Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donnelly, S.E.; Birtcher, R.C. Heavy ion cratering of gold. Phys. Rev. B 1997, 56, 13599–13602. [Google Scholar] [CrossRef]
- Birtcher, R.C.; Donnelly, S.E.; Schlutig, S. Nanoparticle ejection from Au induced by single Xe ion impacts. Phys. Rev. Lett. 2000, 85, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Insepov, Z.; Manory, R.; Matsuo, J.; Yamada, I. Proposal for a hardness measurement technique without indentor by gas-cluster-beam bombardment. Phys. Rev. B 2000, 61, 8744–8752. [Google Scholar] [CrossRef]
- Thibaudau, F.; Cousty, J.; Balanzat, E.; Bouffard, S. Atomic-force-microscopy observations of tracks induced by swift kr ions in mica. Phys. Rev. Lett. 1991, 67, 1582–1585. [Google Scholar] [CrossRef]
- Kopniczky, J.; Reimann, C.T.; Hallen, A.; Sundqvist, B.U.R.; Tengvall, P.; Erlandsson, R. Scanning-force-microscopy study of MeV-atomic-ion-induced surface tracks in organic-crystals. Phys. Rev. B 1994, 49, 625–628. [Google Scholar] [CrossRef]
- Eriksson, J.; Rottler, J.; Reimann, C.T. Fast-ion-induced surface tracks in bioorganic films. Int. J. Mass Spectrom. 1998, 175, 293–308. [Google Scholar] [CrossRef]
- Neumann, R. Scanning probe microscopy of ion-irradiated materials. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 1999, 151, 42–55. [Google Scholar] [CrossRef]
- Papaleo, R.M.; Silva, M.R.; Leal, R.; Grande, P.L.; Roth, M.; Schattat, B.; Schiwietz, G. Direct Evidence for Projectile Charge-State Dependent Crater Formation Due to Fast Ions. Phys. Rev. Lett. 2008, 101, 167601. [Google Scholar] [CrossRef]
- Papaléo, R.M.; Thomaz, R.; Gutierres, L.I.; de Menezes, V.M.; Severin, D.; Trautmann, C.; Tramontina, D.; Bringa, E.M.; Grande, P.L. Confinement Effects of Ion Tracks in Ultrathin Polymer Films. Phys. Rev. Lett. 2015, 114, 118302. [Google Scholar] [CrossRef] [PubMed]
- Ochedowski, O.; Osmani, O.; Schade, M.; Bussmann, B.K.; Ban-d’Etat, B.; Lebius, H.; Schleberger, M. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation. Nat. Commun. 2014, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Langer, C.; Ernst, P.; Bender, M.; Severin, D.; Trautmann, C.; Schleberger, M.; Durr, M. Single-ion induced surface modifications on hydrogen-covered Si(001) surfaces-significant difference between slow highly charged and swift heavy ions. New J. Phys. 2021, 23, 093037. [Google Scholar] [CrossRef]
- El-Said, A.; Heller, R.; Meissl, W.; Ritter, R.; Facsko, S.; Lemell, C.; Solleder, B.; Gebeshuber, I.; Betz, G.; Toulemonde, M.; et al. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions. Phys. Rev. Lett. 2008, 100, 237601. [Google Scholar] [CrossRef] [PubMed]
- Akcoltekin, E.; Peters, T.; Meyer, R.; Duvenbeck, A.; Klusmann, M.; Monnet, I.; Lebius, H.; Schleberger, M. Creation of multiple nanodots by single ions. Nat. Nanotechnol. 2007, 2, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Ritter, R.; Wilhelm, R.; Ginzel, R.; Kowarik, G.; Heller, R.; El-Said, A.; Papaleo, R.; Rupp, W.; Lopez-Urrutia, J.; Ullrich, J.; et al. Pit formation on poly(methyl methacrylate) due to ablation induced by individual slow highly charged ion impact. Europhys. Lett. 2012, 97, 13001. [Google Scholar] [CrossRef]
- Tona, M.; Fujita, Y.; Yamada, C.; Ohtani, S. Electronic interaction of individual slow highly charged ions with TiO2(110). Phys. Rev. B 2008, 77, 155427. [Google Scholar] [CrossRef]
- Aumayr, F.; Facsko, S.; El-Said, A.S.; Trautmann, C.; Schleberger, M. Single ion induced surface nanostructures: A comparison between slow highly charged and swift heavy ions. J. Phys. Condens. Matter 2011, 23, 393001. [Google Scholar] [CrossRef]
- Gruber, E.; Wilhelm, R.A.; Petuya, R.; Smejkal, V.; Kozubek, R.; Hierzenberger, A.; Bayer, B.C.; Aldazabal, I.; Kazansky, A.K.; Libisch, F.; et al. Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. 2016, 7, 13948. [Google Scholar] [CrossRef]
- Creutzburg, S.; Schwestka, J.; Niggas, A.; Inani, H.; Tripathi, M.; George, A.; Heller, R.; Kozubek, R.; Madauss, L.; McEvoy, N.; et al. Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer MoS2. Phys. Rev. B 2020, 102, 045408. [Google Scholar] [CrossRef]
- Ritter, R.; Wilhelm, R.A.; Stoger-Pollach, M.; Heller, R.; Mucklich, A.; Werner, U.; Vieker, H.; Beyer, A.; Facsko, S.; Golzhauser, A.; et al. Fabrication of nanopores in 1 nm thick carbon nanomembranes with slow highly charged ions. Appl. Phys. Lett. 2013, 102, 063112. [Google Scholar] [CrossRef]
- Wilhelm, R.A.; El-Said, A.S.; Krok, F.; Heller, R.; Gruber, E.; Aumayr, F.; Facsko, S. Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Prog. Surf. Sci. 2015, 90, 377–395. [Google Scholar] [CrossRef] [Green Version]
- Kozubek, R.; Tripathi, M.; Ghorbani-Asl, M.; Kretschmer, S.; Madauss, L.; Pollmann, E.; O’Brien, M.; McEvoy, N.; Ludacka, U.; Susi, T.; et al. Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. J. Phys. Chem. Lett. 2019, 10, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.; Haake, C.; Hopster, J.; Sokolovsky, V.; Wucher, A.; Schleberger, M. HICS: Highly charged ion collisions with surfaces. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2009, 267, 687–690. [Google Scholar] [CrossRef]
- Hopster, J.; Kozubek, R.; Ban-d’Etat, B.; Guillous, S.; Lebius, H.; Schleberger, M. Damage in graphene due to electronic excitation induced by highly charged ions. Materials 2014, 1, 011011. [Google Scholar] [CrossRef]
- Ernst, P.; Kozubek, R.; Madauss, L.; Sonntag, J.; Lorke, A.; Schleberger, M. Irradiation of graphene field effect transistors with highly charged ions. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2016, 382, 71–75. [Google Scholar] [CrossRef]
- Alzaher, I.; Akcoltekin, S.; Ban-d’Etat, B.; Manil, B.; Dey, K.R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2018, 420, 23–26. [Google Scholar] [CrossRef]
- Kozubek, R.; Ernst, P.; Herbig, C.; Michely, T.; Schleberger, M. Fabrication of Defective Single Layers of Hexagonal Boron Nitride on Various Supports for Potential Applications in Catalysis and DNA Sequencing. Acs Appl. Nano Mater. 2018, 1, 3765–3773. [Google Scholar] [CrossRef]
- Schwestka, J.; Inani, H.; Tripathi, M.; Niggas, A.; McEvoy, N.; Libisch, F.; Aumayr, F.; Kotakoski, J.; Wilhelm, R.A. Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged Ions. Acs Nano 2020, 14, 10536–10543. [Google Scholar] [CrossRef]
- Asaithambi, A.; Kozubek, R.; Prinz, G.M.; Reale, F.; Pollmann, E.; Ney, M.; Mattevi, C.; Schleberger, M.; Lorke, A. Laser- and Ion-Induced Defect Engineering in WS2 Monolayers. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2000466. [Google Scholar] [CrossRef]
- Schleberger, M.; Kotakoski, J. 2D Material Science: Defect Engineering by Particle Irradiation. Materials 2018, 11, 1885. [Google Scholar] [CrossRef]
- Thomaz, R.; Lima, N.W.; Teixeira, D.; Gutierres, L.I.; Alencar, I.; Trautmann, C.; Grande, P.L.; Papaléo, R.M. Ion tracks in ultrathin polymer films: The role of the substrate. Curr. Appl. Phys. 2021, 32, 91–97. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Skopinski, L.; Ernst, P.; Herder, M.; Kozubek, R.; Madauss, L.; Sleziona, S.; Maas, A.; Konigstein, N.; Lebius, H.; Wucher, A.; et al. Time-of-flight mass spectrometry of particle emission during irradiation with slow, highly charged ions. Rev. Sci. Instrum. 2021, 92, 023909. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomaz, R.S.; Ernst, P.; Grande, P.L.; Schleberger, M.; Papaléo, R.M. Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films. Atoms 2022, 10, 96. https://doi.org/10.3390/atoms10040096
Thomaz RS, Ernst P, Grande PL, Schleberger M, Papaléo RM. Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films. Atoms. 2022; 10(4):96. https://doi.org/10.3390/atoms10040096
Chicago/Turabian StyleThomaz, Raquel S., Philipp Ernst, Pedro L. Grande, Marika Schleberger, and Ricardo M. Papaléo. 2022. "Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films" Atoms 10, no. 4: 96. https://doi.org/10.3390/atoms10040096
APA StyleThomaz, R. S., Ernst, P., Grande, P. L., Schleberger, M., & Papaléo, R. M. (2022). Cratering Induced by Slow Highly Charged Ions on Ultrathin PMMA Films. Atoms, 10(4), 96. https://doi.org/10.3390/atoms10040096