Centrality-Dependent Lévy HBT Analysis in TeV PbPb Collisions at CMS
Abstract
:1. Introduction
2. Femtoscopy with Lévy Sources
3. Measurement Details
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QGP | quark–gluon plasma |
LHC | Large Hadron Collider |
HBT | Hanbury Brown and Twiss |
PbPb | lead–lead |
CMS | Compact Muon Solenoid |
AuAu | gold–gold |
Appendix A. Results for Negatively Charged Pairs
References
- Lednicky, R. Femtoscopy with unlike particles. In Proceedings of the International Workshop on the Physics of the Quark Gluon Plasma, Palaiseau, France, 4–7 September 2001. [Google Scholar]
- Hanbury Brown, R.; Twiss, R.Q. A Test of a new type of stellar interferometer on Sirius. Nature 1956, 178, 1046–1048. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon correlations. Phys. Rev. Lett. 1963, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Csörgo, T. Particle interferometry from 40 MeV to 40 TeV. Acta Phys. Hung. A 2002, 15, 1–80. [Google Scholar] [CrossRef]
- Wiedemann, U.A.; Heinz, U.W. Particle interferometry for relativistic heavy ion collisions. Phys. Rep. 1999, 319, 145–230. [Google Scholar] [CrossRef] [Green Version]
- PHENIX Collaboration. Bose-Einstein correlations of charged pion pairs in Au+Au collisions at GeV. Phys. Rev. Lett. 2004, 93, 152302. [Google Scholar] [CrossRef] [Green Version]
- Csörgo, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. C 1996, 54, 1390. [Google Scholar] [CrossRef]
- Csanád, M.; Csörgo, T.; Lörstad, B.; Ster, A. Indication of quark deconfinement and evidence for a Hubble flow in 130 GeV and 200 GeV Au+Au collisions. J. Phys. G 2004, 30, S1079. [Google Scholar] [CrossRef] [Green Version]
- Pratt, S. Resolving the HBT Puzzle in Relativistic Heavy Ion Collision. Phys. Rev. Lett. 2009, 102, 232301. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.A. Indications for a Critical End Point in the Phase Diagram for Hot and Dense Nuclear Matter. Phys. Rev. Lett. 2015, 114, 142301. [Google Scholar] [CrossRef] [Green Version]
- PHENIX Collaboration. Lévy-stable two-pion Bose–Einstein correlations in GeV Au+Au collisions. Phys. Rev. C 2018, 97, 064911. [Google Scholar] [CrossRef] [Green Version]
- NA61/SHINE Collaboration. Measurements of two-pion HBT correlations in Be+Be collisions at 150A GeV/c beam momentum, at the NA61/SHINE experiment at CERN. arXiv 2023, arXiv:2302.04593. [Google Scholar]
- STAR Collaboration. Pion interferometry in Au+Au collisions at GeV. Phys. Rev. C 2005, 71, 044906. [Google Scholar] [CrossRef] [Green Version]
- ALICE Collaboration. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at TeV. Phys. Rev. C 2015, 92, 054908. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Bose-Einstein correlations in pp, pPb, and PbPb collisions at 0.9 − 7 TeV. Phys. Rev. C 2018, 97, 064912. [Google Scholar] [CrossRef] [Green Version]
- ATLAS Collaboration. Femtoscopy with identified charged pions in proton-lead collisions at TeV with ATLAS. Phys. Rev. C 2017, 96, 064908. [Google Scholar] [CrossRef] [Green Version]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability: Stable Distributions and Their Applications; De Gruyter: Berlin, Germany, 2011. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach. Phys. Rev. Lett. 1999, 82, 3563. [Google Scholar] [CrossRef] [Green Version]
- Csörgo, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Lévy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Csanád, M.; Csörgo, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys. 2007, 37, 1002–1013. [Google Scholar] [CrossRef] [Green Version]
- Kincses, D.; Stefaniak, M.; Csanád, M. Event-by-event investigation of the two-particle source function in heavy-ion collisions with EPOS. Entropy 2022, 24, 308. [Google Scholar] [CrossRef]
- Kórodi, B.; Kincses, D.; Csanád, M. Event-by-event investigation of the two-particle source function in TeV PbPb collisions with EPOS. arXiv 2022, arXiv:2212.02980. [Google Scholar]
- Csörgo, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlations and the anomalous dimension of QCD. Acta Phys. Pol. B 2005, 36, 329–337. [Google Scholar] [CrossRef]
- Csörgo, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc. 2006, 828, 525–532. [Google Scholar] [CrossRef]
- Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations. Phys. Rev. D 1993, 47, 3860. [Google Scholar] [CrossRef] [PubMed]
- Csörgo, T.; Lörstad, B.; Zimányi, J. Bose-Einstein correlations for systems with large halo. Z. Phys. C 1996, 71, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Kurgyis, B.; Kincses, D.; Csanád, M. Coulomb interaction for Lévy sources. arXiv 2020, arXiv:2007.10173. [Google Scholar]
- Kincses, D.; Nagy, M.; Csanád, M. Coulomb and strong interactions in the final state of Hanbury-Brown–Twiss correlations for Lévy-type source functions. Phys. Rev. B 2020, 102, 064912. [Google Scholar] [CrossRef]
- Csanád, M.; Lökös, S.; Nagy, M. Coulomb final state interaction in heavy ion collisions for Lévy sources. Universe 2019, 5, 133. [Google Scholar] [CrossRef] [Green Version]
- Sinyukov, Y.; Lednicky, R.; Akkelin, S.V.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B 1998, 432, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Csanád, M.; Lökös, S.; Nagy, M. Expanded empirical formula for Coulomb final state interaction in the presence of Lévy sources. Phys. Part. Nucl. 2020, 51, 238. [Google Scholar] [CrossRef]
- CMS Collaboration. The CMS experiment at the CERN LHC. J. Instrum. 2008, 3, S08004. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Charged-particle nuclear modification factors in PbPb and pPb collisions at TeV. J. High Energy Phys. 2017, 04, 039. [Google Scholar] [CrossRef] [Green Version]
- ALICE Collaboration. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at TeV. Phys. Rev. C 2020, 101, 044907. [Google Scholar] [CrossRef]
- L3 Collaboration. Test of the τ-Model of Bose-Einstein Correlations and Reconstruction of the Source Function in Hadronic Z-boson Decay at LEP. Eur. Phys. J. C 2011, 71, 1648. [Google Scholar] [CrossRef] [Green Version]
- Vechernin, V.; Andronov, E. Strongly intensive observables in the model with string fusion. Universe 2019, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. Bose-Einstein correlations of charged hadrons in proton-proton collisions at TeV. J. High Energy Phys. 2020, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- CMS Collaboration. and Λ() two-particle femtoscopic correlations in PbPb collisions at TeV. arXiv 2023, arXiv:2301.05290. [Google Scholar]
- James, F.; Roos, M. Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. Comput. Phys. Commun. 1975, 10, 343–367. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT: An object oriented data analysis framework. Nucl. Instrum. Meth. A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- CMS Collaboration. Measurement of Two-Particle Bose–Einstein Momentum Correlations and Their Lévy Parameters at TeV PbPb Collisions. CMS Physics Analysis Summary CMS-PAS-HIN-21-011. 2022. Available online: https://cds.cern.ch/record/2806150 (accessed on 20 April 2022).
- Loizides, C.; Kamin, J.; d’Enterria, D. Improved Monte Carlo Glauber predictions at present and future nuclear colliders. Phys. Rev. C 2018, 97, 054910. [Google Scholar] [CrossRef] [Green Version]
- Makhlin, A.N.; Sinyukov, Y.M. Hydrodynamics of Hadron Matter Under Pion Interferometric Microscope. Z. Phys. C 1988, 39, 69–73. [Google Scholar] [CrossRef]
- Chojnacki, M.; Florkowski, W.; Csörgo, T. On the formation of Hubble flow in little bangs. Phys. Rev. C 2005, 71, 044902. [Google Scholar] [CrossRef] [Green Version]
- Steinbrecher, P. The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 2019, 982, 847–850. [Google Scholar] [CrossRef]
- Sputowska, I. Forward-backward correlations and multiplicity fluctuations in Pb–Pb collisions at TeV from ALICE at the LHC. Proceedings 2019, 10, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kórodi, B., on behalf of the CMS Collaboration.
Centrality-Dependent Lévy HBT Analysis in
Kórodi B on behalf of the CMS Collaboration.
Centrality-Dependent Lévy HBT Analysis in
Kórodi, Balázs on behalf of the CMS Collaboration.
2023. "Centrality-Dependent Lévy HBT Analysis in
Kórodi, B., on behalf of the CMS Collaboration.
(2023). Centrality-Dependent Lévy HBT Analysis in