Plane Symmetric Cosmological Model with Strange Quark Matter in f(R,T) Gravity
Abstract
:1. Introduction
2. The Formalism of Gravity Theory
3. The Model and Field Equations
4. Model I: Expansion Scalar Proportional to the Shear Scalar
The Behavior of Strange Quark Matter
5. Model II: Special Law of Hubble Parameter
- Case (i)
- Case (ii)
The Effective Matter
6. Model III: Hybrid Scale Factor
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
SQM | Strange quark matter |
SQ | quark matter |
DE | Dark energy |
CC | Cosmological constant |
GR | General relativity |
B-I | Bianchi type-I |
QGP | Quark gluon plasma |
QCD | Quantum chromodynamics |
DM | Dark matter |
DP | Deceleration parameter |
CDM | Lambda cold dark matter model |
EMT | Energy-momentum tensor |
GR | General relativity |
WEC | Weak energy condition |
TVDP | Time-varying deceleration parameter |
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut, B.R.U.N.O.; Spyromilio, J.; et al. The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 1998, 507, 46–63. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Peebles, J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef]
- Martin, J. Quintessence: A mini-review. Mod. Phys. Lett. A 2008, 23, 1252–1265. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy: Dark energy with ω < −1 causes a cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar]
- Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J. 2003, 594, 1. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–114. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Yilmaz, I.; Aktas, C. Space-time geometry of quark and strange quark matter. Chin. J. Astron. Astrophys. 2007, 7, 757. [Google Scholar] [CrossRef]
- Tretyakov, P.V. Cosmology in modified f(R,T)-gravity. Eur. Phys. J. C 2018, 78, 896. [Google Scholar] [CrossRef]
- Alhamzawi, A.; Alhamzawi, R. Gravitational lensing by f(R,T) gravity. Int. J. Mod. Phys. D 2016, 35, 1650020. [Google Scholar] [CrossRef]
- Ordines, T.M.; Carlson, E.D. Limits on f(R,T) gravity from Earth’s atmosphere. Phys. Rev. D 2019, 99, 104052. [Google Scholar] [CrossRef]
- Rudra, P.; Giri, K. Observational constraints in f(R,T) gravity from the cosmic chronometers and some standard distance measurement parameters. Nucl. Phys. B 2021, 967, 115428. [Google Scholar] [CrossRef]
- Sardar, G.; Bose, A.; Chakraborty, S. Observational constraints on f(R,T) gravity with f(R,T) = R + h(T). Eur. Phys. J. C 2023, 83, 41. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. The f(R,Tϕ) gravity models with conservation of energy-momentum tensor. Eur. Phys. J. C 2018, 78, 564. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weil, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. Astrophys. J. Supp. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. LRS Bianchi I model with constant expansion rate in f(R,T) gravity. Astrophys. Space Sci. 2020, 365, 125. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. Plane symmetric model in f(R,T) gravity. Eur. Phys. J. Plus 2020, 135, 319. [Google Scholar] [CrossRef]
- Itoh, N. Hydrostatic equilibrium of hypothetical quark stars. Prog. Theor. Phys. 1970, 44, 291–292. [Google Scholar] [CrossRef]
- Bodmer, A.R. Collapsed nuclei. Phys. Rev. D 1971, 4, 1601–1606. [Google Scholar] [CrossRef]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379. [Google Scholar] [CrossRef]
- Alcock, C.; Farhi, E.; Olinto, A. Strange stars. Astrophys. J. 1986, 310, 261–272. [Google Scholar] [CrossRef]
- Haensel, P.; Zdunik, J.L.; Schaefer, R. Strange quark stars. Astron Astrophys. 1986, 160, 121–128. [Google Scholar]
- Madsen, J. Physics and astrophysics of strange quark matter. In Hadrons in Dense Matter and Hadrosynthesis; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 516, pp. 162–203. [Google Scholar]
- Mak, M.K.; Harko, T. Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 2004, 13, 149–156. [Google Scholar] [CrossRef]
- Drake, J.J.; Marshall, H.L.; Dreizler, S.; Freeman, P.E.; Fruscione, A.; Juda, M.; Kashyap, V.; Nicastro, F.; Pease, D.O.; Wargelin, B.J.; et al. Is RX J185635-375 a quark star? Astrophys. J. 2002, 572, 996–1001. [Google Scholar] [CrossRef]
- Weber, F. Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef]
- Yilmaz, İ.; Baysal, H. Rigidly rotating strange quark stars. Int. J. Mod. Phys. D 2005, 14, 697–705. [Google Scholar] [CrossRef]
- Berger, M.S.; Jaffe, R.L. Quark exchange in nuclei and the european muon collaboration effect. Phys. Rev. C 1987, 35, 113. [Google Scholar]
- Peng, G.X.; Li, A.; Lombardo, U. Deconfinement phase transition in hybrid neutron stars from the Brueckner theory with three-body forces and a quark model with chiral mass scaling. Phys. Rev. C 2008, 62, 025801. [Google Scholar] [CrossRef]
- Alford, M.K.; Reddy, S. Compact stars with color superconducting quark matter. Phys. Rev. D 2003, 67, 7. [Google Scholar] [CrossRef]
- Weissenborn, S.; Sagert, I.; Pagliara, G.; Hempel, M.; Schaffner-Bielich, J. Quark matter in massive compact stars. Astrophys. J. Lett. 2011, 740, L14. [Google Scholar] [CrossRef]
- Sinha, B. The microsecond old universe relics of QCD phase transition. Int. J. Mod. Phys. A 2014, 29, 23. [Google Scholar] [CrossRef]
- Xia, C.J.; Peng, G.X.; Zhao, E.G.; Zhou, S.G. Properties of strange quark matter objects with two types of surface treatments. Phys. Rev. D 2016, 93, 085025. [Google Scholar] [CrossRef]
- Geng, J.J.; Huang, Y.F.; Lu, T. Coalescence of strange-quark planets with strange stars: A new Kind of source for gravitational wave bursts. Astrophys. J. 2015, 804, 21. [Google Scholar] [CrossRef]
- Fraga, E.S.; Kurkela, A.; Vuorinen, A. Interacting quark matter equation of state for compact stars. Astrophys. J. Lett. 2014, 781, L25. [Google Scholar] [CrossRef]
- Yilmaz, İ. Domain wall solutions in the nonstatic and stationary Godel universes with a cosmological constant. Phys. Rev. D 2005, 71, 103503. [Google Scholar] [CrossRef]
- Boeckel, T.; Schaffner-Bielich, J.A. Little inflation in the early universe at the QCD phase transition. Phys. Rev. Lett. 2010, 105, 041301. [Google Scholar] [CrossRef] [PubMed]
- Aktas, C.; Yilmaz, I. Is the universe homogeneous and isotropic in the time when quark-gluon plasma exists? Gen. Relativ. Gravit. 2011, 43, 1577–1591. [Google Scholar] [CrossRef]
- Rahaman, F.; Kuhfittig, P.K.F.; Amin, R.; Mandal, G.; Ray, S.; Islam, N. Quark matter as dark matter in modeling galactic halo. Phys. Lett. B 2012, 714, 131–135. [Google Scholar] [CrossRef]
- Gholizade, H.; ltaibayeva, A. Thermodynamics and geometry of strange quark matter. Int. J. Theor. Phys. 2015, 54, 2107–2118. [Google Scholar] [CrossRef]
- Yilmaz, İ. String cloud and domain walls with quark matter in 5-D Kaluza-Klein cosmological model. Gen. Rev. Gravit. 2006, 38, 1397–1406. [Google Scholar] [CrossRef]
- Adhav, K.S.; Nimkar, A.S.; Dawande, M.V. String cloud and domain walls with quark matter in n-Dimensional Kaluza-Klein cosmological model. Int. J. Theor. Phys. 2008, 47, 2002–2010. [Google Scholar] [CrossRef]
- Khadekar, G.S.; Rupali, W. Geometry of quark and strange quark matter in higher dimensional general relativity. Int. J. Theor. Phys. 2012, 51, 1408–1415. [Google Scholar] [CrossRef]
- Khadekar, G.S.; Shelote, R. Higher dimensional cosmological model with quark and strange quark matter. Int. J. Theor. Phys. 2012, 51, 1442–1447. [Google Scholar] [CrossRef]
- Mahanta, K.L.; Biswal, S.K.; Sahoo, P.K.; Adhikary, M.C. String cloud with quark matter in self-creation cosmology. Int. J. Theor. Phys. 2012, 51, 1538–1544. [Google Scholar] [CrossRef]
- Rao, V.U.M.; Neelima, D. Axially symmetric space-time with strange Quark matter attached to string cloud in self creation theory and general relativity. Int. J. Theor. Phys. 2013, 52, 354–361. [Google Scholar] [CrossRef]
- Rao, V.U.M.; Neelima, D. Cosmological models with strange quark matter attached to string cloud in GR and Brans-Dicke theory of gravitation. Eur. Phys. J. Plus 2014, 129, 122. [Google Scholar] [CrossRef]
- Yavuz, I.; Yilmaz, I.; Baysal, H. Strange quark matter attached to the string cloud in the spherical symmetric space-time admitting conformal motion. Int. J. Mod. Phys. D 2005, 14, 1365–1372. [Google Scholar] [CrossRef]
- Aktas, C.; Yilmaz, İ. Magnetized quark and strange quark matter in the spherical symmetric space-time admitting conformal motion. Gen. Relativ. Gravit. 2007, 39, 849–862. [Google Scholar] [CrossRef]
- Yılmaz, I.; Baysal, H.; Aktaş, C. Quark and strange quark matter in f(R) gravity for Bianchi type I and V space-times. Gen. Relativ. Gravit. 2012, 44, 2313–2328. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. LRS Bianchi I model with strange quark matter and Λ(t) in f(R,T) gravity. New Astron. 2021, 89, 101634. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Pawar, D.D. Plane symmetric cosmological model with quark and strange quark matter in f(R,T) theory of gravity. J. Astrophys. Astron. 2017, 38, 2. [Google Scholar] [CrossRef]
- Singh, V.; Singh, C.P. Modified f(R,T) gravity theory and scalar field cosmology. Astrophys. Space Sci. 2015, 356, 153. [Google Scholar] [CrossRef]
- Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Experimental and theoretical challenges in the search for the Quark Gluon Plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- DeTar, C.E.; Donoghue, J.F. Bag models of hadrons. Ann. Rev. Nucl. Part. Sci. 1983, 33, 235–264. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S. The trace of the energy-momentum tensor-dependent Einsteins field equations. Eur. Phys. J. C 2019, 79, 674. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. The simplest non-minimal matter-geometry coupling in the f(R,T) cosmology. Eur. Phys. J. C 2017, 77, 480. [Google Scholar] [CrossRef]
- Shamir, M.F. Locally-rotationally-symmetric Bianchi type I cosmology in f(R,T) Gravity. Eur. Phys. J. C 2015, 75, 354. [Google Scholar] [CrossRef]
- Jokweni, S.; Singh, V.; Beesham, A. LRS Bianchi I model with bulk viscosity in gravity. Gravit. Cosmol. 2021, 27, 169–177. [Google Scholar] [CrossRef]
- Nagpal, R.; Singh, J.K.; Aygun, S. FLRW cosmological models with quark and strange quark matters in f(R,T)f(R,T) gravity. Astrophys. Space Sci. 2018, 363, 114. [Google Scholar] [CrossRef]
- Singh, C.P.; Kumar, S. Bianchi type-II cosmological models with constant deceleration parameter. Gen. Relativ. Gravit. 2006, 15, 419. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. LRS Bianchi I model with constant deceleration parameter. Gen. Relativ. Gravit. 2019, 51, 166. [Google Scholar] [CrossRef]
- Zhuravlev, V.M.; Chervon, S.V.; Shchigolev, V.K. New classes of exact solutions in inflationary cosmology. J. Exp. Theor. Phys. 1998, 87, 223–228. [Google Scholar] [CrossRef]
- Fomin, I.; Chervon, S.V. Exact and slow-roll solutions for exponential power-law inflation connected with modified gravity and observational constraints. Universe 2020, 6, 199. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Myrzakulov, R.; Sami, M.; Xu, L. Cosmology with hybrid expansion law: Scalar field reconstruction of cosmic history and observational constraints. J. Cosmol. Astropart. Phys. 2014, 2014, 022. [Google Scholar] [CrossRef]
- Kumar, S. Anisotropic Model of a Dark Energy Dominated Universe with Hybrid Expansion Law. Gravit. Cosmol. 2013, 19, 284. [Google Scholar] [CrossRef]
- Mishra, B.; Ray, P.P.; Pacif, S.K.J. Dark energy cosmological models with general forms of scale factor. Eur. Phys. J. Plus 2017, 132, 429. [Google Scholar] [CrossRef]
- Mishra, B.; Tripathy, S.K.; Tarai, S. Cosmological models with a hybrid scale factor in an extended gravity theory. Mod. Phys. Lett. A 2018, 33, 1850052. [Google Scholar] [CrossRef]
- Yadav, A.K.; Sahoo, P.K.; Bhardwaj, V. Bulk viscous Bianchi-I embedded cosmological model in f(R,T) = f1(R) + f2(R)f3(T) gravity. Mod. Phys. Lett. A 2019, 34, 1950145. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Mishra, B.; Kopov, M.; Ray, S. Cosmological models with a Hybrid Scale Factor. Int. J. Mod. Phys. D 2021, 30, 2140005. [Google Scholar] [CrossRef]
- Mishra, B.; Tripathy, S.K.; Tarai, S. Accelerating models with a hybrid scale factor in extended gravity. J. Astrophys. Astron. 2018, 42, 2. [Google Scholar] [CrossRef]
- Bishi, B.K.; Beesham, A.; Mahanta, K.L. Domain Walls and Quark Matter Cosmological Models in f(R,T) = R + νR2 + λT Gravity. J. Sci. Technol. Trans. A Sci. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Vijaya, S.M.; Chinnappalanaidu, T. Bianchi type strange quark cosmological models in a modified theory of gravity. Afr. Mat. 2022, 33, 98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Jokweni, S.; Beesham, A. Plane Symmetric Cosmological Model with Strange Quark Matter in f(R,T) Gravity. Universe 2023, 9, 408. https://doi.org/10.3390/universe9090408
Singh V, Jokweni S, Beesham A. Plane Symmetric Cosmological Model with Strange Quark Matter in f(R,T) Gravity. Universe. 2023; 9(9):408. https://doi.org/10.3390/universe9090408
Chicago/Turabian StyleSingh, Vijay, Siwaphiwe Jokweni, and Aroonkumar Beesham. 2023. "Plane Symmetric Cosmological Model with Strange Quark Matter in f(R,T) Gravity" Universe 9, no. 9: 408. https://doi.org/10.3390/universe9090408
APA StyleSingh, V., Jokweni, S., & Beesham, A. (2023). Plane Symmetric Cosmological Model with Strange Quark Matter in f(R,T) Gravity. Universe, 9(9), 408. https://doi.org/10.3390/universe9090408