Chiral Loop Quantum Supergravity and Black Hole Entropy
Abstract
:1. Introduction
2. Chiral Supergravity from a Modified MacDowell–Mansouri Action
3. Quantum Theory of the Bulk
3.1. Super Spin Networks and the Super Area Operator
3.2. Coupling of Boundary and Bulk
4. Entropy Calculation
4.1. Super Characters of and the Verlinde Formula
4.2. The Monochromatic Case
4.3. The Multi-Color Case
4.4. Grand Canonical Ensemble
5. Discussion and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The area with respect to the bosonic component of the super-geometry is not gauge invariant and, therefore, not observable. However, in a gauge in which the superelectric field has vanishing odd components, the super area, and the bosonic area would agree. |
2 | This is actually the case for both, and 2, [19], but here we consider only. |
3 | Here, a capital letter is used to denote the Majorana fermion field (containing both chiralities). The chiral subcomponents are denoted, respectively, by lower case letters and (with the position of the R-symmetry index explicitly indicating the chirality). |
4 | We remind the reader that is the boundary of the spatial slice , i.e., a spatial slice of the boundary H of spacetime manifold M. |
5 | Here we have started summation at , since the approximation (29) is ill-defined for . It is valid only for large n anyway, and the low n contributions do not make a difference in the macroscopic regime, but it is convenient to keep them to obtain closed-form expressions in the following. |
References
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The Four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Behrndt, K.; Cardoso, G.L.; de Wit, B.; Kallosh, R.; Lüst, D.; Mohaupt, T. Classical and quantum N = 2 supersymmetric black holes. Nucl. Phys. B 1997, 488, 236–260. [Google Scholar] [CrossRef]
- Smolin, L. Linking topological quantum field theory and nonperturbative quantum gravity. J. Math. Phys. 1995, 36, 6417–6455. [Google Scholar] [CrossRef]
- Rovelli, C. Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 1996, 77, 3288–3291. [Google Scholar] [CrossRef]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum geometry and black hole entropy. Phys. Rev. Lett. 1998, 80, 904–907. [Google Scholar] [CrossRef]
- Kaul, R.K.; Majumdar, P. Quantum black hole entropy. Phys. Lett. B 1998, 439, 267–270. [Google Scholar] [CrossRef]
- Domagala, M.; Lewandowski, J. Black hole entropy from quantum geometry. Class. Quantum Gravity 2004, 21, 5233–5244. [Google Scholar] [CrossRef]
- Meissner, K.A. Black hole entropy in loop quantum gravity. Class. Quantum Gravity 2004, 21, 5245–5252. [Google Scholar] [CrossRef]
- Engle, J.; Noui, K.; Perez, A. Black hole entropy and SU(2) Chern-Simons theory. Phys. Rev. Lett. 2010, 105, 031302. [Google Scholar] [CrossRef] [PubMed]
- Agullo, I.; Borja, E.F.; Díaz-Polo, J.; Villaseñor, E.J. The Combinatorics of the SU(2) black hole entropy in loop quantum gravity. Phys. Rev. D 2009, 80, 084006. [Google Scholar] [CrossRef]
- Eder, K.; Sahlmann, H. Toward black hole entropy in chiral loop quantum supergravity. Phys. Rev. D 2022, 106, 026001. [Google Scholar] [CrossRef]
- Frodden, E.; Geiller, M.; Noui, K.; Perez, A. Black Hole Entropy from complex Ashtekar variables. Europhys. Lett. 2014, 107, 10005. [Google Scholar] [CrossRef]
- Jibril, B.A.; Mouchet, A.; Noui, K. Analytic Continuation of Black Hole Entropy in Loop Quantum Gravity. J. High Energy Phys. 2015, 2015, 145. [Google Scholar] [CrossRef]
- Han, M. Black Hole Entropy in Loop Quantum Gravity, Analytic Continuation, and Dual Holography. arXiv 2014, arXiv:1402.2084. [Google Scholar]
- Fulop, G. About a superAshtekar-Renteln ansatz. Class. Quantum Gravity 1994, 11, 1. [Google Scholar] [CrossRef]
- Eder, K.K.C. Super Cartan Geometry and Loop Quantum Supergravity; FAU Forschungen, Reihe B, Medizin, Naturwissenschaft, Technik; FAU University Press: Erlangen, Germany, 2022; Volume 40. [Google Scholar] [CrossRef]
- Eder, K. Super Cartan geometry and the super Ashtekar connection. arXiv 2020, arXiv:2010.09630. [Google Scholar]
- Eder, K.; Sahlmann, H. Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries and super Chern-Simons theory. J. High Energy Phys. 2021, 2021, 71. [Google Scholar] [CrossRef]
- Ling, Y.; Smolin, L. Supersymmetric spin networks and quantum supergravity. Phys. Rev. D 2000, 61, 044008. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. Towards Loop Quantum Supergravity (LQSG). Phys. Lett. B 2012, 711, 205–211. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. Towards Loop Quantum Supergravity (LQSG) I. Rarita-Schwinger Sector. Class. Quantum Gravity 2013, 30, 045006. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. Towards Loop Quantum Supergravity (LQSG) II. p-Form Sector. Class. Quantum Gravity 2013, 30, 045007. [Google Scholar] [CrossRef]
- Livine, E.R.; Oeckl, R. Three-dimensional Quantum Supergravity and Supersymmetric Spin Foam Models. Adv. Theor. Math. Phys. 2003, 7, 951–1001. [Google Scholar] [CrossRef]
- Livine, E.R.; Ryan, J.P. N=2 supersymmetric spin foams in three dimensions. Class. Quant. Grav. 2008, 25, 175014. [Google Scholar] [CrossRef]
- Baccetti, V.; Livine, E.R.; Ryan, J.P. The Particle interpretation of N=1 supersymmetric spin foams. Class. Quant. Grav. 2010, 27, 225022. [Google Scholar] [CrossRef]
- Gambini, R.; Obregon, O.; Pullin, J. Towards a loop representation for quantum canonical supergravity. Nucl. Phys. B 1996, 460, 615–631. [Google Scholar] [CrossRef]
- Aichelburg, P.C.; Gueven, R. Supersymmetric Black Holes in N=2 Supergravity Theory. Phys. Rev. Lett. 1983, 51, 1613. [Google Scholar] [CrossRef]
- Andrianopoli, L.; D’Auria, R. N = 1 and N = 2 pure supergravities on a manifold with boundary. J. High Energy Phys. 2014, 2014, 12. [Google Scholar] [CrossRef]
- Andrianopoli, L.; Cerchiai, B.L.; Matrecano, R.; Miskovic, O.L.I.V.E.R.A.; Noris, R.; Olea, R.; Ravera, L.; Trigiante, M. N = 2 AdS4 supergravity, holography and Ward identities. J. High Energy Phys. 2021, 2021, 141. [Google Scholar] [CrossRef]
- Scheunert, M.; Nahm, W.; Rittenberg, V. Irreducible Representations of the OSP(2,1) and SPL(2,1) Graded Lie Algebras. J. Math. Phys. 1977, 18, 155. [Google Scholar] [CrossRef]
- Scheunert, M.; Nahm, W.; Rittenberg, V. Graded Lie Algebras: Generalization of Hermitian Representations. J. Math. Phys. 1977, 18, 146. [Google Scholar] [CrossRef]
- Minnaert, P.; Mozrzymas, M. Racah-Wigner calculus for the superrotation algebra. I. J. Math. Phys. 1992, 33, 1582–1593. [Google Scholar] [CrossRef]
- Berezin, F.A.; Tolstoy, V.N. The group with Grassmann structure UOSP(1|2). Commun. Math. Phys. 1981, 78, 409. [Google Scholar] [CrossRef]
- Eder, K. Super fiber bundles, connection forms, and parallel transport. J. Math. Phys. 2021, 62, 063506. [Google Scholar] [CrossRef]
- Eder, K.; Sahlmann, H. Quantum theory of charged isolated horizons. Phys. Rev. D 2018, 97, 086016. [Google Scholar] [CrossRef]
- Corichi, A.; Nucamendi, U.; Sudarsky, D. Einstein-Yang-Mills isolated horizons: Phase space, mechanics, hair and conjectures. Phys. Rev. D 2000, 62, 044046. [Google Scholar] [CrossRef]
- Ashtekar, A.; Fairhurst, S.; Krishnan, B. Isolated horizons: Hamiltonian evolution and the first law. Phys. Rev. D 2000, 62, 104025. [Google Scholar] [CrossRef]
- Mikhaylov, V.; Witten, E. Branes And Supergroups. Commun. Math. Phys. 2015, 340, 699–832. [Google Scholar] [CrossRef]
- Frodden, E.; Ghosh, A.; Perez, A. Quasilocal first law for black hole thermodynamics. Phys. Rev. D 2013, 87, 121503. [Google Scholar] [CrossRef]
- Husain, V. Apparent horizons, black hole entropy and loop quantum gravity. Phys. Rev. D 1999, 59, 084019. [Google Scholar] [CrossRef]
- Bodendorfer, N. A note on entanglement entropy and quantum geometry. Class. Quantum Gravity 2014, 31, 214004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eder, K.; Sahlmann, H. Chiral Loop Quantum Supergravity and Black Hole Entropy. Universe 2023, 9, 303. https://doi.org/10.3390/universe9070303
Eder K, Sahlmann H. Chiral Loop Quantum Supergravity and Black Hole Entropy. Universe. 2023; 9(7):303. https://doi.org/10.3390/universe9070303
Chicago/Turabian StyleEder, Konstantin, and Hanno Sahlmann. 2023. "Chiral Loop Quantum Supergravity and Black Hole Entropy" Universe 9, no. 7: 303. https://doi.org/10.3390/universe9070303
APA StyleEder, K., & Sahlmann, H. (2023). Chiral Loop Quantum Supergravity and Black Hole Entropy. Universe, 9(7), 303. https://doi.org/10.3390/universe9070303