Radiative Properties of Rb-Isoelectronic Technetium (Tc VII), Ruthenium (Ru VIII) and Rhodium (Rh IX) Ions for Astrophysical Applications
Abstract
:1. Introduction
2. Theoretical Aspects and Formulae Used
3. Method of Evaluation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palme, H.; Lodders, K.; Jones, A. 2.2—Solar System Abundances of the Elements. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 15–36. [Google Scholar] [CrossRef]
- Merrill, P.W. Technetium in the stars. Amer. Assoc. Advancement Sci. 1952, 115, 484. [Google Scholar]
- Shetye, S.; Van Eck, S.; Goriely, S.; Siess, L.; Jorissen, A.; Escorza, A.; Van Winckel, H. Discovery of technetium-and niobium-rich S stars: The case for bitrinsic stars. Astron. Astrophys. 2020, 635, L6. [Google Scholar] [CrossRef]
- Martin, I.; Lavín, C.; Barrientos, C. Fine-structure oscillator strengths for excited-state transitions in Cu-like ions. Int. J. Quantum Chem. 1992, 44, 465–474. [Google Scholar] [CrossRef]
- Ruffoni, M.; Den Hartog, E.; Lawler, J.; Brewer, N.; Lind, K.; Nave, G.; Pickering, J. Fe I oscillator strengths for the Gaia-ESO survey. Mon. Not. R. Astron. Soc. 2014, 441, 3127–3136. [Google Scholar] [CrossRef] [Green Version]
- Wittkowski, M. Fundamental stellar parameters Technology roadmap for future interferometric facilities, Proceedings of the European Interferometry Initiative Workshop organized in the context of the 2005 Join European and National Astronomy Meeting “Distant Worlds”, 6–8 July 2005, Liège University, Institute of Astrophysics, Edited by J. Surdej, D. Caro, and A. Detal. Bulletin de la Société Royale des Sciences de Liège 2005, 74, 165–181. [Google Scholar]
- Rauch, T.; Gamrath, S.; Quinet, P.; Löbling, L.; Hoyer, D.; Werner, K.; Demleitner, M. Stellar laboratories-VIII. New Zr iv–vii, Xe iv–v, and Xe vii oscillator strengths and the Al, Zr, and Xe abundances in the hot white dwarfs G191-B2B and RE 0503-289. Astron. Astrophys. 2017, 599, A142. [Google Scholar] [CrossRef]
- Glushkov, A.; Ambrosov, S.; Orlova, V.; Orlov, S.; Balan, A.; Serbov, N.; Dormostuchenko, G. Calculation and extrapolation of oscillator strengths in Rb-like, multiply charged ions. Russ. Phys. J. 1996, 39, 81–83. [Google Scholar] [CrossRef]
- Tayal, S. Breit-Pauli oscillator strengths and electron excitation collision strengths for Si VIII. Astron. Astrophys. 2012, 541, A61. [Google Scholar] [CrossRef] [Green Version]
- Griem, H. Spectral Line Broadening by Plasmas; Pure and applied physics a series of monographs and textbooks; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Zeippen, C. Radiative opacities for stellar envelopes. Phys. Scr. 1995, 1995, 43. [Google Scholar] [CrossRef]
- Orban, I.; Glans, P.; Altun, Z.; Lindroth, E.; Källberg, A.; Schuch, R. Determination of the recombination rate coefficients for Na-like Si IV forming Mg-like Si III. Astron. Astrophys. 2006, 459, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Medina, A.; Colón, C. Stark broadening of Ca IV spectral lines of astrophysical interest. Mon. Not. R. Astron. Soc. 2014, 445, 1567–1574. [Google Scholar] [CrossRef]
- Das, A.; Bhowmik, A.; Dutta, N.N.; Majumder, S. Electron-correlation study of Y III-Tc VII ions using a relativistic coupled-cluster theory. J. Phys. At. Mol. Opt. Phys. 2017, 51, 025001. [Google Scholar] [CrossRef] [Green Version]
- Migdalek, J. Core-polarization corrected Dirac-Fock computations of one-electron spectra in the rubidium isoelectronic sequence: Mo VI through Pb XLVI. At. Data Nucl. Data Tables 2021, 142, 101455. [Google Scholar] [CrossRef]
- Zilitis, V. Oscillator strengths and lifetimes of levels for ions of the rubidium isoelectronic sequence calculated by the Dirac-Fock method. Opt. Spectrosc. 2007, 103, 895–898. [Google Scholar] [CrossRef]
- Kelleher, D.E.; Podobedova, L. Atomic transition probabilities of sodium and magnesium. A critical compilation. J. Phys. Chem. Ref. Data 2008, 37, 267–706. [Google Scholar] [CrossRef]
- Aymar, M.; Coulombe, M. Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra. At. Data Nucl. Data Tables 1978, 21, 537–566. [Google Scholar] [CrossRef]
- Nahar, S. Atomic data from the Iron Project. VII. Radiative dipole transition probabilities for Fe II. Astron. Astrophys. 1995, 293, 967–977. [Google Scholar]
- Qin, Z.; Zhao, J.; Liu, L. Energy levels, transition dipole moment, transition probabilities and radiative lifetimes for low-lying electronic states of PN. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 47–56. [Google Scholar] [CrossRef]
- Blundell, S.; Guo, D.; Johnson, W.; Sapirstein, J. Formulas from first-, second-, and third-order perturbation theory for atoms with one valence electron. At. Data Nucl. Data Tables 1987, 37, 103–119. [Google Scholar] [CrossRef]
- Johnson, W.; Liu, Z.; Sapirstein, J. Transition rates for lithium-like ions, sodium-like ions, and neutral alkali-metal atoms. At. Data Nucl. Data Tables 1996, 64, 279–300. [Google Scholar] [CrossRef]
- Safronova, U.; Safronova, M.; Johnson, W. Excitation energies, hyperfine constants, E 1, E 2, and M 1 transition rates, and lifetimes of 6 s 2 n l states in Tl I and Pb II. Phys. Rev. A 2005, 71, 052506. [Google Scholar] [CrossRef]
- Johnson, W.R. Atomic Structure Theory; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.
State | Ionization Energies (in cm) | ||||
---|---|---|---|---|---|
Tc VII | Ref. [14] | Ru VIII | Rh IX | ||
706,674.22 | 714,936.68 | 1.17 | 882,703.62 | 1,083,600.08 | |
544,578.06 | 550,080.50 | 1.01 | 666,540.74 | 808,192.47 | |
473,976.25 | 477,209.30 | 0.68 | 586,449.02 | 718,629.58 | |
467,743.91 | 470,667.03 | 0.62 | 578,440.90 | 708,584.25 | |
311,642.84 | 310,434.72 | 0.39 | 386,067.12 | 477,082.16 | |
280,145.08 | 349,587.13 | 435,563.73 | |||
277,356.01 | 345,940.98 | 430,919.84 |
Upper State (v) | Lower State (k) | (in Å) | (in a.u.) | (in ) | |
---|---|---|---|---|---|
Upper State (v) | Lower State (k) | (in Å) | (in a.u.) | (in s) | |
---|---|---|---|---|---|
Upper State (v) | Lower State (k) | (in Å) | (in a.u.) | (in s) | |
---|---|---|---|---|---|
Transition | Ion | ||||
---|---|---|---|---|---|
Present | [14] | B | [16] | ||
Tc VII | |||||
Ru VIII | |||||
Rh IX | |||||
Tc VII | |||||
Ru VIII | |||||
Rh IX | |||||
Tc VII | |||||
Tc VII | |||||
Ru VIII | |||||
Rh IX | |||||
Tc VII | |||||
Ru VIII | |||||
Rh IX | |||||
Tc VII | |||||
Tc VII | |||||
Tc VII | |||||
Tc VII |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jyoti; Kaur, M.; Arora, B. Radiative Properties of Rb-Isoelectronic Technetium (Tc VII), Ruthenium (Ru VIII) and Rhodium (Rh IX) Ions for Astrophysical Applications. Atoms 2022, 10, 138. https://doi.org/10.3390/atoms10040138
Jyoti, Kaur M, Arora B. Radiative Properties of Rb-Isoelectronic Technetium (Tc VII), Ruthenium (Ru VIII) and Rhodium (Rh IX) Ions for Astrophysical Applications. Atoms. 2022; 10(4):138. https://doi.org/10.3390/atoms10040138
Chicago/Turabian StyleJyoti, Mandeep Kaur, and Bindiya Arora. 2022. "Radiative Properties of Rb-Isoelectronic Technetium (Tc VII), Ruthenium (Ru VIII) and Rhodium (Rh IX) Ions for Astrophysical Applications" Atoms 10, no. 4: 138. https://doi.org/10.3390/atoms10040138
APA StyleJyoti, Kaur, M., & Arora, B. (2022). Radiative Properties of Rb-Isoelectronic Technetium (Tc VII), Ruthenium (Ru VIII) and Rhodium (Rh IX) Ions for Astrophysical Applications. Atoms, 10(4), 138. https://doi.org/10.3390/atoms10040138