Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars
Abstract
1. Introduction
2. Observations and Stellar Atmospheric Parameters
3. Carbon and Nitrogen Abundance Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIST | National Institute of Standards and Technology |
VAMDC | Virtual Atomic and Molecular Data Centre |
NLTE | non-local thermodynamic equilibrium |
LLmodels | Line-by-line opacities model atmospheres |
References
- Spina, L.; Sharma, P.; Meléndez, J.; Bedell, M.; Casey, A.R.; Carlos, M.; Franciosini, E.; Vallenari, A. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 2021, 5, 1163–1169. [Google Scholar] [CrossRef]
- Kunitomo, M.; Guillot, T. Imprint of planet formation in the deep interior of the Sun. Astron. Astrophys. 2021, 655, A51. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Nissen, P.E.; Skúladóttir, Á. Carbon, oxygen, and iron abundances in disk and halo stars. Implications of 3D non-LTE spectral line formation. Astron. Astrophys. 2019, 630, A104. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Grevesse, N.; Asplund, M.; Collet, R. The solar carbon, nitrogen, and oxygen abundances from a 3D LTE analysis of molecular lines. Astron. Astrophys. 2021, 656, A113. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Grevesse, N.; Grumer, J.; Asplund, M.; Barklem, P.S.; Collet, R. The 3D non-LTE solar nitrogen abundance from atomic lines. Astron. Astrophys. 2020, 636, A120. [Google Scholar] [CrossRef]
- Alexeeva, S.A.; Mashonkina, L.I. Carbon abundances of reference late-type stars from 1D analysis of atomic C I and molecular CH lines. Mon. Not. R. Astron. Soc. 2015, 453, 1619–1631. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Barklem, P.S.; Collet, R.; Grevesse, N.; Asplund, M. 3D non-LTE line formation of neutral carbon in the Sun. Astron. Astrophys. 2019, 624, A111. [Google Scholar] [CrossRef]
- Donati, J.F. ESPaDOnS: An Echelle SpectroPolarimetric Device for the Observation of Stars at CFHT. In Solar Polarization; Trujillo-Bueno, J., Sanchez Almeida, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 307, p. 41. [Google Scholar]
- Crabtree, D.; Durand, D.; Fisher, W.; Gaudet, S.; Hill, N.; Justice, G.; Morris, S.; Woodsworth, A. The Canadian Astronomy Data Centre. In Astronomical Data Analysis Software and Systems III; Crabtree, D.R., Hanisch, R.J., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1994; Volume 61, p. 123. [Google Scholar]
- Ryabchikova, T.; Pakhomov, Y.; Mashonkina, L.; Sitnova, T. Detailed abundances of the wide pairs of stars with and without planets: The binary systems 16 Cyg and HD 219542. Mon. Not. R. Astron. Soc. 2022, 514, 4958–4968. [Google Scholar] [CrossRef]
- Kurucz, R.L.; Furenlid, I.; Brault, J.; Testerman, L. Solar Flux Atlas from 296 to 1300 nm; National Solar Observatory: Sunspot, NM, USA, 1984. [Google Scholar]
- Valenti, J.A.; Piskunov, N. Spectroscopy made easy: A new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. Ser. 1996, 118, 595–603. [Google Scholar] [CrossRef]
- Piskunov, N.; Valenti, J.A. Spectroscopy Made Easy: Evolution. Astron. Astrophys. 2017, 597, A16. [Google Scholar] [CrossRef]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. At. Mol. Phys. 2016, 49, 074003. [Google Scholar] [CrossRef]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Ralchenko, Y.; Kramida, A.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 4.0.0). Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 1 September 2010).
- Brooke, J.S.A.; Bernath, P.F.; Schmidt, T.W.; Bacskay, G.B. Line strengths and updated molecular constants for the C2 Swan system. J. Quant. Spectrosc. Radiat. Transf. 2013, 124, 11–20. [Google Scholar] [CrossRef]
- Brooke, J.S.A.; Ram, R.S.; Western, C.M.; Li, G.; Schwenke, D.W.; Bernath, P.F. Einstein A Coefficients and Oscillator Strengths for the A 2Π-X 2Σ+ (Red) and B2Σ+-X2Σ+ (Violet) Systems and Rovibrational Transitions in the X 2Σ+ State of CN. Astrophys. J. Suppl. Ser. 2014, 210, 23. [Google Scholar] [CrossRef]
- Shulyak, D.; Tsymbal, V.; Ryabchikova, T.; Stütz, C.; Weiss, W.W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 2004, 428, 993–1000. [Google Scholar] [CrossRef]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Tsymbal, V.; Ryabchikova, T.; Sitnova, T. Software for NLTE spectrum fitting. In Physics of Magnetic Stars; Romanyuk, I.I., Yakunin, I.A., Kudryavtsev, D.O., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2019; Volume 518, p. 247. [Google Scholar]
- Asplund, M.; Amarsi, A.M.; Grevesse, N. The chemical make-up of the Sun: A 2020 vision. Astron. Astrophys. 2021, 653, A141. [Google Scholar] [CrossRef]
- Caffau, E.; Maiorca, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.; Ludwig, H.G.; Kamp, I.; Busso, M. The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. Astron. Astrophys. 2009, 498, 877–884. [Google Scholar] [CrossRef]
Parameter | Sun (Atlas) | Sun (Vesta) | 16 Cyg A | 16 Cyg B |
---|---|---|---|---|
, K | 5777 | 5778 | 5829 | 5760 |
, dex | 4.44 | 4.44 | 4.33 | 4.39 |
[M/H] | 0.0 | 0.003 | 0.110 | 0.074 |
, km s | 0.90 | 0.86 | 0.99 | 0.90 |
, km s | 3.50 | 3.59 | 4.21 | 3.32 |
Species | Sun (Atlas) | Sun (Vesta) | 16 Cyg A | 16 Cyg B |
---|---|---|---|---|
C (atom) | −3.596 ± 0.035 | −3.601 ± 0.027 | −3.560 ± 0.037 | −3.564 ± 0.037 |
C (mol) | −3.600 ± 0.010 | −3.617 ± 0.024 | −3.564 ± 0.016 | −3.571 ± 0.013 |
N (atom) | −4.089 ± 0.010 | −4.062 ± 0.033 | −4.063 ± 0.009 | −4.076 ± 0.017 |
N (mol) | −4.072 ± 0.043 | −4.059 ± 0.084 | −4.006 ± 0.070 | −4.038 ± 0.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryabchikova, T.; Piskunov, N.; Pakhomov, Y. Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms 2022, 10, 103. https://doi.org/10.3390/atoms10040103
Ryabchikova T, Piskunov N, Pakhomov Y. Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms. 2022; 10(4):103. https://doi.org/10.3390/atoms10040103
Chicago/Turabian StyleRyabchikova, Tatiana, Nikolai Piskunov, and Yury Pakhomov. 2022. "Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars" Atoms 10, no. 4: 103. https://doi.org/10.3390/atoms10040103
APA StyleRyabchikova, T., Piskunov, N., & Pakhomov, Y. (2022). Using Molecular Lines to Determine Carbon and Nitrogen Abundances in the Atmospheres of Cool Stars. Atoms, 10(4), 103. https://doi.org/10.3390/atoms10040103