Do White Holes Exist?
Abstract
1. Introduction
2. LTB Solutions
How a WH Turns into a BH
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Timelike Junction
Appendix B. The GHY Boundary Term
1 | This is the case only if we ignore cosmic acceleration or if we consider an observer in a galaxy far away (say at ), when matter domination was an excellent approximation. |
2 | Note that both a WH and a BH require a finite total mass. If is infinitely large, then and there is no WH or BH. This in fact the standard Big Bang assumption. But this assumption is impossible to implement, even with Inflation: using local laws of gravity we have to create a uniform space of infinite extend within a finite amount of time. |
3 | Even if the exterior is not totally empty and there is some small accretion from the outside, the value of will slowly increase as the BH mass increases. But the boundary still needs to be taken into account to evaluate the action inside. |
References
- Einstein, A. On a Stationary System With Spherical Symmetry Consisting of Many Gravitating Masses. Ann. Math. 1939, 40, 922–936. [Google Scholar] [CrossRef]
- Ghez, A.M.; Klein, B.L.; Morris, M.; Becklin, E.E. High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy. Astrophys. J. 1998, 509, 678–686. [Google Scholar] [CrossRef][Green Version]
- Abbott, R. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration] First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Penrose, R. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef][Green Version]
- Dadhich, N. Singularity: Raychaudhuri equation once again. Pramana 2007, 69, 23. [Google Scholar] [CrossRef][Green Version]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191–197. [Google Scholar] [CrossRef]
- Mathur, S.D. The information paradox: A pedagogical introduction. Class. Quantum Gravity 2009, 26, 224001. [Google Scholar] [CrossRef][Green Version]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortschritte Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef][Green Version]
- Haggard, H.M.; Rovelli, C. Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 2015, 92, 104020. [Google Scholar] [CrossRef][Green Version]
- Oppenheimer, J.R.; Snyder, H. On Continued Gravitational Contraction. Phys. Rev. 1939, 56, 455–459. [Google Scholar] [CrossRef][Green Version]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Nuovo Cimento B Ser. 1966, 44, 1–14. [Google Scholar] [CrossRef]
- Barceló, C.; Carballo-Rubio, R.; Garay, L.J. Mutiny at the white-hole district. Int. J. Mod. Phys. D 2014, 23, 1442022. [Google Scholar] [CrossRef][Green Version]
- Ben Achour, J.; Brahma, S.; Mukohyama, S.; Uzan, J.P. Towards consistent black-to-white hole bounces from matter collapse. J. Cosmol. Astropart. Phys. 2020, 2020, 020. [Google Scholar] [CrossRef]
- Friedmann, A. On the Curvature of Space. Gen. Relativ. Gravit. 1999, 31, 1991. [Google Scholar] [CrossRef]
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. La S.S. Brux. 1927, 47, 49–59. [Google Scholar]
- Padmanabhan, T. Gravitation; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Tolman, R.C. Effect of Inhomogeneity on Cosmological Models. Proc. Natl. Acad. Sci. USA 1934, 20, 169–176. [Google Scholar] [CrossRef][Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Elsevier: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Gaztañaga, E. The Black Hole Universe, part I. Symmetry 2022, 14, 1849. [Google Scholar] [CrossRef]
- Faraoni, V.; Atieh, F. Turning a Newtonian analogy for FLRW cosmology into a relativistic problem. Phys. Rev. D 2020, 102, 044020. [Google Scholar] [CrossRef]
- Johansen, N.; Ravndal, F. On the discovery of Birkhoff’s theorem. Gen. Relativ. Gravit. 2006, 38, 537–540. [Google Scholar] [CrossRef][Green Version]
- Gaztañaga, E. The mass of our observable Universe. Mon. Not. R. Astron. Soc. 2023, 521, L59–L63. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Rothman, T. Lost horizons. Am. J. Phys. 1993, 61, 883–893. [Google Scholar] [CrossRef]
- Gaztañaga, E. The Cosmological Constant as Event Horizon. Symmetry 2022, 14, 300. [Google Scholar] [CrossRef]
- Gaztañaga, E. The Black Hole Universe, part II. Symmetry 2022, 14, 1984. [Google Scholar] [CrossRef]
- Gaztañaga, E.; Camacho-Quevedo, B. What moves the heavens above? Phys. Lett. B 2022, 835, 137468. [Google Scholar] [CrossRef]
- Hilbert, D. Die Grundlage der Physick. Konigl. Gesell. D. Wiss. GöTtingen Math.-Phys. K 1915, 3, 395–407. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef][Green Version]
- Carroll, S.M. Spacetime and Geometry; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- York, J.W. Role of Conformal Three-Geometry in the Dynamics of Gravitation. Phys. Rev. Lett. 1972, 28, 1082–1085. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef][Green Version]
- Hawking, S.W.; Horowitz, G.T. The gravitational Hamiltonian, action, entropy and surface terms. Class. Quantum Gravity 1996, 13, 1487. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaztanaga, E. Do White Holes Exist? Universe 2023, 9, 194. https://doi.org/10.3390/universe9040194
Gaztanaga E. Do White Holes Exist? Universe. 2023; 9(4):194. https://doi.org/10.3390/universe9040194
Chicago/Turabian StyleGaztanaga, Enrique. 2023. "Do White Holes Exist?" Universe 9, no. 4: 194. https://doi.org/10.3390/universe9040194
APA StyleGaztanaga, E. (2023). Do White Holes Exist? Universe, 9(4), 194. https://doi.org/10.3390/universe9040194