Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters
1. Introduction
A Rundown of Articles
2. Future Research Prospects
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Vinitha, M.V.; Bhatt, P.; Safvan, C.P.; Vig, S.; Kadhane, U.R. Fragmentation of Multiply Charged C10H8 Isomers Produced in keV Range Proton Collision. Atoms 2023, 11, 138. https://doi.org/10.3390/atoms11110138.
- Hosea, N.M.; Jose, J.; Varma, H.R.; Deshmukh, P.C.; Manson, S.T. Quadrupole Effects in the Photoionisation of Sodium 3s in the Vicinity of the Dipole Cooper Minimum. Atoms 2023, 11, 125. https://doi.org/10.3390/atoms11100125.
- Shaik, R.; Varma, H.R.; Chakraborty, H.S. Density Functional Treatment of Photoionization of Sodium Clusters: Effects of Cluster Size and Exchange–Correlation Framework. Atoms 2023, 11, 114. https://doi.org/10.3390/atoms11080114.
- Biswas, S.; Bhowmik, A.; Das, A.; Pal, R.R.; Majumder, S. Transitional Strength under Plasma: Precise Estimations of Astrophysically Relevant Electromagnetic Transitions of Ar7+, Kr7+, Xe7+, and Rn7+ under Plasma Atmosphere. Atoms 2023, 11, 87. https://doi.org/10.3390/atoms11060087.
- Grafstrom, B.; Landsman, A.S. Attosecond Time Delay Trends across the Isoelectronic Noble Gas Sequence. Atoms 2023, 11, 84. https://doi.org/10.3390/atoms11050084.
- Harris, A.L. Projectile Coherence Effects in Twisted Electron Ionization of Helium. Atoms 2023, 11, 79. https://doi.org/10.3390/atoms11050079.
- Duley, A.; Kelkar, A.H. Fragmentation Dynamics of COq+2 (q = 2, 3) in Collisions with 1 MeV Proton. Atoms 2023, 11, 75. https://doi.org/10.3390/atoms11050075.
- Baral, S.; Easwaran, R.K.; Jose, J.; Ganesan, A.; Deshmukh, P.C. Temporal Response of Atoms Trapped in an Optical Dipole Trap: A Primer on Quantum Computing Speed. Atoms 2023, 11, 72. https://doi.org/10.3390/atoms11040072.
- Schimmoller, A.; Pasquinilli, H.; Landsman, A.S. Does Carrier Envelope Phase Affect the Ionization Site in a Neutral Diatomic Molecule? Atoms 2023, 11, 67. https://doi.org/10.3390/atoms11040067.
- Msezane, A.Z.; Felfli, Z. Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. Atoms 2023, 11, 47. https://doi.org/10.3390/atoms11030047.
- Simonović, N.S.; Popović, D.B.; Bunjac, A. Manifestations of Rabi Dynamics in the Photoelectron Energy Spectra at Resonant Two-Photon Ionization of Atom by Intense Short Laser Pulses. Atoms 2023, 11, 20. https://doi.org/10.3390/atoms11020020.
- Manson, S.T. The Spin-Orbit Interaction: A Small Force with Large Implications. Atoms 2023, 11, 90. https://doi.org/10.3390/atoms11060090.
- Connerade, J.-P. The Atom at the Heart of Physics. Atoms 2023, 11, 32. https://doi.org/10.3390/atoms11020032.
References
- National Research Council. Atoms, Molecules, and Light: AMO Science Enabling the Future; The National Academies Press: Washington, DC, USA, 2002. [Google Scholar] [CrossRef]
- Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 20200. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637. [Google Scholar] [CrossRef]
- The Nobel Prize in Physics 2023. Available online: https://www.nobelprize.org/prizes/physics/2023/press-release/ (accessed on 28 November 2023).
- Weber, S.; Wu, Y.; Wang, J. Recent progress in atomic and molecular physics for controlled fusion and astrophysics. Matter Radiat. Extremes 2021, 6, 023002. [Google Scholar] [CrossRef]
- Higashi, Y.; Matsumoto, K.; Saitoh, H.; Shiro, A.; Ma, Y.; Laird, M. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Sci. Rep. 2021, 11, 14192. [Google Scholar] [CrossRef] [PubMed]
- Brierley, R.; Li, Y.; Benini, L. Ultracold quantum technologies. Nat. Phys. 2021, 17, 1293. [Google Scholar] [CrossRef]
- Adkinsa, G.S.; Cassidyb, D.B.; Pérez-Ríosc, J. Precision spectroscopy of positronium: Testing bound-state QED theory and the search for physics beyond the Standard Model. Phys. Rep. 2022, 975, 1–61. [Google Scholar] [CrossRef]
- Tóth, A.; Csehi, A. Strong-field control by reverse engineering. Phys. Rev. A 2021, 104, 063102. [Google Scholar] [CrossRef]
- Young, L.; Ueda, K.; Gühr, M.; Bucksbaum, P.H.; Simon, M.; Mukamel, S. Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 032003. [Google Scholar] [CrossRef]
- Maiuri, M.; Garavelli, M.; Cerullo, G. Ultrafast Spectroscopy: State of the Art and Open Challenges. J. Am. Chem. Soc. 2020, 142, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, C.D.M.; Baxter, J.M.; Fitzpatrick, A.; Dorlhiac, G.; Fadini, A.; Perrett, S. Optical control of ultrafast structural dynamics in a fluorescent protein. Nat. Chem. 2023, 15, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Trabattoni, A.; Rupp, P.; Magrakvelidze, M.; Madjet, A.; De Giovannini, U.; Castrovilli, C.; Galli, M.; Liu, C.; Månsson, E.P.; et al. Attosecond correlated electron dynamics at C60 giant plasmon resonance. arXiv 2021, arXiv:2111.14464. [Google Scholar]
- Future Directions of Quantum Information Processing: A Workshop on the Emerging Science and Technology of Quantum Computation, Communication, and Measurement. Available online: https://basicresearch.defense.gov/Portals/61/Documents/future-directions/Future_Directions_Quantum.pdf?ver=2017-09-20-003031-450 (accessed on 28 November 2023).
- Altuntaş, E.; Spielman, I.B. Weak-measurement-induced heating in Bose-Einstein condensates. Phys. Rev. Res. 2023, 5, 023185. [Google Scholar] [CrossRef] [PubMed]
- Escudero, R.G.; Minář, J.; Pasquiou, B.; Bennetts, S.; Schreck, F. Continuous Bose–Einstein condensation, Chun-Chia Chen. Nature 2022, 606, 683–687. [Google Scholar] [CrossRef]
- De Motte, D.; Grounds, A.R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G.S.; Neilinger, P.; Oelsner, G.; Il’ichev, E.; Grajcar, M.; et al. Experimental system design for the integration of trapped-ion and superconducting qubit systems. Quantum. Inf. Process 2016, 15, 5385–5414. [Google Scholar] [CrossRef] [PubMed]
- Becher, C.; Gao, W.; Kar, S.; Marciniak, C.D.; Monz, T.; Bartholomew, J.G.; Goldner, P.; Loh, H.; Marcellina, E.; Johnson Goh, K.E.; et al. 2023 roadmap for materials for quantum technologies. Mater. Quantum. Technol. 2023, 3, 012501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, H.S.; Varma, H.R. Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters. Atoms 2023, 11, 156. https://doi.org/10.3390/atoms11120156
Chakraborty HS, Varma HR. Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters. Atoms. 2023; 11(12):156. https://doi.org/10.3390/atoms11120156
Chicago/Turabian StyleChakraborty, Himadri S., and Hari R. Varma. 2023. "Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters" Atoms 11, no. 12: 156. https://doi.org/10.3390/atoms11120156
APA StyleChakraborty, H. S., & Varma, H. R. (2023). Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters. Atoms, 11(12), 156. https://doi.org/10.3390/atoms11120156