Electron Capture by Proton Beam in Collisions with Water Vapor
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDaniel, E.W.; Mitchell, J.B.A.; Rudd, M.E. Atomic Collisions; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Enos, C.S.; Lee, A.R.; Brenton, A.G. Electronic excitation of atmospheric molecules by proton impact. Int. J. Mass Spectrom. Ion Process 1991, 104, 137. [Google Scholar] [CrossRef]
- Townsend, L.W.; Wilson, J.W.; Cucinotta, F.A.; Shinn, J.L. Galactic Cosmic Ray Transport Methods and Radiation Quality Issues. Int. J. Radiat. Appl. Instrum Part D. Nucl. Tracks Radiat. Meas. 1992, 20, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Amaldi, U.; Kraft, G. Radiotherapy with Beams of Carbon Ions. Rep. Prog. Phys. 2005, 68, 1861–1882. [Google Scholar] [CrossRef]
- Inokuti, M. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules- The Bethe Theory Revisited. Rev. Mod. Phys. 1971, 43, 297–347. [Google Scholar] [CrossRef]
- Champion, C.; Weck, P.F.; Lekadir, H.; Galassi, M.E.; Fojón, O.A.; Abufager, P.; Rivarola, R.D.; Hanssen, J. Proton-induced single electron capture on DNA/RNA bases. Phys. Med. Biol. 2012, 57, 3039. [Google Scholar] [CrossRef] [PubMed]
- Tachino, C.A.; Monti, J.M.; Fojón, O.A.; Champion, C.; Rivarola, R.D. Ionization of water molecules by ion beams. On the relevance of dynamic screening and the influence of the description of the initial state. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 035203. [Google Scholar] [CrossRef]
- Mendez, A.M.P.; Montanari, C.C.; Miraglia, J.E. Ionization of biological molecules by multicharged ions using the stoichiometric model. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 055201, Correction: J. Phys. B At. Mol. Opt. Phys. 2020, 53, 249501. [Google Scholar] [CrossRef]
- Levin, W.P.; Kooy, H.; Loeffler, J.S.; DeLaney, T.F. Proton beam therapy. Brit. J. Cancer 2005, 93, 849. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R. Proton therapy. Phys. Med. Biol. 2006, 51, R491. [Google Scholar] [CrossRef] [PubMed]
- Schardt, D.; Elsasser, T.; Schulz-Ertner, D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010, 82, 383–425. [Google Scholar] [CrossRef]
- Ohsawa, D.; Tawara, H.; Soga, F.; Galassi, M.E.; Rivarola, R.D. 6.0 MeV u−1 carbon ion (C6+ and C4+)-induced secondary electron emission from water vapor. Phys. Scr. 2013, T156, 014039. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Biswas, S.; Monti, J.M.; Rivarola, R.D.; Tribedi, L.C. Double-differential cross section for ionization of H2O molecules by 4-MeV/u C6+ and Si13+ ions. Phys. Rev. A 2017, 96, 052707. [Google Scholar] [CrossRef]
- Luna, H.; Wolff, W.; Montenegro, E.C.; Tavares, A.C.; Ludde, H.J.; Schenk, G.; Horbatsch, M.; Kirchner, T. Ionization and electron-capture cross sections for single- and multiple-electron removal from H2O by Li3+ impact. Phys. Rev. A 2016, 93, 052705. [Google Scholar] [CrossRef]
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation track, DNA damage and response- A review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef]
- Toburen, L.H.; Nakai, M.Y.; Langley, R.A. Measurement of High-Energy Charge-Transfer Cross Sections for Incident Protons and Atomic Hydrogen in Various Gases*. Phys. Rev. 1968, 171, 114. [Google Scholar] [CrossRef]
- Rudd, M.E.; Goffe, T.V.; DuBois, R.D.; Toburen, L.H. Cross sections for ionization of water vapor by 7-4000-keV protons. Phys. Rev. A 1985, 31, 492. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.K.; Bhattacharjee, S. Variable gaseous ion beams from plasmas driven by electromagnetic waves for nano-micro structuring: A tutorial and an overview of recent works and future prospects. Plasma Res. Express 2020, 2, 033001. [Google Scholar] [CrossRef]
- Maurya, S.K.; Paul, S.; Shah, J.K.; Chatterjee, S.; Bhattacharjee, S. Momentum transfer using variable gaseous plasma ion beams and creation of high aspect ratio microstructures. J. Appl. Phys. 2017, 121, 123302. [Google Scholar] [CrossRef]
- Maurya, S.K.; Barman, S.; Pan, N.; Bhattacharjee, S. Effect of plasma and beam parameters on focal dimensions in micrometer charged particle optics: Enhanced nonlinear demagnification below the Debye length. Phys. Plasmas 2019, 26, 063103. [Google Scholar] [CrossRef]
- Maurya, S.K.; Barman, S.; Bhattacharjee, S. Charge dissipation and self focusing limit in high current density ion beam transport through a micro glass capillary. J. Phys. D Appl. Phys. 2019, 52, 055205. [Google Scholar] [CrossRef]
- Barman, S.; Maurya, S.K.; Bhattacharjee, S. Experimental realization of nonlinear demagnification in plasma-based charged particle optics. Plasma Res. Express 2022, 4, 025003. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharjee, S.; Maurya, S.K.; Srinivasan, V.; Khare, K.; Khandekar, S. Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces. Euro Phy. Lett. 2017, 118, 68006. [Google Scholar] [CrossRef]
- Agnihotri, A.N.; Kelkar, A.H.; Kasthurirangan, S.; Thulasiram, K.V.; Desai, C.A.; Fernandez, W.A.; Tribedi, L.C. An ECR ion source-based low-energy ion accelerator: Development and performance. Phys. Scr. 2011, T144, 014038. [Google Scholar] [CrossRef]
- Available online: https://www.roentdek.com (accessed on 10 January 2023).
- Krems, M.; Zirbel, J.; Thomason, M.; DuBoisa, R.D. Channel electron multiplier and channelplate efficiencies for detecting positive ions. Rev. Sci. Instrum. 2005, 76, 093305. [Google Scholar] [CrossRef]
- Dunseath, K.M.; Crothers, D.S.F. Transfer and ionization processes during the collision of fast H+, He2+ nuclei with helium. J. Phys. B At. Mol. Opt. Phys. 1991, 24, 5003–5022. [Google Scholar] [CrossRef]
Energy (keV) | TCS (cm2) | |
---|---|---|
Present | Toburen et al. | |
70 | 2.4 (−16) | 2.3 (−16) |
100 | 8.1 (−17) | 9.5 (−17) |
150 | 6.6 (−17) | 6.0 (−17) |
300 | 3.2 (−18) | 3.0 (−18) |
Number of Captured Electrons | Cross-Section (10−16 cm2) | Ratio of Multi E-Capture to Single Capture |
---|---|---|
1 | 13.1 | 1.000 |
2 | 12.0 | 0.377 |
3 | 3.41 | 0.105 |
4 | 0.132 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurya, S.K.; Bhogale, A.; Tribedi, L.C. Electron Capture by Proton Beam in Collisions with Water Vapor. Atoms 2023, 11, 21. https://doi.org/10.3390/atoms11020021
Maurya SK, Bhogale A, Tribedi LC. Electron Capture by Proton Beam in Collisions with Water Vapor. Atoms. 2023; 11(2):21. https://doi.org/10.3390/atoms11020021
Chicago/Turabian StyleMaurya, Sanjeev Kumar, Abhijeet Bhogale, and Lokesh C. Tribedi. 2023. "Electron Capture by Proton Beam in Collisions with Water Vapor" Atoms 11, no. 2: 21. https://doi.org/10.3390/atoms11020021
APA StyleMaurya, S. K., Bhogale, A., & Tribedi, L. C. (2023). Electron Capture by Proton Beam in Collisions with Water Vapor. Atoms, 11(2), 21. https://doi.org/10.3390/atoms11020021