Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction
Abstract
1. Introduction
1.1. Motivations: Loop Quantum Cosmology and Its Modifications
1.2. Modified Loop Quantum Cosmology—I: mLQC-I
1.3. Modified Loop Quantum Cosmology—Ii: mLQC-II
1.4. Order Reduction
1.5. Outline of the Paper
2. Covariant Order Reduction Technique
2.1. Reduced Equations in Gravity
2.2. Strategy to Obtain Effective Actions
3. Effective Actions for Modified Loop Quantum Cosmology Models
3.1. Effective Action for LQC
3.2. Effective Actions for mLQC-I
3.2.1. Effective Action for the Branch
3.2.2. Effective Action for the Branch
3.3. Effective Action for mLQC-II
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The Gaussian, or ordinary hypergeometric function, is a special function defined by the hypergeometric series
|
References
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 1–137. [Google Scholar] [CrossRef]
- Carlip, S. Quantum gravity: A Progress report. Rep. Prog. Phys. 2001, 64, 885. [Google Scholar] [CrossRef]
- Rovelli, C. Loop quantum gravity. Living Rev. Relativ. 2008, 11, 1–69. [Google Scholar] [CrossRef]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A Status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Bojowald, M. Loop quantum cosmology. Living Rev. Relativ. 2008, 11, 1–131. [Google Scholar] [CrossRef] [PubMed]
- Bojowald, M. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 2001, 86, 5227. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 84003. [Google Scholar] [CrossRef]
- Taveras, V. Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field. Phys. Rev. D 2008, 78, 64072. [Google Scholar] [CrossRef]
- Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. SIGMA 2012, 8, 16. [Google Scholar] [CrossRef]
- De Haro, J.; Amorós, J. Bouncing cosmologies via modified gravity in the ADM formalism: Application to Loop Quantum Cosmology. Phys. Rev. D 2018, 97, 64014. [Google Scholar] [CrossRef]
- Singh, P. Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds. Phys. Rev. D 2006, 73, 63508. [Google Scholar] [CrossRef]
- Meissner, K.A. Black hole entropy in loop quantum gravity. Class. Quantum Gravity 2004, 21, 5245. [Google Scholar] [CrossRef]
- Li, B.F.; Singh, P.; Wang, A. Towards Cosmological Dynamics from Loop Quantum Gravity. Phys. Rev. D 2018, 97, 84029. [Google Scholar] [CrossRef]
- Li, B.F.; Singh, P.; Wang, A. Qualitative dynamics and inflationary attractors in loop cosmology. Phys. Rev. D 2018, 98, 66016. [Google Scholar] [CrossRef]
- Yang, J.; Ding, Y.; Ma, Y. Alternative quantization of the Hamiltonian in loop quantum cosmology II: Including the Lorentz term. Phys. Lett. B 2009, 682, 1–7. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K. Cosmological Effective Hamiltonian from full Loop Quantum Gravity Dynamics. Phys. Lett. B 2018, 785, 506–510. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K. Cosmological coherent state expectation values in loop quantum gravity I. Isotropic kinematics. Class. Quantum Gravity 2018, 35, 135011. [Google Scholar] [CrossRef]
- Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G. Phenomenology of Quantum Reduced Loop Gravity in the isotropic cosmological sector. Phys. Rev. D 2018, 98, 106022. [Google Scholar] [CrossRef]
- Bilski, J.; Marcianò, A. Critical Insight into the Cosmological Sector of Loop Quantum Gravity. Phys. Rev. D 2020, 101, 66026. [Google Scholar] [CrossRef]
- Li, B.F.; Singh, P.; Wang, A. Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies. Phys. Rev. D 2019, 100, 63513. [Google Scholar] [CrossRef]
- Olmo, G.J.; Singh, P. Effective Action for Loop Quantum Cosmology a la Palatini. J. Cosmol. Astropart. Phys. 2009, 2009, 30. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini Approach to Modified Gravity: f(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 1–161. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From f(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory. In Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Sotiriou, T.P. Covariant Effective Action for Loop Quantum Cosmology from Order Reduction. Phys. Rev. D 2009, 79, 44035. [Google Scholar] [CrossRef]
- Bel, L.; Zia, H.S. Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian. Phys. Rev. D 1985, 32, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.Z. Higher Derivative Lagrangians, Nonlocality, Problems and Solutions. Phys. Rev. D 1990, 41, 3720. [Google Scholar] [CrossRef]
- Simon, J.Z. No Starobinsky inflation from selfconsistent semiclassical gravity. Phys. Rev. D 1992, 45, 1953–1960. [Google Scholar] [CrossRef]
- Huang, Q.G. A polynomial f(R) inflation model. J. Cosmol. Astropart. Phys. 2014, 2, 35. [Google Scholar] [CrossRef]
- Castellanos, A.R.R.; Sobreira, F.; Shapiro, I.L.; Starobinsky, A.A. On higher derivative corrections to the R + R2 inflationary model. J. Cosmol. Astropart. Phys. 2018, 12, 7. [Google Scholar] [CrossRef]
- Terrucha, I.; Vernieri, D.; Lemos, J.P.S. Covariant action for bouncing cosmologies in modified Gauss–Bonnet gravity. Ann. Phys. 2019, 404, 39–46. [Google Scholar] [CrossRef]
- Barros, B.J.; Teixeira, E.M.; Vernieri, D. Bouncing cosmology in f(R,) gravity by order reduction. Ann. Phys. 2020, 419, 168231. [Google Scholar] [CrossRef]
- Bajardi, F.; Vernieri, D.; Capozziello, S. Bouncing Cosmology in f(Q) Symmetric Teleparallel Gravity. Eur. Phys. J. Plus 2020, 135, 912. [Google Scholar] [CrossRef]
- Miranda, M.; Vernieri, D.; Capozziello, S.; Lobo, F.S.N. Effective actions for loop quantum cosmology in fourth-order gravity. Eur. Phys. J. C 2021, 81, 975. [Google Scholar] [CrossRef]
- Miranda, M.; Vernieri, D.; Capozziello, S.; Lobo, F.S.N. Bouncing Cosmology in Fourth-Order Gravity. Universe 2022, 8, 161. [Google Scholar] [CrossRef]
- Amorós, J.; de Haro, J.; Odintsov, S.D. R + αR2 Loop Quantum Cosmology. Phys. Rev. D 2014, 89, 104010. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. “Brane-world and loop cosmology from a gravity–matter coupling perspective. Phys. Lett. B 2015, 740, 73–79. [Google Scholar] [CrossRef]
- Bojowald, M. Noncovariance of the dressed-metric approach in loop quantum cosmology. Phys. Rev. D 2020, 102, 23532. [Google Scholar] [CrossRef]
- Bernal, T.; Capozziello, S.; Hidalgo, J.C.; Mendoza, S. Recovering MOND from extended metric theories of gravity. Eur. Phys. J. C 2011, 71, 1794. [Google Scholar] [CrossRef]
- de Haro, J.; Aresté Saló, L.; Pan, S. Limiting curvature mimetic gravity and its relation to Loop Quantum Cosmology. Gen. Relativ. Gravit. 2019, 51, 49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.R.; Vernieri, D.; Lobo, F.S.N. Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe 2023, 9, 181. https://doi.org/10.3390/universe9040181
Ribeiro AR, Vernieri D, Lobo FSN. Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe. 2023; 9(4):181. https://doi.org/10.3390/universe9040181
Chicago/Turabian StyleRibeiro, Ana Rita, Daniele Vernieri, and Francisco S. N. Lobo. 2023. "Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction" Universe 9, no. 4: 181. https://doi.org/10.3390/universe9040181
APA StyleRibeiro, A. R., Vernieri, D., & Lobo, F. S. N. (2023). Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe, 9(4), 181. https://doi.org/10.3390/universe9040181