Centrality-Dependent Lévy HBT Analysis in TeV PbPb Collisions at CMS
Abstract
1. Introduction
2. Femtoscopy with Lévy Sources
3. Measurement Details
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QGP | quark–gluon plasma |
LHC | Large Hadron Collider |
HBT | Hanbury Brown and Twiss |
PbPb | lead–lead |
CMS | Compact Muon Solenoid |
AuAu | gold–gold |
Appendix A. Results for Negatively Charged Pairs
References
- Lednicky, R. Femtoscopy with unlike particles. In Proceedings of the International Workshop on the Physics of the Quark Gluon Plasma, Palaiseau, France, 4–7 September 2001. [Google Scholar]
- Hanbury Brown, R.; Twiss, R.Q. A Test of a new type of stellar interferometer on Sirius. Nature 1956, 178, 1046–1048. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon correlations. Phys. Rev. Lett. 1963, 10, 84. [Google Scholar] [CrossRef]
- Csörgo, T. Particle interferometry from 40 MeV to 40 TeV. Acta Phys. Hung. A 2002, 15, 1–80. [Google Scholar] [CrossRef]
- Wiedemann, U.A.; Heinz, U.W. Particle interferometry for relativistic heavy ion collisions. Phys. Rep. 1999, 319, 145–230. [Google Scholar] [CrossRef]
- PHENIX Collaboration. Bose-Einstein correlations of charged pion pairs in Au+Au collisions at GeV. Phys. Rev. Lett. 2004, 93, 152302. [Google Scholar] [CrossRef]
- Csörgo, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. C 1996, 54, 1390. [Google Scholar] [CrossRef]
- Csanád, M.; Csörgo, T.; Lörstad, B.; Ster, A. Indication of quark deconfinement and evidence for a Hubble flow in 130 GeV and 200 GeV Au+Au collisions. J. Phys. G 2004, 30, S1079. [Google Scholar] [CrossRef]
- Pratt, S. Resolving the HBT Puzzle in Relativistic Heavy Ion Collision. Phys. Rev. Lett. 2009, 102, 232301. [Google Scholar] [CrossRef]
- Lacey, R.A. Indications for a Critical End Point in the Phase Diagram for Hot and Dense Nuclear Matter. Phys. Rev. Lett. 2015, 114, 142301. [Google Scholar] [CrossRef]
- PHENIX Collaboration. Lévy-stable two-pion Bose–Einstein correlations in GeV Au+Au collisions. Phys. Rev. C 2018, 97, 064911. [Google Scholar] [CrossRef]
- NA61/SHINE Collaboration. Measurements of two-pion HBT correlations in Be+Be collisions at 150A GeV/c beam momentum, at the NA61/SHINE experiment at CERN. arXiv 2023, arXiv:2302.04593. [Google Scholar]
- STAR Collaboration. Pion interferometry in Au+Au collisions at GeV. Phys. Rev. C 2005, 71, 044906. [Google Scholar] [CrossRef]
- ALICE Collaboration. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at TeV. Phys. Rev. C 2015, 92, 054908. [Google Scholar] [CrossRef]
- CMS Collaboration. Bose-Einstein correlations in pp, pPb, and PbPb collisions at 0.9 − 7 TeV. Phys. Rev. C 2018, 97, 064912. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Femtoscopy with identified charged pions in proton-lead collisions at TeV with ATLAS. Phys. Rev. C 2017, 96, 064908. [Google Scholar] [CrossRef]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability: Stable Distributions and Their Applications; De Gruyter: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach. Phys. Rev. Lett. 1999, 82, 3563. [Google Scholar] [CrossRef]
- Csörgo, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Lévy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Csanád, M.; Csörgo, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys. 2007, 37, 1002–1013. [Google Scholar] [CrossRef]
- Kincses, D.; Stefaniak, M.; Csanád, M. Event-by-event investigation of the two-particle source function in heavy-ion collisions with EPOS. Entropy 2022, 24, 308. [Google Scholar] [CrossRef]
- Kórodi, B.; Kincses, D.; Csanád, M. Event-by-event investigation of the two-particle source function in TeV PbPb collisions with EPOS. arXiv 2022, arXiv:2212.02980. [Google Scholar]
- Csörgo, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlations and the anomalous dimension of QCD. Acta Phys. Pol. B 2005, 36, 329–337. [Google Scholar] [CrossRef]
- Csörgo, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc. 2006, 828, 525–532. [Google Scholar] [CrossRef]
- Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations. Phys. Rev. D 1993, 47, 3860. [Google Scholar] [CrossRef] [PubMed]
- Csörgo, T.; Lörstad, B.; Zimányi, J. Bose-Einstein correlations for systems with large halo. Z. Phys. C 1996, 71, 491–497. [Google Scholar] [CrossRef]
- Kurgyis, B.; Kincses, D.; Csanád, M. Coulomb interaction for Lévy sources. arXiv 2020, arXiv:2007.10173. [Google Scholar]
- Kincses, D.; Nagy, M.; Csanád, M. Coulomb and strong interactions in the final state of Hanbury-Brown–Twiss correlations for Lévy-type source functions. Phys. Rev. B 2020, 102, 064912. [Google Scholar] [CrossRef]
- Csanád, M.; Lökös, S.; Nagy, M. Coulomb final state interaction in heavy ion collisions for Lévy sources. Universe 2019, 5, 133. [Google Scholar] [CrossRef]
- Sinyukov, Y.; Lednicky, R.; Akkelin, S.V.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B 1998, 432, 248–257. [Google Scholar] [CrossRef]
- Csanád, M.; Lökös, S.; Nagy, M. Expanded empirical formula for Coulomb final state interaction in the presence of Lévy sources. Phys. Part. Nucl. 2020, 51, 238. [Google Scholar] [CrossRef]
- CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar] [CrossRef]
- CMS Collaboration. Charged-particle nuclear modification factors in PbPb and pPb collisions at TeV. J. High Energy Phys. 2017, 04, 039. [Google Scholar] [CrossRef]
- ALICE Collaboration. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at TeV. Phys. Rev. C 2020, 101, 044907. [Google Scholar] [CrossRef]
- L3 Collaboration. Test of the τ-Model of Bose-Einstein Correlations and Reconstruction of the Source Function in Hadronic Z-boson Decay at LEP. Eur. Phys. J. C 2011, 71, 1648. [Google Scholar] [CrossRef]
- Vechernin, V.; Andronov, E. Strongly intensive observables in the model with string fusion. Universe 2019, 5, 15. [Google Scholar] [CrossRef]
- CMS Collaboration. Bose-Einstein correlations of charged hadrons in proton-proton collisions at TeV. J. High Energy Phys. 2020, 3, 14. [Google Scholar] [CrossRef]
- CMS Collaboration. and Λ() two-particle femtoscopic correlations in PbPb collisions at TeV. arXiv 2023, arXiv:2301.05290. [Google Scholar]
- James, F.; Roos, M. Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun. 1975, 10, 343–367. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT: An object oriented data analysis framework. Nucl. Instrum. Meth. A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of Two-Particle Bose–Einstein Momentum Correlations and Their Lévy Parameters at TeV PbPb Collisions. CMS Physics Analysis Summary CMS-PAS-HIN-21-011. 2022. Available online: https://cds.cern.ch/record/2806150 (accessed on 20 April 2022).
- Loizides, C.; Kamin, J.; d’Enterria, D. Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 2018, 97, 054910. [Google Scholar] [CrossRef]
- Makhlin, A.N.; Sinyukov, Y.M. Hydrodynamics of Hadron Matter Under Pion Interferometric Microscope. Z. Phys. C 1988, 39, 69–73. [Google Scholar] [CrossRef]
- Chojnacki, M.; Florkowski, W.; Csörgo, T. On the formation of Hubble flow in little bangs. Phys. Rev. C 2005, 71, 044902. [Google Scholar] [CrossRef]
- Steinbrecher, P. The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 2019, 982, 847–850. [Google Scholar] [CrossRef]
- Sputowska, I. Forward-backward correlations and multiplicity fluctuations in Pb–Pb collisions at TeV from ALICE at the LHC. Proceedings 2019, 10, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kórodi, B., on behalf of the CMS Collaboration.
Centrality-Dependent Lévy HBT Analysis in
Kórodi B on behalf of the CMS Collaboration.
Centrality-Dependent Lévy HBT Analysis in
Kórodi, Balázs on behalf of the CMS Collaboration.
2023. "Centrality-Dependent Lévy HBT Analysis in
Kórodi, B., on behalf of the CMS Collaboration.
(2023). Centrality-Dependent Lévy HBT Analysis in