Modeling Atom Interferometry Experiments with Bose–Einstein Condensates in Power-Law Potentials
Abstract
:1. Introduction
2. Variational GPE Solver Model
- We assume that each of the clouds are moving at sufficiently different velocities such that any integral of a quantity containing a factor like where can be neglected. If the clouds move with sufficiently different velocities, these factors will be rapidly oscillating and their integrals can be neglected.
- The number of atoms in each cloud is fixed. Clouds do not lose or exchange atoms.
3. The Virginia Dual-Sagnac Atom-Interferometer Sequence
4. Model Equations of Motion for a Power-Law Potential
Virginia Trap Potential Equations of Motion
5. Computing the Stopped-Atom Fraction within the Variational Model
6. Approximate Expressions for the Stopped-Atom Fraction
6.1. Stopped-Atom Fraction for Zero Rotation Speed
6.2. Exact Stopped-Atom Fraction for Non-Interacting Clouds in a Harmonic Potential
7. Interaction and Anharmonic Effect Study
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Atom Interferometry |
BEC | Bose–Einstein condensate |
CAL | Cold Atom Laboratory |
GPE | Gross–Pitaevskii Equation |
LVM | Lagrangian Variational Method |
NASA | National Aeronautics and Space Administration |
RFGPE | Rotation–frame Gross–Pitaevskii equation |
TOP | Time-averaged orbiting potential |
Appendix A. Derivation of the Power-Law Equations of Motion
Appendix B. Interaction Terms in the Variational Equations of Motion
References
- Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 2019, 1, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Richard, H.P.; Yu, C.; Zhong, W.; Estey, B.; Maller, H. Measurement of the fine-structure constant as a test of the standard model. Science 2018, 360, 6385. [Google Scholar]
- Weiss, D.S.; Young, B.C.; Chu, S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys. Rev. Lett. 1993, 70, 2706–2709. [Google Scholar] [CrossRef] [PubMed]
- Bouchendira, R.; Cladé, P.; Guellati-Khélifa, S.; Nez, F.M.C.; Biraben, F.M.C. New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics. Phys. Rev. Lett. 2011, 106, 080801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanneke, D.; Fogwell, S.; Gabrielse, G. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 2008, 100, 120801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G.M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 2014, 510, 518–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fixler, J.B.; Foster, G.T.; McGuirk, J.M.; Kasevich, M.A. Atom interferometer measurement of the Newtonian constant of gravity. Science 2007, 315, 74–77. [Google Scholar] [CrossRef]
- Ménoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10−9g with a transportable absolute quantum gravimeter. Sci. Rep. 2018, 8, 12300. [Google Scholar] [CrossRef]
- Geneves, G.; Gournay, P.; Gosset, A.; Lecollinet, M.; Villar, F.; Pinot, P.; Juncar, P.; Clairon, A.; Landragin, A.; Holleville, D.; et al. The BNM Watt balance project. IEEE Trans. Instrum. Meas. 2005, 54, 850–853. [Google Scholar] [CrossRef]
- Andreas, B.; Azuma, Y.; Bartl, G.; Becker, P.; Bettin, H.; Borys, M.; Busch, I.; Gray, M.; Fuchs, P.; Fujii, K.; et al. Determination of the Avogadro Constant by Counting the Atoms in a 28Si Crystal. Phys. Rev. Lett. 2011, 106, 030801. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, A.; Zahzam, N.; Bidel, Y.; Bresson, A. Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 2013, 88, 043615. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, S.M.; Hogan, J.M.; Sugarbaker, A.; Johnson, D.M.S.; Kasevich, M.A. Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry. Phys. Rev. Lett. 2013, 111, 083001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, B.; Antoni-Micollier, L.; Chichet, L.; Battelier, B.; Lévèque, T.; Landragin, A.; Bouyer, P. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 2016, 7, 13786. [Google Scholar] [CrossRef] [PubMed]
- Antoine, C.; Bord, C.J. Quantum theory of atomic clocks and gravito-inertial sensors: An update. J. Opt. B Quantum Semiclass. Opt. 2003, 5, S199–S207. [Google Scholar] [CrossRef]
- Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2011, 2, 474. [Google Scholar] [CrossRef] [Green Version]
- Moan, E.R.; Horne, R.A.; Arpornthip, T.; Luo, Z.; Fallon, A.J.; Berl, S.J.; Sackett, C.A. Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide. Phys. Rev. Lett. 2020, 124, 120403. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xiong, Z.; Yang, W.; Tang, B.; Peng, W.; Hao, K.; Li, R.; Liu, M.; Wang, J.L.; Zhan, M. Development of an atom gravimeter and status of the 10-m atom interferometer for precision gravity measurement. Gen. Relativ. Gravit. 2011, 43, 1931–1942. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Graham, P.W.; Hogan, J.M.; Kasevich, M.A.; Rajendran, S. Atomic gravitational wave interferometric sensor. Phys. Rev. D 2008, 78, 122002. [Google Scholar] [CrossRef] [Green Version]
- Hogan, J.M.; Kasevich, M.A. Atom-interferometric gravitational-wave detection using heterodyne laser links. Phys. Rev. A 2016, 94, 033632. [Google Scholar] [CrossRef] [Green Version]
- Hogan, J.M.; Johnson, D.M.S.; Dickerson, S.; Kovachy, T.; Sugarbaker, A.; Chiow, S.W.; Graham, P.W.; Kasevich, M.A.; Saif, B.; Rajendran, S.; et al. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 2011, 43, 1953–2009. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P.; Aoudia, S.; Babak, S.; Binétruy, P.; Berti, E.; Bohé, A.; Caprini, C.; Colpi, M.; Cornish, N.J.; Danzmann, K.; et al. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 2012, 29, 124016. [Google Scholar] [CrossRef]
- Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys. Rev. D 2016, 93, 021101. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Müller, H.; Khoury, J. Atom-interferometry constraints on dark energy. Science 2015, 349, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, M.; Haslinger, P.; Xu, V.; Hamilton, P.; Upadhye, A.; Elder, B.; Khoury, J.; Müller, H. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 2017, 13, 938–942. [Google Scholar] [CrossRef]
- Strigari, L.E. Galactic searches for dark matter. Phys. Rep. 2013, 531, 1–88. [Google Scholar] [CrossRef] [Green Version]
- Arvanitaki, A.; Graham, P.W.; Hogan, J.M.; Rajendran, S.; Van Tilburg, K. Search for light scalar dark matter with atomic gravitational wave detectors. Phys. Rev. D 2018, 97, 075020. [Google Scholar] [CrossRef] [Green Version]
- Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons. Phys. Rev. Lett. 2016, 117, 061301. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, C.; Asenbaum, P.; Kovachy, T.; Notermans, R.; Hogan, J.M.; Kasevich, M.A. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle. Phys. Rev. Lett. 2018, 120, 183604. [Google Scholar] [CrossRef] [Green Version]
- Elder, B.; Khoury, J.; Haslinger, P.; Jaffe, M.; Müller, H.; Hamilton, P. Chameleon dark energy and atom interferometry. Phys. Rev. D 2016, 94, 044051. [Google Scholar] [CrossRef] [Green Version]
- Niebauer, T.M.; McHugh, M.P.; Faller, J.E. Galilean test for the fifth force. Phys. Rev. Lett. 1987, 59, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Touboul, P.; Métris, G.; Rodrigues, M.; André, Y.; Baghi, Q.; Bergé, J.; Boulanger, D.; Bremer, S.; Carle, P.; Chhun, R.; et al. MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle. Phys. Rev. Lett. 2017, 119, 231101. [Google Scholar] [CrossRef] [Green Version]
- Fray, S.; Diez, C.A.; Hänsch, T.W.; Weitz, M. Atomic Interferometer with Amplitude Gratings of Light and Its Applications to Atom Based Tests of the Equivalence Principle. Phys. Rev. Lett. 2004, 93, 240404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarallo, M.G.; Mazzoni, T.; Poli, N.; Sutyrin, D.V.; Zhang, X.; Tino, G.M. Test of Einstein Equivalence Principle for 0-Spin and Half-Integer-Spin Atoms: Search for Spin-Gravity Coupling Effects. Phys. Rev. Lett. 2014, 113, 023005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlippert, D.; Hartwig, J.; Albers, H.; Richardson, L.L.; Schubert, C.; Roura, A.; Schleich, W.P.; Ertmer, W.; Rasel, E.M. Quantum Test of the Universality of Free Fall. Phys. Rev. Lett. 2014, 112, 203002. [Google Scholar] [CrossRef] [Green Version]
- Rosi, G.; D’Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G.M. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 2017, 8, 15529. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.; Trupke, M. Proposal for a Quantum Test of the Weak Equivalence Principle with Entangled Atomic Species. Phys. Rev. Lett. 2018, 120, 043602. [Google Scholar] [CrossRef] [Green Version]
- Andrews, M.R.; Townsend, C.G.; Miesner, H.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Observation of Interference between Two Bose Condensates. Science 1997, 275, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Simsarian, J.E.; Denschlag, J.; Edwards, M.; Clark, C.W.; Deng, L.; Hagley, E.W.; Helmerson, K.; Rolston, S.L.; Phillips, W.D. Imaging the Phase of an Evolving Bose–Einstein Condensate Wave Function. Phys. Rev. Lett. 2000, 85, 2040–2043. [Google Scholar] [CrossRef] [Green Version]
- Hagley, E.W.; Deng, L.; Kozuma, M.; Trippenbach, M.; Band, Y.B.; Edwards, M.; Doery, M.; Julienne, P.S.; Helmerson, K.; Rolston, S.L.; et al. Measurement of the Coherence of a Bose–Einstein Condensate. Phys. Rev. Lett. 1999, 83, 3112–3115. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Dieckmann, K.; Hadzibabic, Z.; Pritchard, D.E. Contrast Interferometry using Bose–Einstein Condensates to Measure h/m and α. Phys. Rev. Lett. 2002, 89, 140401. [Google Scholar] [CrossRef] [Green Version]
- Debs, J.E.; Altin, P.A.; Barter, T.H.; Döring, D.; Dennis, G.R.; McDonald, G.; Anderson, R.P.; Close, J.D.; Robins, N.P. Cold-atom gravimetry with a Bose–Einstein condensate. Phys. Rev. A 2011, 84, 033610. [Google Scholar] [CrossRef] [Green Version]
- Abend, S.; Gebbe, M.; Gersemann, M.; Ahlers, H.; Müntinga, H.; Giese, E.; Gaaloul, N.; Schubert, C.; Lämmerzahl, C.; Ertmer, W.; et al. Atom-Chip Fountain Gravimeter. Phys. Rev. Lett. 2016, 117, 203003. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.A.; Glidden, J.A.P.; Humbert, L.; Bromley, M.W.J.; Haine, S.A.; Davis, M.J.; Neely, T.W.; Baker, M.A.; Rubinsztein-Dunlop, H. Bose–Einstein condensation in large time-averaged optical ring potentials. New J. Phys. 2016, 18, 035003. [Google Scholar] [CrossRef]
- Pandey, S.; Mas, H.; Drougakis, G.; Thekkeppatt, P.; Bolpasi, V.; Vasilakis, G.; Poulios, K.; von Klitzing, W. Hypersonic Bose–Einstein condensates in accelerator rings. Nature 2019, 570, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Turpin, A.; Polo, J.; Loiko, Y.V.; Küber, J.; Schmaltz, F.; Kalkandjiev, T.K.; Ahufinger, V.; Birkl, G.; Mompart, J. Blue-detuned optical ring trap for Bose–Einstein condensates based on conical refraction. Opt. Express 2015, 23, 1638–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Goër de Herve, M.; Guo, Y.; Rossi, C.D.; Kumar, A.; Badr, T.; Dubessy, R.; Longchambon, L.; Perrin, H. A versatile ring trap for quantum gases. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 125302. [Google Scholar] [CrossRef]
- Ryu, C.; Boshier, M.G. Integrated coherent matter wave circuits. New J. Phys. 2016, 17, 092002. [Google Scholar] [CrossRef]
- Becker, D.; Lachmann, M.D.; Seidel, S.T.; Ahlers, H.; Dinkelaker, A.N.; Grosse, J.; Hellmig, O.; Müntinga, H.; Schkolnik, V.; Wendrich, T.; et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 2018, 562, 391–395. [Google Scholar] [CrossRef]
- Frye, K.; Abend, S.; Bartosch, W.; Bawamia, A.; Becker, D.; Blume, H.; Braxmaier, C.; Chiow, S.W.; Efremov, M.A.; Ertmer, W.; et al. The Bose–Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol. 2021, 8, 1. [Google Scholar] [CrossRef]
- Aveline, D.C.; Williams, J.R.; Elliott, E.R.; Dutenhoffer, C.; Kellogg, J.R.; Kohel, J.M.; Lay, N.E.; Oudrhiri, K.; Shotwell, R.F.; Yu, N.; et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 2020, 582, 193–197, https://doi.org/10.1038/s41586-020-2346-1; Erratum in Nature2020, 584, E1. [Google Scholar] [CrossRef]
- Elliott, E.R.; Krutzik, M.C.; Williams, J.R.; Thompson, R.J.; Aveline, D.C. NASA’s Cold Atom Lab (CAL): System development and ground test status. NPJ Microgravity 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Jamison, A.O.; Kutz, J.N.; Gupta, S. Atomic interactions in precision interferometry using Bose–Einstein condensates. Phys. Rev. A 2011, 84, 043643. [Google Scholar] [CrossRef] [Green Version]
- Grond, J.; Hohenester, U.; Mazets, I.; Schmiedmayer, J. Atom interferometry with trapped Bose–Einstein condensates: Impact of atom–atom interactions. New J. Phys. 2010, 12, 065036. [Google Scholar] [CrossRef]
- Benton, B.; Krygier, M.; Heward, J.; Edwards, M.; Clark, C.W. Prototyping method for Bragg-type atom interferometers. Phys. Rev. A 2011, 84, 043648. [Google Scholar] [CrossRef] [Green Version]
- Olshanii, M.; Dunjko, V. Interferometry in dense nonlinear media and interaction-induced loss of contrast in microfabricated atom interferometers. arXiv 2005, arXiv:cond-mat/0505358. [Google Scholar]
- Stickney, J.A.; Kafle, R.P.; Anderson, D.Z.; Zozulya, A.A. Theoretical analysis of a single- and double-reflection atom interferometer in a weakly confining magnetic trap. Phys. Rev. A 2008, 77, 043604. [Google Scholar] [CrossRef] [Green Version]
- Impens, F. Hidden symmetry and nonlinear paraxial atom optics. Phys. Rev. A 2009, 80, 063617. [Google Scholar] [CrossRef] [Green Version]
- Pitaevskii, L.; Stringari, S. Bose–Einstein Condensation; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Antoine, X.; Bao, W.; Besse, C. Computational methods for the dynamics of the nonlinear Schroedinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 2013, 184, 2621–2633. [Google Scholar] [CrossRef] [Green Version]
- Ashwood, E.; Wells, E.W.; Kurkcuoglu, D.M.; Sapp, R.C.; Clark, C.W.; Edwards, M. Tools for designing atom interferometers in a microgravity environment. Phys. Rev. A 2019, 99, 043615. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Low Energy Excitations of a Bose–Einstein Condensate: A Time-Dependent Variational Analysis. Phys. Rev. Lett. 1996, 77, 5320–5323. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Dynamics of Bose–Einstein condensates: Variational solutions of the Gross–Pitaevskii equations. Phys. Rev. A 1997, 56, 1424–1432. [Google Scholar] [CrossRef]
- Carretero-González, R.; Anderson, B.P.; Kevrekidis, P.G.; Frantzeskakis, D.J.; Weiler, C.N. Dynamics of vortex formation in merging Bose–Einstein condensate fragments. Phys. Rev. A 2008, 77, 033625. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Xiong, B.; Benedict, K.A. Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A 2013, 87, 023603. [Google Scholar] [CrossRef] [Green Version]
- Xiong, B.; Yang, T.; Benedict, K.A. Distortion of interference fringes and the resulting vortex production of merging Bose–Einstein condensates. Phys. Rev. A 2013, 88, 043602. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, K.; Mukherjee, K.; Mistakidis, S.; Kevrekidis, P.G.; Schmelcher, P. Quench induced vortex-bright-soliton formation in binary Bose–Einstein condensates. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 055302. [Google Scholar] [CrossRef] [Green Version]
- Moan, E.; Berl, S.; Luo, Z.; Sackett, C.A. Controlling the anharmonicity of a time-orbiting potential trap. In Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II; Shahriar, S.M., Scheuer, J., Eds.; International Society for Optics and Photonics, SPIE: Stockholm, Sweden, 2020; Volume 11296, pp. 238–245. [Google Scholar] [CrossRef]
a | a | b (s2) | b (s2) | c (s) | c (s) | |
---|---|---|---|---|---|---|
(Formula) | (Fit) | (Formula) | (Fit) | (Formula) | (Fit) | |
10,000 | 0.500 | 0.500 | 2962.6 | 2962.8 | 691.6 | 691.6 |
100,000 | 0.500 | 0.500 | 6733.3 | 6733.6 | 691.6 | 691.6 |
200,000 | 0.500 | 0.500 | 8787.9 | 8788.3 | 691.6 | 691.6 |
500,000 | 0.500 | 0.500 | 12,577.9 | 12,578.5 | 691.6 | 691.6 |
1,000,000 | 0.500 | 0.500 | 16,543.9 | 16,544.6 | 691.6 | 691.6 |
2,000,000 | 0.500 | 0.500 | 21,789.6 | 21,790.4 | 691.6 | 691.6 |
10,000 | 0.459 | 0.459 | 3027.2 | 2952.1 | 702.9 | 704.5 |
100,000 | 0.450 | 0.450 | 6984.8 | 6913.5 | 702.9 | 704.5 |
200,000 | 0.441 | 0.441 | 9137.4 | 9072.4 | 702.9 | 704.6 |
500,000 | 0.422 | 0.422 | 13,101.1 | 13,039.0 | 702.9 | 704.6 |
1,000,000 | 0.402 | 0.402 | 17,244.1 | 17,179.3 | 702.9 | 704.7 |
2,000,000 | 0.376 | 0.376 | 22,720.7 | 22,648.1 | 703.0 | 704.7 |
a | a | b (s2) | b (s2) | c (s) | c (s) | |
---|---|---|---|---|---|---|
(Formula) | (Fit) | (Formula) | (Fit) | (Formula) | (Fit) | |
10,000 | 0.500 | 0.500 | 3475.6 | 3485.2 | 691.7 | 691.7 |
100,000 | 0.500 | 0.500 | 8499.3 | 8672.5 | 691.8 | 691.9 |
200,000 | 0.500 | 0.500 | 11,161.0 | 11,439.9 | 691.9 | 691.9 |
500,000 | 0.500 | 0.500 | 16,015.4 | 16,517.2 | 692.1 | 692.1 |
1,000,000 | 0.500 | 0.500 | 21,051.2 | 21,821.9 | 692.2 | 692.3 |
2,000,000 | 0.500 | 0.500 | 27,667.0 | 28,842.8 | 692.2 | 692.5 |
10,000 | 0.447 | 0.447 | 3553.9 | 3479.9 | 703.0 | 703.5 |
100,000 | 0.407 | 0.407 | 8718.4 | 8764.5 | 703.2 | 702.6 |
200,000 | 0.385 | 0.385 | 11,454.4 | 11,584.0 | 703.3 | 702.6 |
500,000 | 0.347 | 0.347 | 16,443.3 | 16,751.0 | 703.5 | 702.7 |
1,000,000 | 0.310 | 0.310 | 21,618.4 | 22,145.7 | 703.6 | 702.8 |
2,000,000 | 0.268 | 0.268 | 28,417.3 | 29,283.9 | 703.9 | 702.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, S.; Sapp, C.; Henry, C.; Smith, A.; Sackett, C.A.; Clark, C.W.; Edwards, M. Modeling Atom Interferometry Experiments with Bose–Einstein Condensates in Power-Law Potentials. Atoms 2022, 10, 34. https://doi.org/10.3390/atoms10010034
Thomas S, Sapp C, Henry C, Smith A, Sackett CA, Clark CW, Edwards M. Modeling Atom Interferometry Experiments with Bose–Einstein Condensates in Power-Law Potentials. Atoms. 2022; 10(1):34. https://doi.org/10.3390/atoms10010034
Chicago/Turabian StyleThomas, Stephen, Colson Sapp, Charles Henry, Andrew Smith, Charles A. Sackett, Charles W. Clark, and Mark Edwards. 2022. "Modeling Atom Interferometry Experiments with Bose–Einstein Condensates in Power-Law Potentials" Atoms 10, no. 1: 34. https://doi.org/10.3390/atoms10010034
APA StyleThomas, S., Sapp, C., Henry, C., Smith, A., Sackett, C. A., Clark, C. W., & Edwards, M. (2022). Modeling Atom Interferometry Experiments with Bose–Einstein Condensates in Power-Law Potentials. Atoms, 10(1), 34. https://doi.org/10.3390/atoms10010034