Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory
Abstract
:1. Introduction
2. Spacetime as an Emergent Phenomenon
2.1. Fluid-Schrödinger Analogy
2.2. Superfluid-Spacetime Correspondence
3. Approximations and Special Cases
3.1. Small-Slow Density Perturbations
3.2. Linear Phase
4. Linearized Gravity
- (i)
- the physical metric is derived up to a conformal factor, due to the remaining choice of a physical frame (units),
- (ii)
- for a given conformal frame, values and are defined up to a factor, due to time coordinate transformation,
- (iii)
- the coupling b is defined up to a factor, due to the U(1) symmetry of the original wave equation, metric signature choice and coordinate transformations, and
- (iv)
- values and are defined up to, respectively, additive function and additive constant, due to some terms being neglected because of various small density perturbation approximations.
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADM | Arnowitt–Deser–Misner |
BEC | Bose–Einstein condensate |
F-observer | Full observer |
R-observer | Relativistic observer |
SV | Superfluid vacuum |
SVT | Superfluid vacuum theory |
References
- Volovik, G.E. The Universe in a Helium Droplet. Int. Ser. Monogr. Phys. 2003, 117, 1–507. [Google Scholar]
- Huang, K. A Superfluid Universe; World Scientific: Singapore, 2016; pp. 1–136. [Google Scholar]
- Scott, T.C. From Modified Newtonian Dynamics to Superfluid Vacuum Theory. Entropy 2023, 25, 12. [Google Scholar] [CrossRef] [PubMed]
- Ourabah, K. On the Collective Properties of Quantum Media. Eur. Phys. J. Plus 2023, 138, 55. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Is There an Aether. Nature 1951, 168, 906. [Google Scholar] [CrossRef]
- Barceló, C.; Liberati, S.; Visser, M. Analogue Gravity. Living Rev. Relativ. 2005, 8, 12. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Spontaneous Symmetry Breaking and Mass Generation as Built-in Phenomena in Logarithmic Nonlinear Quantum Theory. Acta Phys. Polon. 2011, 42, 261. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. An Alternative to Dark Matter and Dark Energy: Scale-dependent Gravity in Superfluid Vacuum Theory. Universe 2020, 6, 180. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Volume Element Structure and Roton-maxon-phonon Excitations in Superfluid Helium Beyond the Gross–Pitaevskii Approximation. Eur. Phys. J. B 2012, 85, 273. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Temperature-driven Dynamics of Quantum Liquids: Logarithmic Nonlinearity, Phase Structure and Rising Force. Int. J. Mod. Phys. B 2019, 33, 1950184. [Google Scholar] [CrossRef]
- Scott, T.C.; Zloshchastiev, K.G. Resolving the Puzzle of Sound Propagation in Liquid Helium at Low Temperatures. Low Temp. Phys. 2019, 45, 1231. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Resolving the Puzzle of Sound Propagation in a Dilute Bose–Einstein Condensate. Int. J. Mod. Phys. B 2022, 36, 2250121. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. On the Dynamical Nature of Nonlinear Coupling of Logarithmic Quantum Wave Equation, Everett-Hirschman Entropy and Temperature. Z. Naturforsch. A 2018, 73, 619. [Google Scholar] [CrossRef]
- Boudjeriou, T. Global Well-posedness and Finite Time Blow-up for a Class of Wave Equation Involving Fractional p-Laplacian with Logarithmic Nonlinearity. Math. Nachr. 2023, 296, 938–956. [Google Scholar] [CrossRef]
- Haining, F.; Ying, L.; Binlin, Z. Existence and Concentration of Ground State Solutions for a Logarithmic Schrödinger Equation with the Critical Exponent. Sci. Sin. Math. 2022, 52, 1377–1406. [Google Scholar] [CrossRef]
- Cordeiro, S.M.S.; Pereira, D.C.; da Costa Baldez, C.A.; Raposo da Cunha, C.A. Global Existence and Asymptotic Behavior for a Timoshenko System with Internal Damping and Logarithmic Source Terms. Arab. J. Math. 2023, 9, 105–118. [Google Scholar] [CrossRef]
- Durt, T. Testing de Broglie’s Double Solution in the Mesoscopic Regime. Found. Phys. 2023, 53, 2. [Google Scholar] [CrossRef]
- Carles, R. Logarithmic Schrödinger Equation and Isothermal Fluids. EMS Surv. Math. Sci. 2022, 9, 99–134. [Google Scholar] [CrossRef]
- Peng, X.; Jia, G. Existence and Concentration Behavior of Solutions for the Logarithmic Schrödinger–Poisson System with Steep Potential. Z. Angew. Math. Phys. 2023, 74, 29. [Google Scholar] [CrossRef]
- Kinach, M.P.; Choptuik, M.W. Dynamical Evolution of U(1) Gauged Q-balls in Axisymmetry. Phys. Rev. D 2023, 107, 035022. [Google Scholar] [CrossRef]
- Chiueh, T.; Hsu, Y.-H. Theory and Phenomenology of Stressed Wave-dark-matter Soliton. Phys. Rev. D 2023, 107, 063011. [Google Scholar] [CrossRef]
- Fan, H.N.; Zhang, B.L. Fractional Schrödinger Equations with Logarithmic and Critical Nonlinearities. Acta Math. Sin.-Engl. Ser. 2023, 39, 285–325. [Google Scholar] [CrossRef]
- Raposo, C.; Cattai, A.; Vera, O.; Gorain, C.G.; Pereira, D. Global Solution and Blow-up for a Thermoelastic System of p-Laplacian Type with Logarithmic Source. Math. Sci. Appl. E-Notes 2023, 11, 112–128. [Google Scholar] [CrossRef]
- Chang, X.; Wang, R.; Yan, D. Ground States for Logarithmic Schrödinger Equations on Locally Finite Graphs. J. Geom. Anal. 2023, 33, 211. [Google Scholar] [CrossRef]
- De Broglie, L. Sur la Possibilité de Relier les Phénomènes d’Interférence et de Diffraction à la Théorie des Quanta de Lumière. Comptes Rendus 1926, 183, 447–448. [Google Scholar]
- Madelung, E. Quantentheorie in Hydrodynamischer Form. Z. Phys. 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Dunn, J.E.; Serrin, J.B. On the Thermomechanics of Interstitial Working. Arch. Rat. Mech. Anal. 1985, 88, 95–133. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Matrix Logarithmic Wave Equation and Multi-channel Systems in Fluid Mechanics. J. Theor. Appl. Mech. 2019, 57, 843–852. [Google Scholar] [CrossRef]
- Schrödinger, E. Maxwell’s and Dirac’s Equations in the Expanding Universe. Proc. R. Irish Acad. A Math. Phys. Sci. 1940, 46, 25–47. [Google Scholar]
- Infeld, L.; Schild, A. A New Approach to Kinematic Cosmology. Phys. Rev. 1945, 68, 250–272. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Logarithmic Nonlinearity in Theories of Quantum Gravity: Origin of Time and Observational Consequences. Grav. Cosmol. 2010, 16, 288–297. [Google Scholar] [CrossRef]
- Avdeenkov, A.V.; Zloshchastiev, K.G. Quantum Bose Liquids with Logarithmic Nonlinearity: Self-sustainability and Emergence of Spatial Extent. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 195303. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Galaxy Rotation Curves in Superfluid Vacuum Theory. Pramana 2023, 97, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zloshchastiev, K.G. Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory. Universe 2023, 9, 234. https://doi.org/10.3390/universe9050234
Zloshchastiev KG. Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory. Universe. 2023; 9(5):234. https://doi.org/10.3390/universe9050234
Chicago/Turabian StyleZloshchastiev, Konstantin G. 2023. "Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory" Universe 9, no. 5: 234. https://doi.org/10.3390/universe9050234
APA StyleZloshchastiev, K. G. (2023). Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory. Universe, 9(5), 234. https://doi.org/10.3390/universe9050234