duval, L.; Spillmann, U.; Banas, D.; Dergham, P.; Glorius, J.; Grisenti, R.; Guerra, M.; Gumberidze, A.; et al. Testing quantum electrodynamics in few electrons heavy highly charged ions. 2023; in preparation. [Google Scholar]
- Trassinelli, M.; Kumar, A.; Beyer, H.F.; Indelicato, P.; Märtin, R.; Reuschl, R.; Kozhedub, Y.S.; Brandau, C.; Bräuning, H.; Geyer, S.; et al. Observation of the 2p3/2→2s1/2 intra-shell transition in He-like uranium. Eur. Phys. Lett. 2009, 87, 63001. [Google Scholar] [CrossRef]
- Weber, G.; Herdrich, M.; DuBois, R.D.; Hillenbrand, P.M.; Beyer, H.; Bozyk, L.; Gassner, T.; Grisenti, R.; Hagmann, S.; Litvinov, Y.A.; et al. Total projectile electron loss cross sections of U28+ ions in collisions with gaseous targets ranging from hydrogen to krypton. Phys. Rev. ST AB 2015, 18, 034403. [Google Scholar] [CrossRef]
- Gassner, T.; Beyer, H.F. Spatial characterization of the internal gas target at the ESR for the FOCAL experiment. Phys. Scr. 2015, 2015, 014052. [Google Scholar] [CrossRef]
- Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instrum. Methods B 2017, 408, 301–312. [Google Scholar] [CrossRef]
- Trassinelli, M. The Nested_fit Data Analysis Program. Proceedings 2019, 33, 14. [Google Scholar]
- Trassinelli, M.; Ciccodicola, P. Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm. Entropy 2020, 22, 185. [Google Scholar] [CrossRef]
- Maillard, L.; Finocchi, F.; Trassinelli, M. Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling. Entropy 2023, 25, 347. [Google Scholar] [CrossRef]
- Baker, S.; Cousins, R.D. Clarification of the use of CHI-square and likelihood functions in fits to histograms. Nucl. Instrum. Methods 1984, 221, 437–442. [Google Scholar] [CrossRef]
- Hauschild, T.; Jentschel, M. Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nucl. Instrum. Methods B 2001, 457, 384–401. [Google Scholar] [CrossRef]
- Sellke, T.; Bayarri, M.J.; Berger, J.O. Calibration of ρ Values for Testing Precise Null Hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
- Gordon, C.; Trotta, R. Bayesian calibrated significance levels applied to the spectral tilt and hemispherical asymmetry. Mon. Not. R. Astron. Soc. 2007, 382, 1859–1863. [Google Scholar] [CrossRef]
- Authier, A. Dynamical Theory of X-ray Diffraction; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Zachariasen, W. Theory of X-ray Diffraction in Crystals; Dover: Mineola, NY, USA, 1994. [Google Scholar]
Evidence Difference | Equivalent p-Value | Mean Line Position Difference | Relative Satellite Position | Relative Satellite Amplitude | |
---|---|---|---|---|---|
Inner arm | |||||
Outer arm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trassinelli, M. Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms 2023, 11, 64. https://doi.org/10.3390/atoms11040064
Trassinelli M. Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms. 2023; 11(4):64. https://doi.org/10.3390/atoms11040064
Chicago/Turabian StyleTrassinelli, Martino. 2023. "Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods" Atoms 11, no. 4: 64. https://doi.org/10.3390/atoms11040064
APA StyleTrassinelli, M. (2023). Shape and Satellite Studies of Highly Charged Ions X-ray Spectra Using Bayesian Methods. Atoms, 11(4), 64. https://doi.org/10.3390/atoms11040064