Recent Developments in Warm Inflation
Abstract
:1. Introduction
2. Background Dynamics of WI
3. Deriving Dissipation Coefficients in WI
3.1. The Distributed Mass Model
3.2. The Two-Stage Mechanism Model
3.3. The Warm Little Inflation Model
3.4. The Warm Little Inflation Model—Scalar Version
3.5. The Axion-like Warm Inflation Model
4. Cosmological Perturbations in WI
5. Swampland Criteria, Observational Constraints, and Other Applications
5.1. WI and Swampland Conjectures
5.2. Other Applications and Recent Results in WI
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | |
3 | As a note concerning the emergence of a thermal equilibrium radiation bath during WI, this problem has been studied in the context of the solution of the Boltzmann equation in [79]. Likewise, the generality of formation of a thermalized radiation bath and that it can be maintained during inflation, has as been demonstrated recently in [75,76] in the context of the model described in Section 3.5. |
4 | One should note that there is another implementation for calculating the curvature power spectrum first developed in [85] where the velocity field was used instead of momentum perturbation. In [86], it was shown that the power spectrum obtained in [85] differs by a factor from the result mentioned here. However, in [86], it was discussed that such discrepancy comes from the fact that [85] did not consider the variation of momentum perturbation with expansion. Once this is done, the discrepancy disappears and both approaches are consistent. |
5 | We note here that taking into account viscosity effects that can be present in the radiation fluid, the growing mode can suffer considerable damping [42,87]. Similar damping effects were also reported in [88,89] when perturbations propagate with small sound speed, which is typical for non-canonical kinetic terms. |
6 | |
7 | See, however, Ref. [90], where it was discussed that the radiation thermal bath can also produce gravitational waves and this production would enhance the tensor power spectrum. See also [91], in which thermal corrections to tensor power spectrum were computed and it was found that these corrections are, however, small for . |
8 | Similar to the discussions, e.g., in [92], which compares the scales of standard gravity with some alternatives. |
9 | Note, as already emphasized in Section 2, is related to by . |
10 | Recently, the non-Gaussianity has also been investigated in [98] in an axion-type of model and it was pointed out some distinct features in the squeezed and folded limits. |
11 | One should also note that there are modified versions of the TCC, as, e.g., in [105], and which can allow for larger values of than the suggested from Equation (103), which alleviates appreciably the TCC bound. Additionally, there are other recent discussions in the literature concerning the TCC bound, e.g., in [28,29,106,107] on how it also be relaxed. |
References
- Berera, A.; Fang, L.Z. Thermally induced density perturbations in the inflation era. Phys. Rev. Lett. 1995, 74, 1912–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berera, A. Warm inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Berera, A.; Gleiser, M.; Ramos, R.O. A First principles warm inflation model that solves the cosmological horizon/flatness problems. Phys. Rev. Lett. 1999, 83, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Moss, I.G.; Ramos, R.O. Warm Inflation and its Microphysical Basis. Rep. Prog. Phys. 2009, 72, 026901. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A. Warm inflation model building. Int. J. Mod. Phys. A 2009, 24, 2207–2240. [Google Scholar] [CrossRef] [Green Version]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Sato, K. Cosmological Baryon Number Domain Structure and the First Order Phase Transition of a Vacuum. Phys. Lett. B 1981, 99, 66–70. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Bartrum, S.; Bastero-Gil, M.; Berera, A.; Cerezo, R.; Ramos, R.O.; Rosa, J.G. The importance of being warm (during inflation). Phys. Lett. B 2014, 732, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. General dissipation coefficient in low-temperature warm inflation. J. Cosmol. Astropart. Phys. 2013, 01, 016. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Rosa, J.G. Warming up brane-antibrane inflation. Phys. Rev. D 2011, 84, 103503. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, T. Particle production and dissipation caused by the Kaluza-Klein tower. Phys. Rev. D 2013, 87, 026001. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Ramos, R.O. Construction of a robust warm inflation mechanism. Phys. Lett. B 2003, 567, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. Warm Little Inflaton. Phys. Rev. Lett. 2016, 117, 151301. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. Towards a reliable effective field theory of inflation. Phys. Lett. B 2021, 813, 136055. [Google Scholar] [CrossRef]
- Berghaus, K.V.; Graham, P.W.; Kaplan, D.E. Minimal Warm Inflation. J. Cosmol. Astropart. Phys. 2020, 03, 034. [Google Scholar] [CrossRef] [Green Version]
- Berera, A. Warm inflation at arbitrary adiabaticity: A Model, an existence proof for inflationary dynamics in quantum field theory. Nucl. Phys. B 2000, 585, 666–714. [Google Scholar] [CrossRef] [Green Version]
- Berera, A. Warm inflation solution to the eta problem. arXiv 2003, arXiv:hep-ph/0401139. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Note on single-field inflation and the swampland criteria. Phys. Rev. D 2019, 99, 083510. [Google Scholar] [CrossRef] [Green Version]
- Motaharfar, M.; Kamali, V.; Ramos, R.O. Warm inflation as a way out of the swampland. Phys. Rev. D 2019, 99, 063513. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Warm Inflation in the light of Swampland Criteria. Phys. Rev. D 2019, 99, 063514. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Distance, de Sitter and Trans-Planckian Censorship conjectures: The status quo of Warm Inflation. Phys. Dark Univ. 2020, 27, 100432. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V.; Motaharfar, M.; Ramos, R.O. Warm brane inflation with an exponential potential: A consistent realization away from the swampland. Phys. Rev. D 2020, 101, 023535. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.; Kamali, V.; Ramos, R.O. Strengthening the de Sitter swampland conjecture in warm inflation. J. High Energy Phys. 2020, 08, 127. [Google Scholar] [CrossRef]
- Das, S.; Ramos, R.O. Runaway potentials in warm inflation satisfying the swampland conjectures. Phys. Rev. D 2020, 102, 103522. [Google Scholar] [CrossRef]
- Berera, A.; Calderón, J.R. Trans-Planckian censorship and other swampland bothers addressed in warm inflation. Phys. Rev. D 2019, 100, 123530. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Brahma, S.; Calderón, J.R. Role of trans-Planckian modes in cosmology. J. High Energy Phys. 2020, 08, 071. [Google Scholar] [CrossRef]
- Kamali, V. Reheating After Swampland Conjecture. J. High Energy Phys. 2020, 01, 092. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V.; Artymowski, M.; Setare, M.R. Constant roll warm inflation in high dissipative regime. J. Cosmol. Astropart. Phys. 2020, 07, 002. [Google Scholar] [CrossRef]
- Berera, A.; Brandenberger, R.; Kamali, V.; Ramos, R. Thermal, trapped and chromo-natural inflation in light of the swampland criteria and the trans-Planckian censorship conjecture. Eur. Phys. J. C 2021, 81, 452. [Google Scholar] [CrossRef]
- Kamali, V. Non-minimal Higgs inflation in the context of warm scenario in the light of Planck data. Eur. Phys. J. C 2018, 78, 975. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V.; Ebrahimi, S.; Alaei, A. Intermediate class of warm pseudoscalar inflation. Eur. Phys. J. C 2021, 81, 562. [Google Scholar] [CrossRef]
- Benetti, M.; Ramos, R.O. Warm inflation dissipative effects: Predictions and constraints from the Planck data. Phys. Rev. D 2017, 95, 023517. [Google Scholar] [CrossRef] [Green Version]
- Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C. De Sitter Space and the Swampland. arXiv 2018, arXiv:1806.08362. [Google Scholar]
- Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B 2019, 788, 180–184. [Google Scholar] [CrossRef]
- Kinney, W.H.; Vagnozzi, S.; Visinelli, L. The zoo plot meets the swampland: Mutual (in)consistency of single-field inflation, string conjectures, and cosmological data. Class. Quant. Grav. 2019, 36, 117001. [Google Scholar] [CrossRef] [Green Version]
- Bedroya, A.; Vafa, C. Trans-Planckian Censorship and the Swampland. J. High Energy Phys. 2020, 09, 123. [Google Scholar] [CrossRef]
- Agrawal, P.; Obied, G.; Steinhardt, P.J.; Vafa, C. On the Cosmological Implications of the String Swampland. Phys. Lett. B 2018, 784, 271–276. [Google Scholar] [CrossRef]
- Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C. Trans-Planckian Censorship and Inflationary Cosmology. Phys. Rev. D 2020, 101, 103502. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O. Shear viscous effects on the primordial power spectrum from warm inflation. J. Cosmol. Astropart. Phys. 2011, 07, 030. [Google Scholar] [CrossRef]
- Moss, I.G.; Xiong, C. On the consistency of warm inflation. J. Cosmol. Astropart. Phys. 2008, 11, 023. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Cerezo, R.; Ramos, R.O.; Vicente, G.S. Stability analysis for the background equations for inflation with dissipation and in a viscous radiation bath. J. Cosmol. Astropart. Phys. 2012, 11, 042. [Google Scholar] [CrossRef]
- Del Campo, S.; Herrera, R.; Pavón, D.; Villanueva, J.R. On the consistency of warm inflation in the presence of viscosity. J. Cosmol. Astropart. Phys. 2010, 08, 002. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhu, J.Y. Consistency of the tachyon warm inflationary universe models. J. Cosmol. Astropart. Phys. 2014, 02, 005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Zhu, J.Y. Extension of warm inflation to noncanonical scalar fields. Phys. Rev. D 2014, 90, 123519. [Google Scholar] [CrossRef] [Green Version]
- Motaharfar, M.; Massaeli, E.; Sepangi, H.R. Power spectra in warm G-inflation and its consistency: Stochastic approach. Phys. Rev. D 2017, 96, 103541. [Google Scholar] [CrossRef] [Green Version]
- Cid, A. On the consistency of tachyon warm inflation with viscous pressure. Phys. Lett. B 2015, 743, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.P.; Yu, J.N.; Zhang, X.M.; Zhu, J.Y. Consistency of warm k-inflation. Phys. Rev. D 2016, 94, 103531. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Ramos, R.O. Graceful exit problem in warm inflation. Phys. Rev. D 2021, 103, 12. [Google Scholar] [CrossRef]
- Gleiser, M.; Ramos, R.O. Microphysical approach to nonequilibrium dynamics of quantum fields. Phys. Rev. D 1994, 50, 2441–2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berera, A.; Gleiser, M.; Ramos, R.O. Strong dissipative behavior in quantum field theory. Phys. Rev. D 1998, 58, 123508. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686–4690. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Phys. A 1983, 121, 587–616. [Google Scholar] [CrossRef]
- Berera, A.; Ramos, R.O. The Affinity for scalar fields to dissipate. Phys. Rev. D 2001, 63, 103509. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Ramos, R.O. Dynamics of interacting scalar fields in expanding space-time. Phys. Rev. D 2005, 71, 023513. [Google Scholar] [CrossRef] [Green Version]
- Bellac, M.L. Thermal Field Theory; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-511-88506-8/978-0-521-65477-7. [Google Scholar] [CrossRef]
- Calzetta, E.A.; Hu, B.L.B. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-929003-6/978-1-00-928998-6/978-1-00-929002-9/978-0-511-42147-1/978-0-521-64168-5. [Google Scholar] [CrossRef]
- Berera, A.; Moss, I.G.; Ramos, R.O. Local Approximations for Effective Scalar Field Equations of Motion. Phys. Rev. D 2007, 76, 083520. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O. Dissipation coefficients from scalar and fermion quantum field interactions. J. Cosmol. Astropart. Phys. 2011, 09, 033. [Google Scholar] [CrossRef]
- Berera, A.; Kephart, T.W. The Ubiquitous Inflaton in String-Inspired Models. Phys. Rev. Lett. 1999, 83, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Hernández-Jiménez, R.; Rosa, J.G. Warm inflation within a supersymmetric distributed mass model. Phys. Rev. D 2019, 99, 103520. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.M.H.; Moss, I.G. Thermal effects on pure and hybrid inflation. Phys. Rev. D 2005, 71, 023514. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, J.; Linde, A.D. Is warm inflation possible? Phys. Rev. D 1999, 60, 083509. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Cohen, A.G.; Georgi, H. Electroweak symmetry breaking from dimensional deconstruction. Phys. Lett. B 2001, 513, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.E.; Weiner, N.J. Little inflatons and gauge inflation. J. Cosmol. Astropart. Phys. 2004, 02, 005. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Cheng, H.C.; Creminelli, P.; Randall, L. Pseudonatural inflation. J. Cosmol. Astropart. Phys. 2003, 07, 003. [Google Scholar] [CrossRef] [Green Version]
- Schmaltz, M.; Tucker-Smith, D. Little Higgs review. Ann. Rev. Nucl. Part. Sci. 2005, 55, 229–270. [Google Scholar] [CrossRef] [Green Version]
- Rosa, J.G.; Ventura, L.B. Warm Little Inflaton becomes Cold Dark Matter. Phys. Rev. Lett. 2019, 122, 161301. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.D.; Tassler, M. The Sphaleron Rate in SU(N) Gauge Theory. J. High Energy Phys. 2011, 02, 105. [Google Scholar] [CrossRef] [Green Version]
- Laine, M.; Vuorinen, A. Basics of Thermal Field Theory. Lect. Notes Phys. 2016, 925, 1–281. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Goswami, G.; Krishnan, C. Swampland, axions, and minimal warm inflation. Phys. Rev. D 2020, 101, 103529. [Google Scholar] [CrossRef]
- Laine, M.; Procacci, S. Minimal warm inflation with complete medium response. J. Cosmol. Astropart. Phys. 2021, 06, 031. [Google Scholar] [CrossRef]
- DeRocco, W.; Graham, P.W.; Kalia, S. Warming up cold inflation. J. Cosmol. Astropart. Phys. 2021, 11, 011. [Google Scholar] [CrossRef]
- Das, S.; Ramos, R.O. Running and running of the running of the scalar spectral index in warm inflation. Universe 2023, 9, 76. [Google Scholar] [CrossRef]
- Ramos, R.O.; da Silva, L.A. Power spectrum for inflation models with quantum and thermal noises. J. Cosmol. Astropart. Phys. 2013, 03, 032. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation. J. High Energy Phys. 2018, 02, 063. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Moss, I.G. Density fluctuations from warm inflation. J. Cosmol. Astropart. Phys. 2009, 07, 013. [Google Scholar] [CrossRef] [Green Version]
- Kodama, H.; Sasaki, M. Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Hwang, J.C. Perturbations of the Robertson-Walker space—Multicomponent sources and generalized gravity. Astrophys. J. 1991, 375, 443–462. [Google Scholar] [CrossRef]
- Baumann, D. Inflation, in physics of the large and the small, TASI 09. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, CO, USA, 1–26 June 2009. [Google Scholar] [CrossRef]
- Liddle, A.R.; Leach, S.M. How long before the end of inflation were observable perturbations produced? Phys. Rev. D 2003, 68, 103503. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, H.P. Density perturbations in warm inflation and COBE normalization. Phys. Lett. B 2002, 526, 1. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Calderón, J.R. Reexamination of the warm inflation curvature perturbations spectrum. J. Cosmol. Astropart. Phys. 2019, 07, 019. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Moss, I.G.; Ramos, R.O. Cosmological fluctuations of a random field and radiation fluid. J. Cosmol. Astropart. Phys. 2014, 05, 004. [Google Scholar] [CrossRef] [Green Version]
- Motaharfar, M.; Ramos, R.O. Dirac-Born-Infeld warm inflation realization in the strong dissipation regime. Phys. Rev. D 2021, 104, 043522. [Google Scholar] [CrossRef]
- Motaharfar, M.; Massaeli, E.; Sepangi, H.R. Warm Higgs G-inflation: Predictions and constraints from Planck 2015 likelihood. J. Cosmol. Astropart. Phys. 2018, 10, 002. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Sorbo, L. Spectrum of tensor perturbations in warm inflation. Phys. Rev. D 2021, 104, 083542. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, H.; Zhu, J.Y. Gravitational waves from warm inflation. Phys. Rev. D 2018, 97, 063516. [Google Scholar] [CrossRef] [Green Version]
- Arraut, I. The Astrophysical Scales Set by the Cosmological Constant, Black-Hole Thermodynamics and Non-Linear Massive Gravity. Universe 2017, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.B.; Beck, D.; Bischoff, C.; Bock, J.J.; Boenish, H.; Bullock, E.; et al. BICEP and Keck. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Moss, I.G.; Xiong, C. Non-Gaussianity in fluctuations from warm inflation. J. Cosmol. Astropart. Phys. 2007, 04, 007. [Google Scholar] [CrossRef]
- Moss, I.G.; Yeomans, T. Non-gaussianity in the strong regime of warm inflation. J. Cosmol. Astropart. Phys. 2011, 08, 009. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Berera, A.; Moss, I.G.; Ramos, R.O. Theory of non-Gaussianity in warm inflation. J. Cosmol. Astropart. Phys. 2014, 12, 008. [Google Scholar] [CrossRef] [Green Version]
- Mirbabayi, M.; Gruzinov, A. Shapes of non-Gaussianity in warm inflation. J. Cosmol. Astropart. Phys. 2023, 2023, 012. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortsch. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef] [Green Version]
- Ooguri, H.; Vafa, C. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B 2007, 766, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.K.; Krishnan, C. Bounds on Slow Roll and the de Sitter Swampland. J. High Energy Phys. 2019, 11, 075. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. A Covariant entropy conjecture. J. High Energy Phys. 1999, 07, 004. [Google Scholar] [CrossRef] [Green Version]
- Kinney, W.H. Eternal Inflation and the Refined Swampland Conjecture. Phys. Rev. Lett. 2019, 122, 081302. [Google Scholar] [CrossRef] [Green Version]
- Baumann, D.; McAllister, L. Inflation and String Theory; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-08969-3/978-1-316-23718-2. [Google Scholar] [CrossRef] [Green Version]
- Aalsma, L.; Shiu, G. Chaos and complementarity in de Sitter space. J. High Energy Phys. 2020, 05, 152. [Google Scholar] [CrossRef]
- Mizuno, S.; Mukohyama, S.; Pi, S.; Zhang, Y.L. Universal Upper Bound on the Inflationary Energy Scale from the Trans-Planckian Censorship Conjecture. Phys. Rev. D 2020, 102, 021301. [Google Scholar] [CrossRef]
- Kamali, V.; Brandenberger, R. Relaxing the TCC Bound on Inflationary Cosmology? Eur. Phys. J. C 2020, 80, 339. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K. Steep Eternal Inflation and the Swampland. Phys. Rev. D 2018, 98, 123516. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Shandera, S. Stochastic eternal inflation is in the swampland. J. High Energy Phys. 2019, 11, 016. [Google Scholar] [CrossRef] [Green Version]
- Vicente, G.S.; da Silva, L.A.; Ramos, R.O. Eternal inflation in a dissipative and radiation environment: Heated demise of eternity. Phys. Rev. D 2016, 93, 063509. [Google Scholar] [CrossRef] [Green Version]
- Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation with pseudo—Nambu-Goldstone bosons. Phys. Rev. Lett. 1990, 65, 3233–3236. [Google Scholar] [CrossRef]
- Visinelli, L. Natural Warm Inflation. J. Cosmol. Astropart. Phys. 2011, 09, 013. [Google Scholar] [CrossRef]
- Mishra, H.; Mohanty, S.; Nautiyal, A. Warm natural inflation. Phys. Lett. B 2012, 710, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V. Warm pseudoscalar inflation. Phys. Rev. D 2019, 100, 043520. [Google Scholar] [CrossRef] [Green Version]
- Montefalcone, G.; Aragam, V.; Visinelli, L.; Freese, K. Observational Constraints on Warm Natural Inflation. arXiv 2022, arXiv:2212.04482. [Google Scholar]
- Herrera, R.; del Campo, S.; Campuzano, C. Tachyon warm inflationary universe models. J. Cosmol. Astropart. Phys. 2006, 10, 009. [Google Scholar] [CrossRef]
- del Campo, S.; Herrera, R. Warm-Intermediate inflationary universe model. J. Cosmol. Astropart. Phys. 2009, 04, 005. [Google Scholar] [CrossRef] [Green Version]
- Herrera, R.; Martin, E.S. Warm-intermediate inflationary universe model in braneworld cosmologies. Eur. Phys. J. C 2011, 71, 1701. [Google Scholar] [CrossRef]
- Setare, M.R.; Kamali, V. Tachyon Warm-Intermediate Inflationary Universe Model in High Dissipative Regime. J. Cosmol. Astropart. Phys. 2012, 08, 034. [Google Scholar] [CrossRef]
- Setare, M.R.; Kamali, V. Tachyon Warm-Logamediate Inflationary Universe Model in High Dissipative Regime. Phys. Rev. D 2013, 87, 083524. [Google Scholar] [CrossRef] [Green Version]
- Setare, M.R.; Kamali, V. Warm-Intermediate Inflationary Universe Model with Viscous Pressure in High Dissipative Regime. Gen. Rel. Grav. 2014, 46, 1698. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V.; Basilakos, S.; Mehrabi, A. Tachyon warm-intermediate inflation in the light of Planck data. Eur. Phys. J. C 2016, 76, 525. [Google Scholar] [CrossRef]
- Motaharfar, M.; Sepangi, H.R. Warm-tachyon Gauss–Bonnet inflation in the light of Planck 2015 data. Eur. Phys. J. C 2016, 76, 646. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Golanbari, T.; Sheikhahmadi, H.; Sayar, K.; Akhtari, L.; Rasheed, M.A.; Saaidi, K. Warm tachyon inflation and swampland criteria. Chin. Phys. C 2020, 44, 095101. [Google Scholar] [CrossRef]
- Dymnikova, I.; Khlopov, M. Decay of cosmological constant as Bose condensate evaporation. Mod. Phys. Lett. A 2000, 15, 2305–2314. [Google Scholar] [CrossRef]
- Dymnikova, I.; Khlopov, M. Decay of cosmological constant in selfconsistent inflation. Eur. Phys. J. C 2001, 20, 139–146. [Google Scholar] [CrossRef]
- Gashti, S.N.; Sadeghi, J. Refined swampland conjecture in warm vector hybrid inflationary scenario. Eur. Phys. J. Plus 2022, 137, 731. [Google Scholar] [CrossRef]
- dos Santos, F.B.M.; Silva, R.; da Costa, S.S.; Benetti, M.; Alcaniz, J.S. Warm β-exponential inflation and the Swampland Conjectures. arXiv 2022, arXiv:2209.06153. [Google Scholar] [CrossRef]
- Payaka, A.; Amaek, W.; Channuie, P. Warm deformed R2 inflation. Nucl. Phys. B 2023, 986, 116052. [Google Scholar] [CrossRef]
- Bouabdallaoui, Z.; Errahmani, A.; Bouhmadi-López, M.; Ouali, T. Scalar warm inflation in holographic cosmology. Phys. Rev. D 2022, 105, 043513. [Google Scholar] [CrossRef]
- Reyimuaji, Y.; Zhang, X. Warm-assisted natural inflation. J. Cosmol. Astropart. Phys. 2021, 04, 077. [Google Scholar] [CrossRef]
- Graef, L.L.; Ramos, R.O. Probability of Warm Inflation in Loop Quantum Cosmology. Phys. Rev. D 2018, 98, 023531. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Mabillard, J.; Pieroni, M.; Ramos, R.O. Identifying Universality in Warm Inflation. J. Cosmol. Astropart. Phys. 2018, 07, 021. [Google Scholar] [CrossRef] [Green Version]
- Herrera, R. Reconstructing warm inflation. Eur. Phys. J. C 2018, 78, 245. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhu, J.Y.; Zhang, X.M. Observational Constraints on Two-field Warm Inflation. Phys. Rev. D 2019, 99, 103529. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Sheikhahmadi, H. Warm inflation with non-comoving scalar field and radiation fluid. Eur. Phys. J. C 2021, 81, 165. [Google Scholar] [CrossRef]
- Bose, A.; Chakraborty, S. Does fractal universe favour warm inflation: Observational support? Nucl. Phys. B 2022, 978, 115767. [Google Scholar] [CrossRef]
- Harko, T.; Sheikhahmadi, H. Irreversible thermodynamical description of warm inflationary cosmological models. Phys. Dark Univ. 2020, 28, 100521. [Google Scholar] [CrossRef] [Green Version]
- Sheikhahmadi, H.; Mohammadi, A.; Aghamohammadi, A.; Harko, T.; Herrera, R.; Corda, C.; Abebe, A.; Saaidi, K. Constraining chameleon field driven warm inflation with Planck 2018 data. Eur. Phys. J. C 2019, 79, 1038. [Google Scholar] [CrossRef]
- Bertolami, O.; Sá, P.M. Multi-field cold and warm inflation and the de Sitter swampland conjectures. J. Cosmol. Astropart. Phys. 2022, 09, 001. [Google Scholar] [CrossRef]
- Motaharfar, M.; Singh, P. Role of dissipative effects in the quantum gravitational onset of warm Starobinsky inflation in a closed universe. Phys. Rev. D 2021, 104, 106006. [Google Scholar] [CrossRef]
- AlHallak, M.; Said, K.K.A.; Chamoun, N.; El-Daher, M.S. On Warm Natural Inflation and Planck 2018 constraints. Universe 2023, 9, 80. [Google Scholar] [CrossRef]
- Montefalcone, G.; Aragam, V.; Visinelli, L.; Freese, K. Constraints on the scalar-field potential in warm inflation. arXiv 2022, arXiv:2209.14908. [Google Scholar]
- de Oliveira, H.P.; Ramos, R.O. Dynamical system analysis for inflation with dissipation. Phys. Rev. D 1998, 57, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Wang, Y.Y.; Wang, H.; Zhu, J.Y. Dynamic analysis of noncanonical warm inflation. Phys. Rev. D 2018, 98, 043510. [Google Scholar] [CrossRef] [Green Version]
- Alho, A.; Bessa, V.; Mena, F.C. Dynamics of interacting monomial scalar field potentials and perfect fluids. arXiv 2022, arXiv:2212.02942. [Google Scholar]
- Arya, R.; Dasgupta, A.; Goswami, G.; Prasad, J.; Rangarajan, R. Revisiting CMB constraints on warm inflation. J. Cosmol. Astropart. Phys. 2018, 02, 043. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Bhattacharya, S.; Dutta, K.; Gangopadhyay, M.R. Constraining Warm Inflation with CMB data. J. Cosmol. Astropart. Phys. 2018, 02, 054. [Google Scholar] [CrossRef] [Green Version]
- Arya, R.; Rangarajan, R. Study of warm inflationary models and their parameter estimation from CMB. Int. J. Mod. Phys. D 2020, 29, 2050055. [Google Scholar] [CrossRef]
- Benetti, M.; Graef, L.; Ramos, R.O. Observational Constraints on Warm Inflation in Loop Quantum Cosmology. J. Cosmol. Astropart. Phys. 2019, 10, 066. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Kephart, T.W.; Wick, S.D. GUT cosmic magnetic fields in a warm inflationary universe. Phys. Rev. D 1999, 59, 043510. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.H.; Yamaguchi, M. Spontaneous baryogenesis in warm inflation. Phys. Rev. D 2003, 68, 023505. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. Warm baryogenesis. Phys. Lett. B 2012, 712, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Ramos, R.O.; Rosa, J.G. Observational implications of mattergenesis during inflation. J. Cosmol. Astropart. Phys. 2014, 10, 053. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.C.B.; Bastero-Gil, M.; Berera, A.; Dimopoulos, K.; Kohri, K. The gravitino problem in supersymmetric warm inflation. J. Cosmol. Astropart. Phys. 2011, 03, 020. [Google Scholar] [CrossRef] [Green Version]
- Bartrum, S.; Berera, A.; Rosa, J.G. Gravitino cosmology in supersymmetric warm inflation. Phys. Rev. D 2012, 86, 123525. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, K.; Donaldson-Wood, L. Warm quintessential inflation. Phys. Lett. B 2019, 796, 26–31. [Google Scholar] [CrossRef]
- Rosa, J.G.; Ventura, L.B. Warm Little Inflaton becomes Dark Energy. Phys. Lett. B 2019, 798, 134984. [Google Scholar] [CrossRef]
- Lima, G.B.F.; Ramos, R.O. Unified early and late Universe cosmology through dissipative effects in steep quintessential inflation potential models. Phys. Rev. D 2019, 100, 123529. [Google Scholar] [CrossRef] [Green Version]
- Gangopadhyay, M.R.; Myrzakul, S.; Sami, M.; Sharma, M.K. Paradigm of warm quintessential inflation and production of relic gravity waves. Phys. Rev. D 2021, 103, 043505. [Google Scholar] [CrossRef]
- Basak, S.; Bhattacharya, S.; Gangopadhyay, M.R.; Jaman, N.; Rangarajan, R.; Sami, M. The paradigm of warm quintessential inflation and spontaneous baryogenesis. J. Cosmol. Astropart. Phys. 2022, 03, 063. [Google Scholar] [CrossRef]
- Saleem, R.; Mehmood, F. A study of warm inflation model inspired by some inhomogeneous dark energy fluids. Eur. Phys. J. Plus 2021, 136, 570. [Google Scholar] [CrossRef]
- Levy, M.; Rosa, J.G.; Ventura, L.B. Warm inflation, neutrinos and dark matter: A minimal extension of the Standard Model. J. High Energy Phys. 2021, 12, 176. [Google Scholar] [CrossRef]
- Zhang, X.M.; Li, K.; Guo, Y.F.; Chu, P.C.; Liu, H.; Zhu, J.Y. Two models unifying warm inflation with dark matter and dark energy. Phys. Rev. D 2021, 104, 103513. [Google Scholar] [CrossRef]
- Sá, P.M. Triple unification of inflation, dark energy, and dark matter in two-scalar-field cosmology. Phys. Rev. D 2020, 102, 103519. [Google Scholar] [CrossRef]
- D’Agostino, R.; Luongo, O. Cosmological viability of a double field unified model from warm inflation. Phys. Lett. B 2022, 829, 137070. [Google Scholar] [CrossRef]
- Arya, R. Formation of Primordial Black Holes from Warm Inflation. J. Cosmol. Astropart. Phys. 2020, 09, 042. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Díaz-Blanco, M.S. Gravity waves and primordial black holes in scalar warm little inflation. J. Cosmol. Astropart. Phys. 2021, 12, 052. [Google Scholar] [CrossRef]
- Correa, M.; Gangopadhyay, M.R.; Jaman, N.; Mathews, G.J. Primordial black-hole dark matter via warm natural inflation. Phys. Lett. B 2022, 835, 137510. [Google Scholar] [CrossRef]
- Arya, R.; Mishra, A.K. Scalar induced gravitational waves from warm inflation. Phys. Dark Univ. 2022, 37, 101116. [Google Scholar] [CrossRef]
- Ballesteros, G.; García, M.A.G.; Rodríguez, A.P.; Pierre, M.; Rey, J. Primordial black holes and gravitational waves from dissipation during inflation. J. Cosmol. Astropart. Phys. 2022, 12, 006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamali, V.; Motaharfar, M.; Ramos, R.O. Recent Developments in Warm Inflation. Universe 2023, 9, 124. https://doi.org/10.3390/universe9030124
Kamali V, Motaharfar M, Ramos RO. Recent Developments in Warm Inflation. Universe. 2023; 9(3):124. https://doi.org/10.3390/universe9030124
Chicago/Turabian StyleKamali, Vahid, Meysam Motaharfar, and Rudnei O. Ramos. 2023. "Recent Developments in Warm Inflation" Universe 9, no. 3: 124. https://doi.org/10.3390/universe9030124
APA StyleKamali, V., Motaharfar, M., & Ramos, R. O. (2023). Recent Developments in Warm Inflation. Universe, 9(3), 124. https://doi.org/10.3390/universe9030124