With Nanoplasmonics towards Fusion
Abstract
:1. Laser Fusion Ignition Improvement by Nanoantennas
2. Results: Sers, Crater Sizes, Libs Spectra
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fusion Power Is Coming Back into Fashion (This Time It Might Even Work). The Economist (Science & Technology), 22 March 2023.
- Barszczewska-Rybarek, I.M. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Materials 2019, 12, 4057. [Google Scholar] [CrossRef]
- Ding, T.; Mertens, J.; Lombardi, A.; Scherman, O.A.; Baumberg, J.J. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons. ACS Photonics 2017, 4, 1453–1458. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Meng, F.; Senty, T.R.; Bristow, A.D.; Wu, N. Plasmon-Induced Resonance Energy Transfer for Solar Energy Conversion. Nat. Photonics 2015, 9, 601–607. [Google Scholar] [CrossRef]
- Minamimoto, H.; Toda, T.; Futashima, R.; Li, X.; Suzuki, K.; Yasuda, S.; Murakoshi, K. Visualization of Active Sites for Plasmon-Induced Electron Transfer Reactions Using Photoelectrochemical Polymerization of Pyrrole. J. Phys. Chem. C 2016, 120, 16051–16058. [Google Scholar] [CrossRef]
- Wu, K.; Chen, J.; McBride, J.R.; Lian, T. Efficient Hot-Electron Transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science 2015, 349, 632–635. [Google Scholar] [CrossRef]
- Wang, Z.; Kan, Z.; Shen, M. Study the plasmonic property of gold nanorods highly above damage threshold via single-pulse spectral hole-burning experiments. Nat. Sci. Rep. 2021, 11, 22232. [Google Scholar] [CrossRef] [PubMed]
- Csete, M.; Szenes, A.; Tóth, E.; Vass, D.; Fekete, O.; Bánhelyi, B.; Papp, I.; Biró, T.; Csernai, L.P.; Kroó, N.; et al. Comparative study on the uniform energy deposition achievable via optimized plasmonic nanoresonator distributions. Plasmonics 2022, 17, 775–787. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science and Business Media: New York, NY, USA, 2007. [Google Scholar]
- Ding, W.J.; Lim, J.Z.J.; Do, H.T.B.; Xiong, X.; Mahfoud, Z.; Png, C.E.; Bosman, M.; Ang, L.K.; Wu, L. Particle simulation of plasmons. Nanophotonics 2020, 9, 3383. [Google Scholar] [CrossRef]
- Papp, I.; Bravina, L.; Csete, M.; Kumari, A.; Mishustin, I.I.; Molnar, D.; Motornenko, A.; Racz, P.; Satarov, L.M.; Stocker, H.; et al. Kinetic Model Evaluation of the Resilience of Plasmonic Nanoantennas for Laser-Induced Fusion. Phys. Rev. X Energy 2022, 1, 023001. [Google Scholar] [CrossRef]
- Nanbu, K.; Yonemura, G. Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering amplitude. J. Comput. Phys. 1998, 145, 639–654. [Google Scholar] [CrossRef]
- Pérez, F.; Gremillet, L.; Decoster, A.; Drouin, M.; Ledfebvre, E. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes. Phys. Plasmas 2012, 19, 083104. [Google Scholar] [CrossRef]
- Arber, T.; Bennett, K.; Brady, C.; Lawrence-Douglas, A.; Ramsay, M.; Sircombe, N.; Gillies, P.; Evans, R.; Schmitz, H.; Bell, A.; et al. Contemporary particle-in-cell approach to laser-plasma modeling. Plasma Phys. Control. Fusion 2015, 57, 113001. [Google Scholar] [CrossRef]
- Papp, I.; Bravina, L.; Csete, M.; Mishustin, I.N.; Molnár, D.; Motornenko, A.; Satarov, L.M.; Stöcker, H.; Strottman, D.D.; Szenes, A.; et al. Laser Wake Field Collider. Phys. Lett. A 2021, 396, 12724. [Google Scholar] [CrossRef]
- István, P.; Larissa, B.; Mária, C.; Archana, K.; Anton, M.I.N.; Péter, R.; Horst, S.L.M.S.; András, S.D.S.; Dávid, V.; Nagyné, S.; et al. Kinetic model of resonant nanoantennas in polymer for laser induced fusion. Front. Phys. 2023, 11, 1116023. [Google Scholar]
- Csernai, L.P.; Strottman, D.D. Volume ignition via time-like detonation in the pellet fusion. Laser Part. Beams 2015, 33, 279–282. [Google Scholar] [CrossRef]
- Csernai, L.P.; Kroo, N.; Papp, I. Radiation dominated implosion with nano-plasmonics. Laser Part. Beams 2018, 36, 171–178. [Google Scholar] [CrossRef]
- Bonyár, A.; Szalóki, M.; Borók, A.; Rigó, I.; Kámán, J.; Zangana, S.; Veres, M.; Rácz, P.; Aladi, M.; Kedves, M.; et al. The Effect of Femtosecond Laser Irradiation and Plasmon Field on the Degree of Conversion of a UDMA-TEGDMA Copolymer Nanocomposite Doped with Gold Nanorods. Int. J. Mol. Sci. 2022, 23, 13575. [Google Scholar] [CrossRef]
- Rigó, I.; Kámán, J.; Szokol, Ṅ.; Bonyár, A.; Szalóki, M.; Borók, A.; Zangana, S.; Rácz, P.; Aladi, M.; Kedves, M.; et al. Raman spectroscopic characterization of crater walls formed upon single-shot high energy femtosecond laser irradiation of dimethacrylate polymer doped with plasmonic gold nanorods. arXiv 2022, arXiv:2210.00619. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1998, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Csernai, L.P.; Mishustin, I.N.; Satarov, L.M.; Stoecker, H.; Bravina, L.; Csete, M.; Kámán, J.; Kumari, A.; Motornenko, A.; Papp, I.; et al. Crater Formation and Deuterium Production in Laser Irradiation of Polymers with Implanted Nano-antennas. arXiv 2022, arXiv:2211.14031. [Google Scholar]
- Galbács, G.; Kovács-Széles, É. Nuclear Applications of Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown Spectroscopy (LIBS); Singh, V.K., Tripathi, D.K., Deguchi, Y., Wang, Z., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Li, C.; Feng, C.L.; Oderji, H.Y.; Luo, G.N.; Ding, H.B. Review of LIBS application in nuclear fusion technology. Front. Phys. 2016, 11, 114–214. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, Y.; Li, X.; Yu, H.; Zhang, Z.; Qiu, A. Progress of laser-induced breakdown spectroscopy in nuclear industry applications. J. Phys. Appl. Phys. 2020, 53, 023001. [Google Scholar] [CrossRef]
- Kurniawan, K.H.; Kagawa, K. Hydrogen and deuterium analysis using laser-induced plasma spectroscopy. Appl. Spectrosc. Rev. 2006, 41, 99–130. [Google Scholar] [CrossRef]
- Craners, D.A.; Chinni, R.C. Lares-Induced Breakdown Spectroscopy—Capabilities and Limitations. Appl. Spectrosc. Rev. 2009, 44, 457–506. [Google Scholar] [CrossRef]
- Vass, D.; Szenes, A.; Tóth, E.; Bánhelyi, B.; Papp, I.; Bíró, T.; Csernai, L.P.; Kroó, N.; Csete, M. Plasmonic nanoresonator distributions for uniform energy deposition in active targets. Opt. Mater. Express 2023, 13, 9–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biró, T.S.; Kroó, N.; Csernai, L.P.; Veres, M.; Aladi, M.; Papp, I.; Kedves, M.Á.; Kámán, J.; Nagyné Szokol, Á.; Holomb, R.; et al. With Nanoplasmonics towards Fusion. Universe 2023, 9, 233. https://doi.org/10.3390/universe9050233
Biró TS, Kroó N, Csernai LP, Veres M, Aladi M, Papp I, Kedves MÁ, Kámán J, Nagyné Szokol Á, Holomb R, et al. With Nanoplasmonics towards Fusion. Universe. 2023; 9(5):233. https://doi.org/10.3390/universe9050233
Chicago/Turabian StyleBiró, Tamás Sándor, Norbert Kroó, László Pál Csernai, Miklós Veres, Márk Aladi, István Papp, Miklós Ákos Kedves, Judit Kámán, Ágnes Nagyné Szokol, Roman Holomb, and et al. 2023. "With Nanoplasmonics towards Fusion" Universe 9, no. 5: 233. https://doi.org/10.3390/universe9050233
APA StyleBiró, T. S., Kroó, N., Csernai, L. P., Veres, M., Aladi, M., Papp, I., Kedves, M. Á., Kámán, J., Nagyné Szokol, Á., Holomb, R., Rigó, I., Bonyár, A., Borók, A., Zangana, S., Kovács, R., Tarpataki, N., Csete, M., Szenes, A., Vass, D., ... Szalóki, M. (2023). With Nanoplasmonics towards Fusion. Universe, 9(5), 233. https://doi.org/10.3390/universe9050233